王學(xué)海 徐興旺 牛磊
摘? ?要:喀拉通克礦床為中亞造山帶中典型巖漿型銅鎳硫化物礦床,礦區(qū)內(nèi)發(fā)育NW向褶皺及NW向、NNW向、NE向斷裂構(gòu)造,基性含礦巖體與其關(guān)系密切。通過(guò)對(duì)礦區(qū)南巖帶含礦基性巖體進(jìn)行三維形態(tài)分布和坑道內(nèi)斷裂構(gòu)造與礦體接觸關(guān)系分析,認(rèn)為礦區(qū)內(nèi)巖礦體分布受NW向和NNW向構(gòu)造控制,巖礦體具NNW向膨大變寬、NW向擠壓變窄特征。礦區(qū)巖礦體分布及形態(tài)是在右行擠壓剪切產(chǎn)生的NW和NNW向兩組斷裂控制下侵位的,含礦基性巖漿侵位時(shí)礦區(qū)處于擠壓構(gòu)造背景。指出構(gòu)造擠壓應(yīng)力被中間巖漿房巖漿轉(zhuǎn)為巖漿內(nèi)壓,巖漿內(nèi)壓的增加驅(qū)動(dòng)巖漿房中分異的含礦巖漿依次往上搬運(yùn)與侵位。這是銅鎳礦床基性-超基性巖漿侵位的新動(dòng)力學(xué)機(jī)制。
關(guān)鍵詞:喀拉通克;基性巖體形態(tài);控礦構(gòu)造
新疆喀拉通克鎂鐵質(zhì)-超鎂鐵質(zhì)銅鎳硫化物礦床位于中亞造山帶南部,東準(zhǔn)噶爾地塊東北緣為新疆最大的銅鎳硫化物礦床[1]??嘶詭r體形成于早二疊世[2-9];基性巖體巖漿源區(qū)為虧損的軟流圈地幔,原始巖漿為高鎂的拉斑玄武質(zhì)巖漿[10,11];巖體混染了圍巖導(dǎo)致“S”飽和[10,12];Y1-Y2巖體和Y2-Y3巖體為巖漿通道[11,13];大地構(gòu)造背景為后碰撞伸展背景[10]。礦區(qū)內(nèi)發(fā)育NW向褶皺及NW向、NNW向、NE向斷裂,基性含礦巖體與此構(gòu)造關(guān)系密切。Lightfoot,et al. 認(rèn)為喀拉通克基性巖體侵位受右行剪切作用控制[14]。本文通過(guò)對(duì)礦區(qū)內(nèi)南巖帶含礦基性巖體進(jìn)行三維形態(tài)分布和坑道內(nèi)構(gòu)造特征分析討論上述存在問(wèn)題。
1? 區(qū)域地質(zhì)背景
喀拉通克銅鎳礦位于東準(zhǔn)噶爾地塊東北緣,北側(cè)為阿爾泰造山帶,以齋桑-額爾齊斯蛇綠巖帶為界,西側(cè)為準(zhǔn)噶爾盆地。東準(zhǔn)噶爾地塊從北向南依次由NW向泥盆—石炭紀(jì)杜拉特島弧、寒武—奧陶紀(jì)阿爾曼太蛇綠巖帶、古生代野馬泉火山弧和泥盆—石炭紀(jì)卡拉麥里蛇綠巖帶組成[15-16]。區(qū)域上侵入巖種類較多,侵入時(shí)代主要為泥盆—二疊紀(jì),從酸性巖-超基性巖均有產(chǎn)出,基性巖體沿額爾齊斯斷裂兩側(cè)分布[12,17]。
2? 礦區(qū)地質(zhì)特征
喀拉通克礦區(qū)出露地層主要為泥盆紀(jì)蘊(yùn)都卡拉組火山巖和石炭紀(jì)南明水組火山碎屑巖,南明水組火山碎屑巖為巖體圍巖;構(gòu)造包括一系列NW向褶皺及NNW向、NW向和NE向斷裂。巖體包括基性巖體和中酸性斑巖,主要為NW向展布的9個(gè)基性巖體,編號(hào)Y1~Y9。據(jù)相對(duì)位置,Y1~Y3巖體構(gòu)成南巖帶,為主要含礦巖體,Y4~Y9巖體構(gòu)成北巖帶(圖1)。礦區(qū)基性巖體主成巖成礦年齡約為287 Ma[2-5,8],Y3巖體和Y5巖體存在約308 Ma和約320 Ma的閃長(zhǎng)巖[7,9]。
2.1? 南巖帶巖礦體類型及分布
