• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of secondary electron emission using the fractal method*

    2021-01-21 02:15:12ChunJiangBai白春江TianCunHu胡天存YunHe何鋆GuangHuiMiao苗光輝RuiWang王瑞NaZhang張娜andWanZhaoCui崔萬照
    Chinese Physics B 2021年1期
    關(guān)鍵詞:王瑞胡天張娜

    Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光輝),Rui Wang(王瑞), Na Zhang(張娜), and Wan-Zhao Cui(崔萬照),?

    National Key Laboratory of Science and Technology on Space Science,China Academy of Space Technology(Xi’an),Xi’an 710100,China

    Keywords: secondary electron emission yield,the fractal method,multipactor

    1. Introduction

    Secondary electron emission(SEE)is a phenomenon that when an energetic electron is incident on a solid surface,a considerable number of secondary electrons may be produced. It is found and investigated in various fields such as multipactor[1–5]effect in microwave devices, dielectric window breakdown in high-power microwave sources, and the electron cloud effect in accelerators. Secondary electron yield(SEY),[6–10]which refers to the average emitted secondary electrons per incident primary electron, is frequently used to characterize SEE properties of materials.

    As is known,almost all of the material surfaces are found to be rough in nature. It is generally accepted that SEY is heavily influenced by surface topography of materials. So far, there have been many studies on surface characteristics and SEY.Vaughan[11]developed an analytic model considering only the surface roughness for the relationship between the SEY and surface topography with a smoothness factor.The empirical formula considers only the surface roughness for the relationship between the SEY and surface topography.Nishimura et al.[12,13]investigated the effects of a rippled surface structure on SEY properties by Monte–Carlo simulation.Pivi et al.[14]reported a method that reduces SEY by enhancing surface roughness via constructing rectangular grooves on surface of metals. Chang et al.[15–18]proposed to suppress multipactor on high-power-microwave windows by applying regular periodic triangular structures,sawtooth structures,and grooved structures on material surface. Ye et al.[19,20]studied the method to suppress SEY of surface for metal materials by designing regular micro-porous array structures. Cao and Zhang et al.[21]developed a multigeneration model to examine SEY properties of rough surfaces. Zhang et al.[22]also examined the effects of rough surface topography on SEY from a metal surface by considering both the surface roughness and the fluctuation correlation length.

    Unlike the case of material surface with regular structures,SEY properties of the material surface with complicated rough surface topography are not enough to be revealed using only roughness because SEY of a rough surface exceeds that of a smooth one in our research of theoretical analysis and experiment. This is in contradiction with the suppression effect of a rough surface, because it is generally thought that a large surface roughness can lead to a low SEY. Therefore, it is inaccurate to reveal SEY properties by only using roughness. In addition, roughness of surface topography depends strongly on resolution of roughness-measurement instrument,and hence the value of roughness will be not unique for a surface when different measure instruments are used. As a result,the predictions of SEY based on this parameter may not be unique to a surface. Fortunately, the fractal method[23–26]is scale-independent and the fractal characterization of surface is independent of resolution of the roughness-measurement instrument. Consequently, if the multipactor threshold of a microwave device is predicted with the SEY which is based on fractal parameters,the value of prediction will be unique once the fractal parameters of the rough surface are fixed.

    In this paper, the relationship between surface topography and SEY is analyzed with the fractal method. The paper is organized as follows. In Section 2, the surface model based on the fractal method is described. In Section 3, effects of the fractal parameters on SEY are analyzed using the Monte–Carlo simulation method.[27]In Section 4, based on the relationship between the SEY and the fractal parameters,the multipactor thresholds of microwave devices are predicted.The bridge between the multipactor threshold and the fractal parameters is built. Finally,some conclusions are summarized in Section 5.

    2. Surface model based on the fractal method

    Surface topography of a material is of high importance in the response of SEY properties. In order to find out the relationship between surface topography and SEY properties,it is necessary to characterize the surface topography accurately.Generally, experimental techniques are used to quantify the surface parameters for surface topography. Roughness is usually used to describe surface topography. However,roughness parameter depends strongly on resolution of measurement instrument and hence the value of roughness parameter will be not unique for a surface. Fortunately, the fractal method has the advantage that the surface modeling is size-independent and there is no dependence on the experimental data acquisition process.

    Fig.1. Surface topography of the aluminum sample at different length scales measured by AFM: (a) 10 μm ×10 μm measured by AFM, (b)1 μm×1 μm measured by AFM.

