王學(xué)濱, 田 鋒, 錢帥帥
(1.遼寧工程技術(shù)大學(xué) 計算力學(xué)研究所,遼寧 阜新 123000;2.遼寧工程技術(shù)大學(xué) 力學(xué)與工程學(xué)院,遼寧 阜新 123000)
在防護(hù)和采礦等工程中,洞室圍巖常會受到不同形式的沖擊載荷作用。沖擊載荷來源于爆破、斷層錯動、煤柱失穩(wěn)和巖層斷裂等。在深部高地應(yīng)力下,沖擊載荷往往會誘發(fā)巖爆、冒頂、片幫、垮塌和沖擊地壓等災(zāi)害,造成重大人員傷亡和設(shè)備損壞。例如,在采礦工程中,斷層失穩(wěn)錯動可誘發(fā)強(qiáng)烈的沖擊載荷,從而導(dǎo)致重大斷層沖擊地壓事故。2011年河南義馬千秋煤礦發(fā)生一起重大斷層沖擊地壓事故,造成10人死亡,60多人受傷,近400 m巷道頂板垮塌。采礦工程中的巖層周期破斷、斷層周期黏滑和反復(fù)爆破是較為常見的。因此,探索周期沖擊下洞室圍巖的變形-開裂-垮塌過程具有重要理論和實(shí)際意義。
在實(shí)驗(yàn)室中,探索洞室圍巖的變形、破壞和穩(wěn)定性規(guī)律的重要思路之一是將先或后開挖孔洞的(類)巖石作為洞室圍巖本身開展相關(guān)研究[1-2]。常見的此類實(shí)驗(yàn)主要包括單軸壓縮實(shí)驗(yàn)、雙軸壓縮實(shí)驗(yàn)、三軸卸載實(shí)驗(yàn)[2]、動力加載實(shí)驗(yàn)[3-4]和動靜載組合實(shí)驗(yàn)[5]等。近年來,已取得了顯著的進(jìn)展。有些實(shí)驗(yàn)很好地再現(xiàn)了現(xiàn)場的若干觀測結(jié)果,從而對洞室圍巖有關(guān)破壞規(guī)律的認(rèn)識有了根本性的提升。例如,剝落一方面促進(jìn)了屈曲大變形,另一方面弱化了巖體的強(qiáng)度,從而誘發(fā)了巖爆;剝落與巖爆強(qiáng)烈相關(guān)[6];隨著沖擊載荷幅值和頻率的增加,應(yīng)變型巖爆更易發(fā)生[7-8],等等。
在數(shù)值模擬研究方面,關(guān)于沖擊或周期沖擊下洞室圍巖的變形、破壞和穩(wěn)定性規(guī)律的認(rèn)識也在不斷深化。例如,李夕兵等[9]將沖擊載荷簡化為幅值為30~90 MPa的1個簡諧波,采用PFC2D研究了沖擊載荷幅值對巷道圍巖的應(yīng)力場、位移場及破壞區(qū)范圍的影響;陳建軍等[10]將周期沖擊載荷簡化為幅值為10 MPa的周期半正弦應(yīng)力波,采用FLAC3D研究了周期沖擊載荷作用位置和方向?qū)匦蜗锏纼蓭汀㈨?、底板速度和加速度的影響。?yīng)當(dāng)指出,上述文獻(xiàn)多采用連續(xù)方法(例如,F(xiàn)LAC3D[10])和非連續(xù)方法(例如,PFC[9])開展研究,主要呈現(xiàn)了洞室圍巖的塑性區(qū)、應(yīng)力、應(yīng)變和位移等力學(xué)量的時空分布規(guī)律,一般不涉及洞室圍巖的局部開裂規(guī)律。大量實(shí)踐證明,在實(shí)驗(yàn)室和現(xiàn)場觀測中,洞室圍巖的開裂更多的是局部開裂(例如,出現(xiàn)1~4個V形坑[11-13])。
采用連續(xù)方法可以較好地模擬洞室圍巖的應(yīng)力、應(yīng)變及塑性區(qū)分布,但不適于模擬洞室圍巖的開裂和坍塌過程;采用非連續(xù)方法可以較好地模擬節(jié)理圍巖的巖塊運(yùn)動和巖塊之間的相互作用,但往往需要引入接觸剛度,這會對應(yīng)力、應(yīng)變產(chǎn)生一定影響。為了彌補(bǔ)連續(xù)方法和非連續(xù)方法的各自缺陷,連續(xù)-非連續(xù)方法應(yīng)運(yùn)而生,發(fā)展迅速[14-17]。本文第一作者團(tuán)隊(duì)經(jīng)過多年努力發(fā)展了拉格朗日元與變形體離散元耦合的連續(xù)-非連續(xù)方法,適于模擬連續(xù)介質(zhì)向非連續(xù)介質(zhì)轉(zhuǎn)化和非連續(xù)介質(zhì)進(jìn)一步演化,已對其正確性在各方面進(jìn)行了檢驗(yàn),并取得了一些良好的研究進(jìn)展。例如,王學(xué)濱等[17]模擬了位移控制加載下三點(diǎn)彎梁的變形-開裂過程,探討了尺寸效應(yīng)的影響。