Y1巖體劃分為4個(gè)巖相:橄欖蘇長(zhǎng)巖相、蘇長(zhǎng)巖相、輝綠輝長(zhǎng)巖相和閃長(zhǎng)巖相。橄欖蘇長(zhǎng)巖相主要為橄欖蘇長(zhǎng)巖,位于巖體中心;蘇長(zhǎng)巖和輝長(zhǎng)巖相位于橄欖蘇長(zhǎng)巖邊部;輝綠輝長(zhǎng)巖相位于巖體邊緣;閃長(zhǎng)巖相位于巖體最上部[8,10]。礦石類型主要為塊狀礦體,位于巖體正中心,向外依次為海綿隕鐵結(jié)構(gòu)礦化角閃橄欖輝長(zhǎng)巖、稀疏浸染狀礦化角閃橄欖蘇長(zhǎng)巖和蘇長(zhǎng)巖。
Y2巖體以11勘探線為界分為東西兩段,西段巖石類型主要為角閃橄長(zhǎng)巖和角閃橄欖蘇長(zhǎng)巖,礦化以海綿隕鐵結(jié)構(gòu)稠密浸染狀礦化和塊狀礦石為主;東段巖石以輝長(zhǎng)蘇長(zhǎng)巖和閃長(zhǎng)巖為主,少量橄欖輝長(zhǎng)巖,礦石類型主要有海綿隕鐵結(jié)構(gòu)礦化的橄欖輝長(zhǎng)巖和網(wǎng)脈狀礦化的輝長(zhǎng)蘇長(zhǎng)巖和黑云母閃長(zhǎng)巖。
Y3巖體從上到下依次為黑云母閃長(zhǎng)巖(約60%)、黑云母角閃輝長(zhǎng)巖(20%~30%)和黑云母角閃蘇長(zhǎng)巖(10%~20%),礦化主要集中在底部輝長(zhǎng)巖和蘇長(zhǎng)巖中(圖1)[8]。
2.2? 礦區(qū)構(gòu)造
礦區(qū)構(gòu)造主要包括褶皺和斷裂兩類。礦區(qū)出露褶皺由南向北主要包括南部向斜、南部背斜、中部向斜、北部背斜和北部向斜,軸面近直立,寬300~600 m,軸向120°~130°,兩翼傾角20°~45°。礦區(qū)斷裂構(gòu)造較多,NW向斷裂走向290°~310°,與區(qū)域構(gòu)造線一致,傾向NE向和SW向,以NE向?yàn)橹?,傾角變化較大,為40°~70°,以逆沖斷層為主,規(guī)模較大。礦區(qū)內(nèi)大的NW向斷裂構(gòu)造包括F3和F9斷裂;NNW向斷裂走向340°~355°,傾向NE向,傾角50°~70°,規(guī)模較大,如F15和F18斷裂;NE向斷裂走向25°~35°,傾角變化較大,對(duì)北巖帶巖體具破壞作用,如F21斷裂(圖1)。
3? 南巖帶典型巖礦體形態(tài)及巖? ? ?礦體與斷裂構(gòu)造關(guān)系
3.1? Y1基性巖體-礦體形態(tài)與控礦構(gòu)造
選取Y1巖體650中段、770中段和926中段平面圖,建立Y1巖體聯(lián)合平面圖(圖2)。Y1巖體整體向SE側(cè)伏,傾向NE向,主要包括閃長(zhǎng)巖、輝長(zhǎng)巖、稀疏浸染狀礦化蘇長(zhǎng)巖、稠密浸染狀礦化橄欖輝長(zhǎng)巖和特富塊狀礦體。中段巖體形態(tài)不規(guī)則,呈蛇曲狀,在650中段18線附近巖體膨大變寬,寬80~100 m,走向NNW向;在24線附近巖體變窄縮小,寬20~50 m,走向NW向;在28線附近巖體具膨大變寬特征,寬100~150 m,走向NNW向(圖2)。巖體在770中段和926中段具相似特征,NW向變窄縮小,NNW向膨大變寬。稠密浸染狀礦體不規(guī)則分布于閃長(zhǎng)巖、輝長(zhǎng)巖及稀疏浸染狀礦化蘇長(zhǎng)巖中,如770中段平面圖26勘探線和926中段42勘探線附近(圖2)。
Y1巖體650中段塊狀礦體分布不連續(xù),分為I1、I2、I3和I4 4個(gè)塊狀礦體,塊狀礦體和圍巖呈接觸關(guān)系(圖3)。其中,I1礦體分布于21線到29線間,標(biāo)高640~780 m;I2和I3礦體分布于29線到33線間,標(biāo)高600~750 m;I4礦體分布于20線附近,標(biāo)高580~660 m(圖3)。I1礦體形狀不規(guī)則,呈蛇曲狀,在21線到24線間走向?yàn)镹W向,擠壓變窄,寬5~20 m。在24線到27線走向NNW向,礦體膨大變寬,寬20~50 m;I2和I3礦體走向NNW向,650中段整體較寬,呈脈狀延伸;I4塊狀礦體呈紡錘狀垂直分布(圖3)。