    In practical engineering, there are many man-made surfaces such as machined surfaces and wearing surfaces. These surface topographies usually appear to be random,multiscale,and disorderd.Figures 1(a)and 1(b)show the surface topography of a practical microwave device measured with an atomic force microscope (AFM) at different length scales. These man-made surfaces can be represented over at least part of their structural range as self-affine fractal, and have the characteristic of fractal. Therefore, the fractal method has been used as a useful tool in characterization of machined surface topography.

    The fractal surface model is proposed by Majumdar and Bhushan based on the Weierstrass–Mandelbort (WM)function.[24]Based on the two-variable WM function,Yan and Komvopoulos developed a three-dimensional function to represent rough surface. The expression is given by

    where the parameter D(2 <D <3)is the fractal dimension implying space-filling capacity of the surface,and the parameter G means the characteristic length scale of the surface; x and y are the planar Cartesian coordinates, z is the surface point of height,M denotes the number of superposed ridges used to construct the surface,φm,nmeans the random phase in the interval[0, 2π]; and n denotes the frequency index. The upper limit of n is given by

    where int[···]denotes the maximum integer value of the number in the brackets. L is the sample length and Lsis the cut-off length. In most cases, γ =1.5 is found to be a suitable value for high spectral density and for phase randomization.

    In order to elucidate the significance of the fractal parameters on surface topography,the three-dimensional fractal surfaces which are obtained from formulas (1) are shown in Fig. 2. The simulated results of fractal surfaces with different fractal parameters are shown in Figs. 2(a)–2(d), and the simulated areas are all 10 μm×10 μm. Comparison of these topographies indicates that,for the fixed simulated parameter D, the smaller the parameter G is, the smoother the surface is. When the parameter G is fixed at a large value such as 1×10-5,the smaller the parameter D is,the smoother the surface is,whereas the larger the parameter D is,the smoother the surface is when the parameter G is fixed at a small value such as 1×10-11.

    Fig.2. Simulated three-dimensional fractal surfaces: (a)D=2.2,G=1×10-5;(b)D=2.7,G=1×10-5;(c)D=2.2,G=1×10-11;(d)D=2.7,G=1×10-11.

    According to Ref. [23], it is important to note that there is a bridge to build the roughness parameter and the fractal parameters. The relationship between the roughness σ and the fractal parameters D and G can be written as

    where ωlis the lowest frequency which is related to the length of the sample,and ωhis the highest frequency which depends on the resolution of the measurement instrument.

    Fig.3. The relationship between roughness and the fractal parameters:(a)the roughness versus D for fixed G,(b)roughness versus G for fixed D.

    Figure 3 depicts the relationship between roughness and the fractal parameters by the numerical method with Eq. (3).From Fig.3(a),it can be seen that the roughness of surface topography increases with the parameter D when the parameter G is larger than 1×10-7, while the roughness of surface topography decreases with the parameter D when the parameter G is less than 1×10-7. The results of these curves show that only one single roughness parameter is not enough to describe the surface characterization accurately for a roughness surface topography. The fractal parameters D and G can be used to describe the surface characterization more accurate due to the fractal method. Figure 3(b) shows that the roughness of surface topography decreases with the parameter G decreasing,due to the fact that the smaller the parameter G is,the smoother the surface is. The performance is in agreement with Fig.2.

    As is known,the perfect smooth surface does not exist.In actual engineering,all the surfaces have roughness. It is worth noticing that the surface roughness is almost always greater than 0.1 μm in practical microwave devices. From Figs.3(a)and 3(b), it can be seen that when the surface roughness is larger than 0.1 μm, the parameter G is greater than 1×10-7and the parameter D is larger than 2.1. That is to say, when the surfaces topography of the practical microwave devices are characterized by the fractal method, the parameters G and D should be larger than 1×10-7and 2.1,respectively.

    3. Simulation of SEY based on fractal surface

    According to Section 2, the metal surfaces with random rough topography are constructed using formulas(1)with different fractal parameters D and G. Then the effects of the fractal parameters on SEE properties from a metal surface can be obtained using the Monte–Carlo simulation method. The schematic of SEE on random rough surface is shown in Fig.4.In the simulation,these random rough surfaces are divided into many small rectangular grids with the same size in the plane.These grids have different height values due to the random characters of these surfaces. Figure 5 displays the schematic diagram of a single rectangular grid. According to the data of these grid points,the information of any point in the grid can be obtained using the two-dimensional interpolation method.The height of the point in the grid can be expressed as

    where a and b are the sizes of the rectangular grid,zi,j,zi,j+1,zi+1,jand zi+1,j+1mean the heights of vertices of the rectangular grid. Calculating the trajectory information of each electron tracked in all grids, we can judge whether the electron meets the emission conditions when the Monte–Carlo simulation method is implemented.