本文在自主開發(fā)的拉格朗日元與變形體離散元耦合的連續(xù)-非連續(xù)方法中同時引入Ⅰ型和Ⅱ型斷裂能。模擬了周期半正弦波沖擊下洞室圍巖的變形-開裂-垮塌過程,闡明了應(yīng)力波反射和疊加導(dǎo)致洞室頂板開裂機(jī)理,解釋了洞室兩幫拉、剪裂相伴現(xiàn)象的原因,探討了周期沖擊載荷幅值的影響規(guī)律。
拉格朗日元與變形體離散元耦合的二維連續(xù)-非連續(xù)方法[18]主要包括應(yīng)力、應(yīng)變模塊、節(jié)點(diǎn)分離模塊、接觸力求解模塊和運(yùn)動方程求解模塊。應(yīng)力、應(yīng)變模塊通過節(jié)點(diǎn)的速度利用高斯定理求解單元的應(yīng)力和應(yīng)變。接觸力求解模塊首先通過基于空間剖分的單元接觸檢測方法進(jìn)行接觸檢測;然后,通過基于勢的接觸力計算方法求解發(fā)生接觸的單元的接觸力;最后,通過法向接觸力、切向接觸力和摩擦系數(shù)求解有關(guān)節(jié)點(diǎn)的摩擦力。運(yùn)動求解模塊通過節(jié)點(diǎn)力利用牛頓第二定律求解節(jié)點(diǎn)的速度。
下面對節(jié)點(diǎn)分離模塊進(jìn)行介紹。
(1) 節(jié)點(diǎn)分離判斷。分別選擇最大拉應(yīng)力準(zhǔn)則(σ3>σn,σ3為最大主應(yīng)力,σn為抗拉強(qiáng)度)和莫爾-庫侖準(zhǔn)則作為節(jié)點(diǎn)拉伸、剪切分離判據(jù)。節(jié)點(diǎn)的應(yīng)力由節(jié)點(diǎn)周圍單元的應(yīng)力取平均獲得。
(2) 分離方向選擇。當(dāng)節(jié)點(diǎn)的應(yīng)力滿足上述強(qiáng)度準(zhǔn)則時,需計算理論開裂方向(拉裂的理論開裂方向與σ3方向垂直;剪裂的理論開裂方向與σ3方向的夾角為45°+φ/2(φ為內(nèi)摩擦角)),選取與理論開裂方向最接近的單元邊界作為實(shí)際開裂方向。應(yīng)當(dāng)指出,可以通過加密網(wǎng)格來避免上述開裂方式帶來的網(wǎng)格依賴性問題。以圖1(a)為例,①~④代表單元,若節(jié)點(diǎn)A滿足剪切分離條件,假定理論分離方向?yàn)閳D1(a)中虛線,需從潛在分離方向1~3中選擇與理論分離方向夾角最小的單元邊界(圖1(a)中AB邊)作為實(shí)際分離方向。應(yīng)當(dāng)指出,在節(jié)點(diǎn)發(fā)生分離之后,若需要進(jìn)行大量的接觸檢測,則計算效率有待進(jìn)一步提高。
(a)
(b)
(a)
(b)
當(dāng)虛擬裂縫剛出現(xiàn)時(圖3),σn和τs達(dá)到最大;隨著w和s的增加,σn和τs線性下降;當(dāng)w和s分別達(dá)到自身的臨界值wp和sp時,σn和τs分別降為0。σn和τs的計算公式具體如下
(1)
圖3 兩個單元之間的黏聚力
在本文第一作者團(tuán)隊(duì)發(fā)展的連續(xù)-非連續(xù)方法的早期版本中[17],只引入了Gf,Ⅰ,而未引入Gf,Ⅱ。當(dāng)時的主要考慮一方面是Gf,Ⅱ不易測量,另一方面τs計算原理更簡單。在早期版本的方法中,當(dāng)節(jié)點(diǎn)無論剛發(fā)生拉伸分離和剪切分離時,均需用面內(nèi)剪應(yīng)力替代τs的最大值。當(dāng)σn消失時,τs也消失,以此簡化處理避免Gf,Ⅱ的引入。上述簡化處理對于拉裂模擬較為有效,針對直接拉伸、三點(diǎn)彎曲[17]等條件下的模擬結(jié)果與有關(guān)的理論結(jié)果或?qū)嶒?yàn)結(jié)果吻合較好。然而,上述早期版本的方法不適于模擬剪裂峰后軟化現(xiàn)象,只能模擬出剪裂峰后脆性現(xiàn)象,適用性有限?,F(xiàn)引入Gf,Ⅱ之后,可以更好地模擬拉、剪裂縫的擴(kuò)展過程。