3.2? 南巖帶巖體-礦體平面分布形態(tài)及控礦構(gòu)造
選取Y1巖體650中段、Y2巖體西段530中段和Y2巖體東段350中段平面圖,繪制巖礦體形態(tài)分布圖(圖4-a)。Y1和Y2巖體展布主要為NW向和NNW向,NW向礦體變窄縮小,NNW向礦體膨大變寬。Y1和Y2西段巖體呈蛇曲狀,分布于基性巖體中,具和基性巖體相同構(gòu)造特征,Y2巖體東段礦體主要為NW向和NNW向,沿NE向邊界分布。
4? 塊狀礦體控礦斷裂特征
通過(guò)對(duì)坑道內(nèi)斷裂構(gòu)造系統(tǒng)考察,發(fā)現(xiàn)塊狀礦體和圍巖多呈斷層接觸,接觸面上破碎帶及擦痕清晰可見(jiàn)。Y2巖體西端498中段W1線中,塊狀礦體和頂界面接觸界面彎曲,破碎帶發(fā)育(圖5-a),凝灰?guī)r底界面擦痕特征明顯(圖5-b);Y2巖體498中段4線中見(jiàn)塊狀礦體和下部凝灰?guī)r呈不規(guī)則接觸(圖5-c);Y2巖體西端498中段8線中見(jiàn)塊狀礦體與頂界面稀疏浸染狀礦化蘇長(zhǎng)巖截然接觸,表明塊狀礦體沿?cái)鄬用婧笃谪炄耄▓D5-d)。
5? 討論
5.1? 基性巖體-礦體與構(gòu)造關(guān)系
南巖帶Y1巖體整體顯示歪斜漏斗狀,SE向側(cè)伏,傾向NE向。垂向上延伸大于水平方向延伸,向下巖礦體逐漸變窄。中段平面圖中顯示蛇曲狀,巖礦體具NW向擠壓變窄,NNW向膨大變寬特征;Y2巖體西段礦體及Y2巖體東段礦體沿NW向褶皺和斷裂分布,水平延伸大于垂向上延伸,礦體主要走向?yàn)镹W向和NNW向。
據(jù)巖石破裂準(zhǔn)則(圖4-b),在主應(yīng)力σ1下,巖石破裂符合一定規(guī)律,形成破裂組合。最大剪切面為C面,形成C破裂,為壓剪性破裂,與最大主應(yīng)力σ1約呈45°夾角;T破裂平行最大主應(yīng)力σ1方向,為張性破裂,與最大剪切面C呈45°夾角,平行最大主應(yīng)力方向,易被后期巖礦體充填。對(duì)應(yīng)于南巖帶巖體中基性巖礦體的分布,NW向礦體具變窄特點(diǎn),對(duì)應(yīng)擠壓C斷裂,NNW向延伸礦物具膨大變寬特點(diǎn),對(duì)應(yīng)于張性T破裂。最大主應(yīng)力為近NS向,整體具右行擠壓剪切特點(diǎn)。
5.2? 巖漿侵位動(dòng)力學(xué)
含礦基性巖體在最大主應(yīng)力為NNW方向擠壓下,受NW向及NNW向兩組剪切斷裂控制侵位,即含礦基性巖漿侵位時(shí)礦區(qū)處于擠壓應(yīng)力作用下,這不同于之前認(rèn)為是在拉張應(yīng)力條件下侵位的[1,10,12]。關(guān)于巖漿運(yùn)移與侵位動(dòng)力,目前多認(rèn)為主要是浮力作用,即密度較圍巖低的巖漿在浮力驅(qū)動(dòng)下向上遷移和運(yùn)動(dòng)[18]。此模型要求巖漿密度小于圍巖密度。喀拉通克礦區(qū)含礦基性巖與塊礦密度大于圍巖密度。秦克章等對(duì)喀拉通克基性巖體密度進(jìn)行統(tǒng)計(jì),結(jié)果顯示,從沉凝灰?guī)r到硅質(zhì)凝灰?guī)r密度為2.769~3.044 g/cm3,基性巖體-礦體從閃長(zhǎng)巖到半塊狀礦石密度為2.770~4.131 g/cm3,玄武質(zhì)巖漿密度為2.95~3.4 g/cm3(圖6)[19]。Xu et al.