    Fig.4. The schematic of SEE on random rough surface.

    Fig.5. The schematic of rectangular grid and local coordinate which be used to describe random rough surface.

    When a primary electron enters the metal material, its passage and electron trajectory can be simulated using individual electron scattering processes. These scatterings are either elastic scattering or inelastic scattering. For elastic scattering,only the electron direction is changed and the energy is conserved. The elastic scattering is calculated by

    where θ′is the scattering angle, σeis the Mott scattering cross section calculated by the combination of tabulation and interpolation based on the differential cross section data in Ref. [28]. For inelastic scattering, the electron direction and energy are all changed. The differential cross section for inelastic scattering is determined by the formulas

    where θ is the ejection angle of electron from surface normal,E′is the electron energy and U0is the inner potential of the material which means the material/vacuum barrier.

    Combining the expressions mentioned above and the meshing method for random rough surface,the SEY of a rough surface topography is treated with the multigeneration model proposed in Ref.[21]. When the secondary electrons are emitted from the metal surface,the electron states considering interactions with surface barriers in entrance and emission processes are refreshed.It is noted that the scattering of re-entered electrons is examined similarly to that of the primary electrons. All the electrons are tracked until they escape or their energy is exhausted in the metal. Then the final states of emitted electrons are recorded to achieve effective SEE properties.

    Based on the rough surface topography and the Monte–Carlo simulation method for SEE properties,the SEY of metal with rough surface topography are analyzed. The simulation results are shown in Figs.6 and 7.

    From Figs. 6(a)–6(d), it can be seen that SEY decreases as the dimension D increases for fixed G. The reason is that the surface is rougher and rougher with the D increasing. This phenomenon agrees with Fig. 3(a). From Fig. 3(a) we know that when the parameter G is larger than 1×10-7,the surface roughness increases with the parameter D increasing. When a surface becomes rougher,it is difficult for the entered electrons to escape surface.As a result,more electrons are collected and then SEY decreases.Another case is shown in Figs.6(e)–6(h).We can see that SEY almost has no change as the dimension D increases when G is less than 1×10-7. This means that the surface is quite smooth when G reaches a value,and the effect of the surface topography can be ignored. Figure 3(a)gives an explanation for this phenomenon that the roughness of surface topography decreases with the parameter D increasing when the parameter G is larger than 1×10-7.

    Figure 7 displays that the SEY properties change with different parameter D. From Figs. 7(a)–7(i), it can be seen that when the parameter D is fixed, the value of SEY decreases with the growing parameter G. As the fractal dimension, the smaller the parameter G is, the smoother the surface is. This means that the smoother the surface is, the larger the value of SEY is. This phenomenon agrees with Fig.3(b). It is concluded that the roughness of surface topography increases with the parameter G increasing for a fixed D.

    4. The multipactor threashold of microwave devices with different SEY’s based on the fractal method

    In order to find out the relationship between the fractal parameters and the multipactor threshold,two different kinds of microwave devices are chosen to analyze the multipactor threshold. During the analysis, SEY based on fractal parameters D and G is used and the multipactor thresholds are obtained with the simulation tools which can provide accurate prediction of multipactors.[30–32]

    Fig.6. The SEY properties with different D for fixed G: (a)SEY for G=1×10-4,(b)SEY for G=1×10-5,(c)SEY for G=1×10-6,(d)SEY for G=1×10-7,(e)SEY for G=1×10-8,(f)SEY for G=1×10-9,(g)SEY for G=1×10-10,(h)SEY for G=1×10-11.

    Fig.7. SEY with different G for fixed D: (a)SEY with different G for D=2.1,(b)SEY with different G for D=2.2,(c)SEY with different G for D=2.3,(d)SEY with different G for D=2.4,(e)SEY with different G for D=2.5,(f)SEY with different G for D=2.6,(g)SEY with different G for D=2.7,(h)SEY with different G for D=2.8,(i)SEY with different G for D=2.9.

    The two microwave devices take the rectangular impedance transfer working at C-band and the coaxial impedance transfer working at ultrahigh-frequency (UHF)band.The models of the two microwave devices with different structures are shown in Fig.8.