當(dāng)前的考慮是無論節(jié)點(diǎn)發(fā)生何種形式分離,均引入Gf,Ⅰ和Gf,Ⅱ。當(dāng)節(jié)點(diǎn)發(fā)生拉伸分離時,引入Gf,Ⅱ的目的是為了彌補(bǔ)虛擬裂縫面上節(jié)點(diǎn)切向彈性力的突然消失(在節(jié)點(diǎn)分離之前,通常,節(jié)點(diǎn)的彈性力并非在水平或垂直方向上,而是在兩個方向上都有分量);當(dāng)節(jié)點(diǎn)發(fā)生剪切分離時,引入Gf,Ⅰ的目的是為了彌補(bǔ)虛擬裂縫面上法向彈性力的突然消失。所以,上述考慮內(nèi)容能有效避免計算模型發(fā)生劇烈震蕩,有助于提高該方法的準(zhǔn)確性。
本文的洞室圍巖模型(以下簡稱模型)的建立依據(jù)濟(jì)三煤礦123下04工作面的某一巷道圍巖。該煤礦位于山東省西南部濟(jì)寧市南郊,深受沖擊地壓危害。據(jù)不完全統(tǒng)計,該煤礦自2003年以來累計發(fā)生沖擊地壓8次。將未開挖前的模型視為連續(xù)介質(zhì),模型不涉及大型結(jié)構(gòu)面。模型的高度和寬度均為40 m,被剖分成160×160個正方形單元,單元尺寸與模型高度之比為1/160,相比之下,單元尺寸足夠小,網(wǎng)格依賴性應(yīng)較小。在模型下端面,施加豎向鉸支座約束,在左、右側(cè)面和上端面,施加27 MPa的壓應(yīng)力(圖4)。參數(shù)取值如下:面密度ρ=2 700 kg/m2,彈性模量E=20 GPa,泊松比μ=0.3,抗拉強(qiáng)度σt=5 MPa,法向剛度系數(shù)Kn=10 GPa,莫爾-庫侖準(zhǔn)則中的黏聚力c=20 MPa、φ=40°,摩擦因數(shù)f=0.1,Gf,Ⅰ=100 N/m,Gf,Ⅱ=4 000 N/m,局部自適應(yīng)阻尼系數(shù)α=0.2,該值在動力模擬中常被采用,時步長度Δt=1.979 24×10-5s,Δt小于臨界時步長度(7.919 6×10-5s),以確保數(shù)值穩(wěn)定性。計算在平面應(yīng)變、大變形下進(jìn)行。應(yīng)當(dāng)指出,模型的左、右側(cè)面和上端面均為透射邊界。
圖4 開挖后的模型
計算過程可分為:
步驟1 對開挖前的模型進(jìn)行計算,直到模型達(dá)到靜力平衡,該步驟所用時步數(shù)目N為12 000;
步驟2 從開挖前的模型中心處逐圈刪除單元,以開挖6 m×6 m的正方形洞室(所用N為4 000),洞室中心與開挖前的模型中心重合,直到開挖后的模型達(dá)到靜力平衡,該步驟所用N為8 000;
步驟3 在模型的上端面,施加豎直向下的沖擊載荷P(t),該步驟從N=20 000時開始,所用N為4 000。本文將P(t)簡化為半正弦壓應(yīng)力波(共有8個壓應(yīng)力波傳入模型),P(t)-時間t曲線見圖5。P(t)表達(dá)式如下
P(t)=
(2)
式中:Pmax為壓應(yīng)力波幅值;圓頻率ω=318.395 rad/s;t=NΔt;0.395 848 s和0.475 017 6 s分別相當(dāng)于N=20 000時和N=24 000時;
步驟4 對沖擊下模型進(jìn)行計算。
圖5 沖擊載荷-t曲線
共采用4個計算方案。方案1~方案4的Pmax分別為16 MPa、13 MPa、10 MPa及7 MPa。在現(xiàn)有技術(shù)條件下,Pmax在現(xiàn)場難以實(shí)測。本文的Pmax的取值涵蓋了現(xiàn)有文獻(xiàn)[19]的合理取值范圍。