提出巖石圈中圈閉流體對(duì)彈性應(yīng)力的傳遞與轉(zhuǎn)換動(dòng)力學(xué)理論[20],認(rèn)為巖石圈中圈閉流體可將其接受的最大擠壓應(yīng)力轉(zhuǎn)為流體應(yīng)力。本文用該理論來(lái)解釋礦區(qū)密度大的成礦基性巖漿的搬運(yùn)與侵位,即受擠壓應(yīng)力(F)作用下的中間巖漿房將該擠壓應(yīng)力轉(zhuǎn)為巖漿內(nèi)壓,使巖漿房中巖漿內(nèi)壓增加(P¢l=Pl+F)(圖7-a),然后在新增內(nèi)壓作用下,中間巖漿房中分異的不含礦巖漿、貧礦巖漿、富礦巖漿和礦漿依次往上搬運(yùn)與侵位(圖7-b)[21]。
6? 結(jié)論
喀拉通克銅鎳礦床巖礦體明顯受構(gòu)造控制,主要為NW向和NNW向展布,具NW向縮小變窄、NNW向膨大變寬特征,符合巖石破裂準(zhǔn)則,表明其在右行擠壓剪切作用力下順著破裂構(gòu)造侵位。認(rèn)為基性巖體侵位過(guò)程中構(gòu)造擠壓造成喀拉通克基性巖體的侵位,侵位動(dòng)力學(xué)機(jī)制為彈性應(yīng)力傳遞與轉(zhuǎn)換。是在擠壓應(yīng)力條件下中間巖漿房中分異的含礦巖漿依次侵位,這是鎂鐵質(zhì)巖漿侵位的一種新機(jī)制。
參考文獻(xiàn)
[1]? ? 王潤(rùn)民,趙昌龍.新疆喀拉通克一號(hào)銅鎳硫化物礦床[M].北京:地質(zhì)出版社, 1991,1-298.
[2]? ? 韓寶福, 季建清, 宋彪, 等.新疆喀拉通克和黃山東含銅鎳礦鎂鐵-超鎂鐵雜巖體的Shrimp鋯石U-Pb年齡及地質(zhì)意義[J]. 科學(xué)通報(bào), 2004, 49(22), 2324-2328.
[3]? ? 焦建剛, 王勇, 錢壯志, 等.新疆喀拉通克銅鎳硫化物礦床Y9巖體年代學(xué)與成巖成礦機(jī)制探討[J]. 礦床地質(zhì), 2014, 33(4), 675-688.
[4]? ? 康珍.喀拉通克基性巖體成礦機(jī)理-兼與東天山巖漿銅鎳礦床對(duì)比[D].北京:中國(guó)科學(xué)院大學(xué),2020.
[5]? ? 韓春明,肖文交,趙國(guó)春,等.新疆喀拉通克銅鎳硫化物礦床Re-Os同位素研究及其地質(zhì)意義[J].巖石學(xué)報(bào),2006, 22(1):163-170.
[6]? ? 張作衡, 柴鳳梅, 杜安道,等.新疆喀拉通克銅鎳硫化物礦床Re-Os同位素測(cè)年及成礦物質(zhì)來(lái)源示蹤[J]. 巖石礦物學(xué)雜志, 2005, 24(4), 285-293.
[7]? ? Gao JF, Zhou MF. Magma mixing in the genesis of the Kalatongke dioritic intrusion: implicatios for the tectonic switch from subduction to post-collision, Chinese Altay, NW China[J]. Lithos, 2013, 162-163:236-250.
[8]? ? Duan J, Qian Z , Feng Y , et al. Compositional variations of several Early Permian magmatic sulfide deposits in the Kalatongke district, southern Altai, western China: With genetic and exploration implications[J]. Ore Geology Reviews, 2017, 90:576-590.