圖6為方案1的拉裂縫與最大主應(yīng)力σ3的時空分布規(guī)律,圖7為方案1的剪裂縫與最小主應(yīng)力σ1的時空分布規(guī)律,圖8為方案3的拉裂縫與σ3的時空分布規(guī)律,圖9為方案3的剪裂縫與σ1的時空分布規(guī)律。其中,在圖6和圖8中黑色線段代表拉裂縫區(qū)段;在圖7和圖9中,黑色線段代表剪裂縫區(qū)段。應(yīng)當(dāng)指出,兩個單元之間的裂縫稱之為1個裂縫區(qū)段,裂縫區(qū)段的形狀為四邊形。若干裂縫區(qū)段連在一起構(gòu)成裂縫??紤]到單元脫離圍巖后裂縫將變得很大,圖6~圖9僅顯示了各邊長度均小于等于1個單元邊長的裂縫區(qū)段。圖10和圖11分別給出了方案1~方案4的拉裂縫區(qū)段數(shù)目Nt和剪裂縫區(qū)段數(shù)目Ns隨N的演變規(guī)律,統(tǒng)計的Ns和Nt包括圖6~圖9中顯示的和未顯示的裂縫區(qū)段。
3.2.1 多個壓應(yīng)力波沖擊下拉、剪裂縫的時空分布
下面,以方案1為例進(jìn)行分析。
由圖6和圖7可以發(fā)現(xiàn),拉裂縫首先產(chǎn)生在洞室頂板,然后產(chǎn)生在洞室兩幫;拉裂縫主要分布在洞室頂板;剪裂縫主要分布在洞室兩幫,形成V形坑。拉、剪裂縫發(fā)展過程具體如下:
當(dāng)N=20 000時(圖6(a)和圖7(a)),第1個壓應(yīng)力波開始傳入洞室圍巖;當(dāng)N=21 500時(圖6(n)和圖7(f)),第1個壓應(yīng)力波開始傳出洞室圍巖。當(dāng)N=20 700時(圖6(f)),第1個壓應(yīng)力波波前抵達(dá)洞室頂板表面后分化為左、右兩部分和中間部分。
當(dāng)N=20 000~21 500時(圖6(a)~圖6(n)和圖7(a)~圖7(f)),第1個壓應(yīng)力波的中間部分在洞室頂板表面發(fā)生反射,洞室頂板產(chǎn)生了大量拉裂縫且逐漸增多;同時,第1個壓應(yīng)力波的左、右兩部分向下繼續(xù)傳播,經(jīng)過洞室兩幫后,洞室兩幫產(chǎn)生了拉、剪裂縫(剪裂縫最先產(chǎn)生在洞室的左、右上角(圖7(b))),拉裂縫逐漸增多,剪裂縫發(fā)展后形成V形坑且深度增加。當(dāng)N=21 500~24 000時(圖6(n)~圖6(q)和圖7(f)~圖7(i)),拉、剪裂縫不斷在兩幫擴(kuò)展,并向上發(fā)展,在原有V形坑之外形成V形坑。當(dāng)N=24 000時(圖6(q)和圖7(i)),最后1個壓應(yīng)力波已完全傳入洞室圍巖。隨后,洞室頂板和兩幫的拉、剪裂縫有一定程度的擴(kuò)展,部分脫離圍巖的單元涌入洞室。當(dāng)N=25 000時(圖6(r)和圖7(i)),與N=24 000時相比,洞室兩幫的拉裂縫有所擴(kuò)展,同時,洞室兩幫的V形坑的上方產(chǎn)生了一些剪裂縫。
當(dāng)N=25 000~45 000時(圖6(r)~圖6(s)和圖7(i)~圖7(k)),拉、剪裂縫的擴(kuò)展基本停滯;洞室頂板的拉裂縫數(shù)目比兩幫的多,這表明沖擊下洞室頂板的破裂以拉裂為主;洞室兩幫剪裂縫數(shù)目比頂板的多,這表明沖擊下洞室兩幫的破裂以剪裂為主。董鎖堂[20]利用水泥類的膨脹膠凝材料與水反應(yīng)體積驟增的特點(diǎn)對洞室圍巖進(jìn)行沖擊實(shí)驗(yàn),發(fā)現(xiàn)了洞室頂板和兩幫均破壞,且兩幫呈“V”形坑。在現(xiàn)場反復(fù)爆破下,洞室頂板和兩幫發(fā)生破壞現(xiàn)象[21]也是常見的。當(dāng)N=70 000時(圖6(t)和圖7(n)),1條裂縫由洞室右?guī)蛿U(kuò)展至模型的上端面,這將導(dǎo)致洞室圍巖的不平衡。
總體上看,洞室頂板的拉裂縫數(shù)目比洞室兩幫的多,其范圍比兩幫的大,洞室兩幫的剪裂縫數(shù)目比洞室頂板的多,其范圍比頂板的大。
3.2.2 第1個壓應(yīng)力波沖擊下拉、剪裂縫的時空分布
由上文結(jié)果可見,第1個壓應(yīng)力波造成了洞室圍巖較嚴(yán)重的破裂。因此,下面以方案1為例,細(xì)致分析第1個壓應(yīng)力波的傳播過程,簡單涉及第2和3個壓應(yīng)力波。由圖6(a)~圖6(n)總體上可以發(fā)現(xiàn):首先,隨著第1個壓應(yīng)力波傳入,洞室頂板的σ3受拉區(qū)逐漸被壓縮,第1個壓應(yīng)力波與洞室四角的σ3受壓區(qū)逐漸聯(lián)通;然后,第1個壓應(yīng)力波的中間部分在洞室頂板發(fā)生反射,導(dǎo)致頂板拉裂;同時,第1個壓應(yīng)力波的左、右兩部分向下傳播,在經(jīng)過洞室兩幫后,兩幫產(chǎn)生了少量拉裂縫。
(a) N=20 000
(b) N=20 050
(c) N=20 250
(d) N=20 500
(e) N=20 600
(f) N=20 700
(g) N=20 800
(h) N=20 900
(i) N=21 000
(j) N=21 100
(k) N=21 200
(l) N=21 300
(m) N=21 400
(n) N=21 500
(o) N=22 000
(p) N=23 000
(q) N=24 000
(r) N=25 000
(s) N=45 000
t) N=70 000
首先,細(xì)致介紹圖6中σ3和拉裂縫的時空分布。
當(dāng)N=20 000時(圖6(a)),洞室兩幫及頂、底板各存在1個弓形的σ3受拉區(qū),其深度約為2.9 m,洞室四角存在σ3受壓區(qū)。應(yīng)當(dāng)指出,正方形洞室周邊的環(huán)向應(yīng)力σθ=αp+βλp[22],式中,α和β為應(yīng)力集中系數(shù),其大小與位置有關(guān),洞室四角處的α和β最大[23];λ為側(cè)壓系數(shù);p為原巖垂直應(yīng)力。所以,洞室四角處的σθ最大。在沖擊載荷施加之前且洞室開挖之后圍巖平衡時,本文中洞室四角處存在σ3壓應(yīng)力集中與上述理論結(jié)果相符。此時,第1個壓應(yīng)力波剛傳入洞室圍巖。當(dāng)N=20 050~20 500時(圖6(b)~圖6(d)),第1個壓應(yīng)力波逐漸傳入洞室圍巖,在模型的上端面附近,形成了1個σ3受壓區(qū)。當(dāng)N=20 500時(圖6(d)),該壓應(yīng)力波波前已接近洞室頂板表面,其與洞室左、右上角的σ3受壓區(qū)有聯(lián)通趨勢;洞室頂板的受拉區(qū)尺寸與過去相比減少,其深度約為2.8 m。
當(dāng)N=20 600~20 900時(圖6(e)~(h)),第1個壓應(yīng)力波波前抵達(dá)洞室頂板表面后分化為3部分,第2個壓應(yīng)力波波前抵達(dá)洞室頂板。第1個壓應(yīng)力波的中間部分在洞室頂板表面發(fā)生反射,反射的拉應(yīng)力波導(dǎo)致頂板拉裂,同時,第1個壓應(yīng)力波的左、右兩部分繼續(xù)傳播,與洞室左、右下角的σ3受壓區(qū)逐漸聯(lián)通。當(dāng)N=20 600時(圖6(e)),洞室頂板的σ3受拉區(qū)深度被壓縮至約1.9 m。當(dāng)N=20 700時(圖6(f)),洞室頂板的σ3受拉區(qū)基本消失。N=20 800時(圖6(g)),洞室頂板的σ3受拉區(qū)有所恢復(fù)。
當(dāng)N=21 000~21 100時(圖6(i)~圖6(j)),第1個壓應(yīng)力波的左、右兩部分波前抵達(dá)洞室底板后有匯合趨勢;第2個壓應(yīng)力波波前接近洞室頂板的拉裂區(qū);第3個壓應(yīng)力波傳入洞室圍巖。當(dāng)?shù)?個壓應(yīng)力波的左、右兩部分經(jīng)過洞室兩幫之后,兩幫首先出現(xiàn)了少量拉裂縫(圖6(i)),然后拉裂縫有所擴(kuò)展(圖6(j))。
當(dāng)N=21 200~21 500時(圖6(k)~圖6(n)),第1個壓應(yīng)力波已匯合,呈整體連續(xù)展布;第2個壓應(yīng)力波分化為3部分,左、右兩部分波前經(jīng)過洞室兩幫抵達(dá)底板,兩幫的拉裂縫有所擴(kuò)展;第3個壓應(yīng)力波波前已接近洞室頂板的拉裂區(qū)。
然后,簡單介紹圖7中σ1和剪裂縫的時空分布。