[9]? ? Qian ZZ, Duan J, Li CS, etal. Paleozoic mafic-intermediate intrusions (320~287 Ma) in the Kalatongke area, southern Altai, NW China: Products of protracted magmatism in a convergent tectonic setting[J]. Journal of Asian Earth Sciences, 2018, 159:294-307.
[10]? 張招崇,閆升好,陳柏林,等.新疆喀拉通克基性雜巖體的地球化學(xué)特征及其對(duì)礦床成因的約束[J].巖石礦物學(xué)雜志,2003(3):217- 224.
[11]? 姜常義,夏明哲,錢壯志,等.新疆喀拉通克鎂鐵質(zhì)巖體群的巖石? ? 成因研究[J].巖石學(xué)報(bào),2009, 25(4):749-764.
[12]? Zhang ZC, Mao JW, Chai FM, etal. Geochemistry of the Permian Kalatongke Mafic Intrusions, Northern Xinjiang, Northwest China: Implications for the Genesis of Magmatic Ni-Cu Sulfide De? ? ? posits[J]. Economic Geology, 2009, 104:185-203.
[13]? 秦克章,田野,姚卓森,等.新疆喀拉通克銅鎳礦田成礦條件、巖漿通道與成礦潛力分析[J].中國(guó)地質(zhì), 2014, 41(3):912-935.
[14]? Lightfoot PC, Evans-Lamswood D. Structural controls on the primary distribution of mafic-ultramafic intrusions containing Ni-Cu-Co-(PGE) sulfide mineralization in the roots of large igneous provinces[J]. Ore Geology Reviews, 2015, 64:354-386.
[15]? Xiao WJ, Windley BF, Huang BC, et al. End Permian Mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution,Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences, 2009, 98(6):1189-1217.
[16]? Xu XW, Jiang N, Li XH, et al. Tectonic evolution of the East Junggar terrane: Evidence from the Taheir tectonic window, Xinjiang, China[J]. Gondwana Research, 2013, 24(2):578-600.
[17]? 王福同,馬天林,劉光海,等.新疆喀拉通克Cu-Ni-Au成礦帶成礦作用與找礦模式[M]. 北京:地質(zhì)出版社, 1992, 1-262.
[18]? Lister JR. Buoyancy-drive fluid fracture: Similarity solutions for the horizontal and vertical propagation of fluid-filled cracks[J]. Journal of Fluid Mechanics, 1990,217:213-239.
[19]? Ito K, Kennedy GC. An experimental study of the basalt-gamet granulite-eclogite transition[C]. Heacock JG, eds The Structure and Physical Properities of the Earth’s Crust. Washington: American Geophysical Union, 1971:303-314.
[20]? Xu XW, Peter SG, Liang GH, et al. Elastic stress transmission and transformation (ESTT) by confined liquid: A new mechanics for fracture in elastic lithosphere of the earth[J]. Tectonophysics, 2016,672-673:129-138
[21]? 湯中立. 中國(guó)巖漿硫化物礦床的主要成礦機(jī)制[J]. 地質(zhì)學(xué)報(bào),1996,70(3):237-243.
Abstract: The Kalatongke deposit is a typical Cu-Ni sulfide deposit in Central Asian Orogenic Belt (CAOB). There are northwest trending folds and northwest (NW), north northwest (NNW) and northeast (NE) trending faults in Kalatongke mining area, and the basic ore bearing rock mass is closely related to it. Through the analysis of the three-dimensional shape distribution of the ore bearing basic rock mass in the Southern rock belt of the mining area and the contact relationship between the fault structure in the tunnel and the ore body, it is considered that the distribution of the rock ore body in the mining area is controlled by the NW and NNW structures, and the rock ore body has the characteristics of expansion and widening in NNW direction and compression and narrowing in NW direction. The distribution and shape of rock ore bodies in the mining area were emplaced under the control of two groups of faults in NW and NNW directions generated by dextral compressive shear. The mining area was in a compressive tectonic background when the ore bearing basic magma was emplaced.It is pointed out that the tectonic compression stress is transformed by the magma in the middle magma chamber into intra magma pressure, and the increase of intra magma pressure drives the migration and emplacement of the differentiated ore-bearing magma in the magma chamber. This is a new dynamic mechanism of basic-ultrabasic magmatic emplacement in Cu-Ni deposits.
Key words: Kalatongke; Morphological characteristics; Ore-controlling structure