當(dāng)N=20 000時(圖7(a)),洞室四角存在σ1受壓區(qū)。當(dāng)N=20 900時(圖7(b)),第1個壓應(yīng)力波的左、右兩部分抵達(dá)洞室兩幫,并與洞室四角的σ1受壓區(qū)聯(lián)通,在洞室左、右上角產(chǎn)生了少量剪裂縫。當(dāng)N=21 000時(圖7(c)),洞室左、右上角的剪裂縫斜向下擴(kuò)展,擴(kuò)展后的剪裂縫與洞室左、右下角的聯(lián)通,形成V形坑。當(dāng)N=21 300時(圖7(e)),剪裂縫和V形坑與此前的相比變化較小。當(dāng)N=21 500時(圖7(f)),洞室兩幫的V形坑之外出現(xiàn)了一些剪裂縫,并有形成更大V形坑的趨勢。
(a) N=20 000
(b) N=20 900
(c) N=21 000
(d) N=21 100
(e) N=21 300
(f) N=21 500
(g) N=22 000
(h) N=23 000
(i) N=24 000
(j) N=25 000
(k) N=45 000
(l) N=70 000
總體上看,第1個壓應(yīng)力波的中間部分在洞室頂板表面發(fā)生反射之后,洞室頂板出現(xiàn)拉裂縫;第1個壓應(yīng)力波的左、右兩部分經(jīng)過洞室兩幫之后,兩幫出現(xiàn)拉、剪裂縫,其中,剪裂縫擴(kuò)展后形成V形坑。
(a) N=20 000
(b) N=22 000
(c) N=24 000
(d) N=25 000
(e) N=45 000
(f) N=70 000
(a) N=20 000
(b) N=22 000
(c) N=24 000
(d) N=25 000
(e) N=45 000
(f) N=70 000
首先,以方案1(Pmax最大)為例,介紹Nt和Ns隨N的演化規(guī)律。
由圖10可以發(fā)現(xiàn),Nt-N曲線大致可被分為3個階段:恒為0階段、近似階梯增長階段和基本恒定不變階段。
在恒為0階段(N=20 000~20 872),共有2個壓應(yīng)力波傳入洞室圍巖,其中,第1個壓應(yīng)力波波前尚未抵達(dá)洞室頂板表面。
在近似階梯增長階段(N=20 873~25 000),在Nt-N曲線上隱約可見8個階梯。每個階梯可被分成快速增長部分和緩慢增長部分,分別對應(yīng)于拉裂縫的快速擴(kuò)展和緩慢擴(kuò)展。在第1個階梯階段(N=20 873~21 419),Nt首先快速增至964,然后,緩慢增長。這是因?yàn)榈?個壓應(yīng)力波波前抵達(dá)洞室頂板表面后發(fā)生分化,中間部分反射造成洞室頂板拉裂,左、右兩部分向下傳播造成洞室兩幫拉裂。在此階段,第2個壓應(yīng)力波對洞室圍巖的影響不顯著。在最后1個階梯階段(N=24 181~25 000),Nt首先由2 670快速增至4 202,然后,基本保持不變。應(yīng)當(dāng)指出,前7個壓應(yīng)力波分化的中間部分反射后的拉應(yīng)力波將分別與后繼的壓應(yīng)力波疊加,這將導(dǎo)致拉應(yīng)力波的幅值降低,而最后1個壓應(yīng)力波分化的中間部分反射后,拉應(yīng)力波附近不再有壓應(yīng)力波,所以將造成更嚴(yán)重頂板的拉裂。
在基本恒定不變階段(N=25 001~30 000),Nt基本為4 206。在此階段,洞室圍巖正在形成某種有利于平衡的結(jié)構(gòu),應(yīng)力在調(diào)整之中。應(yīng)當(dāng)指出,當(dāng)N>30 000時,本文未統(tǒng)計Nt和Ns,這是因?yàn)樽詈?個壓應(yīng)力波在N≈26 100時完全傳出模型,之后洞室圍巖的裂縫擴(kuò)展與由模型上端面?zhèn)魅氲膲簯?yīng)力波不應(yīng)該有關(guān)系;當(dāng)N=70 000時(圖6(t)),拉裂縫擴(kuò)展至模型上端面,應(yīng)力調(diào)整失敗,洞室圍巖不平衡。
由圖10和圖11可以發(fā)現(xiàn),Ns的演化規(guī)律與Nt的有相似之處,例如,在近似階梯增長階段,隱約可見8個階梯。二者的演化規(guī)律亦有所不同:Ns突增較少,在第1和第8階梯階段,其分別由0突增至363和由2 884突增至2 988。
然后,簡單介紹方案3(Pmax較小)的Nt和Ns隨N的演化規(guī)律。
Nt-N曲線和Ns-N曲線的形式基本相同,大致可被分為4個階段:恒為0階段、快速增長階段、緩慢增長階段和基本恒定不變階段。
在快速增長階段和緩慢增長階段,Nt首先快速增至350(N=20 873~20 893),這是因?yàn)榈?個壓應(yīng)力波分化的中間部分反射后造成了洞室頂板拉裂,然后,緩慢增至615(圖8(b)~圖8(d));Ns首先快速增至27(N=20 825~20 855),這是因?yàn)榈?個壓應(yīng)力波分化的左、右兩部分造成了洞室左、右上角剪裂,然后,緩慢增至137(圖9(b)~圖9(d))。
在基本恒定不變階段(N=25 001~30 000),Nt和Ns分別為615和138。應(yīng)當(dāng)指出,當(dāng)N>30 000時,拉、剪裂縫的擴(kuò)展停滯(圖8(e)~圖8(f)和圖9(e)~圖9(f)),洞室圍巖平衡。
最后,對方案1和方案3的結(jié)果進(jìn)行簡短對比。
由圖10和圖11可以發(fā)現(xiàn),在相同N時,方案3的Nt和Ns均小于方案1的,這是因?yàn)镻max越小,洞室圍巖受到的沖擊作用越小,因而拉裂和剪裂越不顯著。這與文獻(xiàn)[9]中沖擊下洞室圍巖模型拉、剪裂縫數(shù)目與應(yīng)力波幅值成正比的結(jié)果有類似之處。該文獻(xiàn)采用顆粒流軟件進(jìn)行模擬,只給出了拉、剪裂縫數(shù)目的一個特定時刻的結(jié)果,而本文給出的是二者的演化過程。
圖10 方案1~方案4的拉裂縫區(qū)段數(shù)目-N曲線
圖11 方案1~方案4的剪裂縫區(qū)段數(shù)目-N曲線
由圖7~圖9可以發(fā)現(xiàn),隨著Pmax的減小,洞室兩幫的V形坑最大深度減小,例如,當(dāng)N=24 000時,方案1的約為12 m,方案3的約為2 m;當(dāng)N=25 000時,方案1的約為14 m,方案3的約為3 m。
文獻(xiàn)[24]將沖擊地壓強(qiáng)度分成1~5級:微弱、較弱、較強(qiáng)、強(qiáng)烈和極強(qiáng)烈。沖擊地壓強(qiáng)度為1級時,圍巖發(fā)生極少量片幫、掉渣和冒頂?shù)痊F(xiàn)象;沖擊地壓強(qiáng)度為4級時,圍巖發(fā)生較嚴(yán)重破壞,巷道斷面收縮超過1/2。在濟(jì)三煤礦,1級和4級沖擊地壓多有發(fā)生[25]。顯然,方案1的模擬結(jié)果(例如,洞室頂板和兩幫出現(xiàn)大量裂縫,大量脫離圍巖的單元涌入洞室并堆積在底板(圖6(s)~圖6(t))與4級沖擊地壓特征相一致,而方案3的模擬結(jié)果(例如,洞室頂板和兩幫出現(xiàn)少量裂縫,極少量脫離圍巖的單元涌入洞室(圖8(e)~圖8(f)))與1級沖擊地壓特征相一致。
眾所周知,當(dāng)若干應(yīng)力波在模型中傳播時,遇到無透射邊界將發(fā)生反射和疊加,壓應(yīng)力波反射為拉應(yīng)力波。在洞室圍巖的某一位置,當(dāng)壓應(yīng)力波傳播到時,巖石將受強(qiáng)烈擠壓作用;當(dāng)壓應(yīng)力波經(jīng)過該位置后,巖石的受壓程度降低,甚至將受拉作用,即σ3>0。當(dāng)無透射邊界反射的拉應(yīng)力波與該位置的大于0的σ3發(fā)生疊加或只有拉應(yīng)力波作用時,都可能造成拉裂。下面,以方案1為例進(jìn)行闡述。當(dāng)N=20 700時(圖6(f)),第1個壓應(yīng)力波已抵達(dá)洞室頂板表面,分化為3部分,其中,中間部分在洞室頂板表面發(fā)生反射,此時,洞室頂板附近σ3<0,受壓。當(dāng)N=20 800時(圖6(g)),洞室頂板附近σ3>0,受拉,這顯然是由壓應(yīng)力波的反射造成的;在第1與第2個壓應(yīng)力波之間的某些位置,σ3較高,受壓程度不強(qiáng)烈甚至受拉。當(dāng)N=20 900時(圖6(h)),在洞室頂板,反射的拉應(yīng)力波單獨(dú)自己或與兩壓應(yīng)力波之間的較高的σ3疊加,造成了拉裂??傊?,沖擊下洞室頂板的應(yīng)力波反射或疊加導(dǎo)致拉裂。
文獻(xiàn)[9]將沖擊載荷簡化為一個簡諧波,采用PFC2D研究了沖擊載荷幅值對拱形巷道圍巖的應(yīng)力場、位移場及破壞區(qū)的影響,并簡單介紹了巷道頂板拉裂機(jī)理。本文與文獻(xiàn)[9]的洞室外形和側(cè)壓系數(shù)等不同(例如,在沖擊之前文獻(xiàn)[9]的側(cè)壓系數(shù)為0.4,而本文為1),本文洞室頂板的拉應(yīng)力應(yīng)該不如文獻(xiàn)[9]的大,因此得到的洞室頂板拉裂機(jī)理與文獻(xiàn)[9]的應(yīng)該有所不同。本文的結(jié)果表明,在第1個壓應(yīng)力波向下傳播時,頂板的受拉區(qū)被不斷壓縮,該壓應(yīng)力波反射后的拉應(yīng)力波單獨(dú)自己或與第1和第2個壓應(yīng)力波之間的受拉區(qū)疊加導(dǎo)致頂板拉裂,而文獻(xiàn)[9]強(qiáng)調(diào)的是反射的拉應(yīng)力波與洞室頂、底板及兩幫附近的拉應(yīng)力區(qū)疊加導(dǎo)致頂板拉裂。
眾所周知,應(yīng)力波的傳播受材料性能的影響。當(dāng)應(yīng)力波經(jīng)過軟弱層時,應(yīng)力波的能量消耗較大,對應(yīng)力波的傳播具有阻礙作用。頂板拉裂區(qū)對應(yīng)力波傳播的吸能作用在圖6(n)~圖6(q)中可以得到一定程度的體現(xiàn)。在N=20 900時(圖6(h)),第1個壓應(yīng)力波分化后的中間部分造成的頂板拉裂區(qū)高度約為4 m。此后,一直到N=24 000時(圖6(q)),該高度幾乎保持不變。
由圖6和圖7可以觀察到洞室兩幫拉、剪裂縫相伴現(xiàn)象,即剪裂位置及附近同時也發(fā)生拉裂。造成該現(xiàn)象的原因可以解釋如下。當(dāng)壓應(yīng)力波分化后的左、右兩部分傳播至洞室兩幫時,兩幫的σ1值快速增加。假定σ3變化不大,則σ1與σ3的差值將快速升高。當(dāng)兩幫的應(yīng)力狀態(tài)滿足莫爾-庫侖準(zhǔn)則時,將形成V形坑。由于剪裂縫將圍巖與V形坑內(nèi)部的巖塊隔離開來,V形坑內(nèi)部的應(yīng)力處于低值,甚至接近于零。上文已指出,壓應(yīng)力波波后存在一個擠壓不強(qiáng)烈區(qū)甚至受拉區(qū)。所以,壓應(yīng)力波通過兩幫后將造成V形坑位置拉裂,進(jìn)而導(dǎo)致洞室兩幫拉、剪裂相伴現(xiàn)象。
(1) 當(dāng)由模型的上端面?zhèn)魅氲闹芷趬簯?yīng)力波的第1個抵達(dá)洞室頂板表面時,壓應(yīng)力波分化成的中間部分發(fā)生反射,反射的拉應(yīng)力波單獨(dú)自己或與第1和第2個壓應(yīng)力波之間的受拉區(qū)疊加導(dǎo)致頂板拉裂。
(2) 洞室頂板以拉裂為主;洞室兩幫以剪裂為主,并形成V形坑。第1個壓應(yīng)力波分化后的中間部分造成的頂板拉裂區(qū)高度在后繼壓應(yīng)力波作用下幾乎不變,所以,洞室頂板的拉裂區(qū)對于后繼應(yīng)力波有吸能作用。
(3) 洞室兩幫存在拉裂和剪裂相伴現(xiàn)象,即剪裂后形成的多重V形坑坑內(nèi)應(yīng)力處于低值,而且,壓應(yīng)力波后會存在一個擠壓程度不強(qiáng)烈區(qū)甚至受拉區(qū),從而導(dǎo)致坑內(nèi)發(fā)生拉裂。
(4) 隨著沖擊載荷幅值的減小,拉、剪裂縫的數(shù)目和分布范圍減小,V形坑最大深度減小。當(dāng)壓應(yīng)力波幅值較大時,洞室圍巖不平衡;當(dāng)壓應(yīng)力波幅值較小時,洞室圍巖能平衡。