    Figures 9(a) and 9(b) display the multipactor thresholds of the rectangular impedance transfers with different SEY’s which are characterized by fractal parameters D and G. From Fig.9(a),it can be seen that the multipactor threshold increases with the dimension G increasing. This is because with the parameter G increasing,the roughness of surface becomes larger and larger. Then the value of SEY decreases with the surface roughness increasing. As a result, the multipactor threshold increases with low values of SEY. The conclusion is in good agreement with Fig. 3(b). In addition, it is also noticed that for a fixed parameter D, when the parameter G is larger than 1×10-7, the SEY increases fast, while the SEY increases is slowly when the parameter G is smaller than 1×10-7. The reason is that when the parameter G decreases to some degree,although the surface roughness always decreases with the parameter G decreasing,the SEY of metal material surface will be changed a little.

    The curves describing the relationship between the fractal parameter D and the multipactor thresholds of rectangular impedance transfer are shown in Fig.9(b). It can be seen that the multipactor thresholds increase with the parameter D increasing. When the parameter G is less than 1×10-7, the multipactor thresholds have little change with the parameter D increasing. This means that when the parameter G reaches a fixed value,the surface topography has become quite smooth.In this case, SEY of the metal material surfaces will have no change although the surface roughness still decreases with the parameter D increasing.

    Fig.8. The models of microwave devices for multipactor thresholds(a)for the rectangular impedance transfer and(b)for the coaxial impedance transfer.

    Fig.9. The multipactor threshold of rectangular impedance transfer(a)versus parameter G with different parameter D and(b)versus parameter D with different parameter G.

    Figures 10(a) and 10(b) display the multipactor thresholds for coaxial impedance transfers with different fractal parameters.The cases are the same as Figs.9(a)and 9(b),respectively. In summary, the multipactor thresholds increase with the surface roughness increasing and the multipactor thresholds decrease with the surface roughness decreasing. When the roughness is reduced to a certain extent, the surface will be quite smooth, and SEY of the surface will reach a fixed value,and then the multipactor thresholds will hold steady. In addition, it is also noticed that the surface roughness usually is about 10-6m for practical microwave devices. By combining practical microwave devices and making a comprehensive analysis of Figs. 3(a) and 3(b), we know that the larger the parameter G is, the rougher the surface is, and the larger the value of D is, the rougher the surface is. That is to say, the larger the parameter G is,the higher the multipactor threshold is,and the larger the value of D is,the greater the multipactor threshold is.

    Fig. 10. The multipactor threshold of coaxial impedance transfer (a)versus parameter G with different parameter D and(b)versus parameter D with different parameter G.

    5. Conclusion and perspectives

    In summary, we have employed the fractal method to characterize the surface topography in analyses of SEY. The relationship of the SEY of metal material surface to the fractal parameters D and G is built. The multipactor thresholds of a C-band rectangular impedance transformer and a UHFband coaxial impedance transformer are predicted.The results show the influence of the fractal parameters D and G on SEY and the multipactor threshold of microwave devices. The results further reveal the effect of surface topography on SEY,which gives a comprehensive insight into the control of SEY properties using the fractal parameters.

    Furthermore,it is also noticed that the values of SEY for the surface topography are quite low, even approximately to zero for some fractal parameters. According to the research of predecessors, we can also know that the present results are beneficial for enhancing the multipactor thresholds of microwave devices, when SEY of surface topography is as little as possible. Multipaction will not occur when the SEY of surface topography is less 1. However, the surface resistance will become larger with the SEY decreasing due to roughness.Consequently,this will result in the increase of RF power loss and then have an influence on performance of microwave devices. Therefore,the surface topography for which the SEY is approximately zero is not suitable for enhancing multipactor threshold of microwave devices in practical engineering. In the future,we will focus on constructing the surface topography with low SEY and low surface resistance.

    猜你喜歡
    王瑞胡天張娜
    Graph dynamical networks for forecasting collective behavior of active matter
    Magnetic properties of oxides and silicon single crystals
    動(dòng)作不可少(下)
    動(dòng)作不能少(上)
    胡天妮:種小麥應(yīng)用智能噴灌設(shè)施節(jié)水50%
    Order Allocation in Industrial Internet Platform for Textile and Clothing
    凝心固本 引智聚力 創(chuàng)新開拓
    松樹梢
    Designing the cooling system of a hybrid electric vehicle with multi-heat source
    Reliability Allocation of Large Mining Excavator Electrical System Based on the Entropy Method with Failure and Maintenance Data
    99热精品在线国产| 99国产精品一区二区蜜桃av| 草草在线视频免费看| 悠悠久久av| 久久人人精品亚洲av| 有码 亚洲区| 久久亚洲真实| 桃色一区二区三区在线观看| 国产亚洲精品av在线| 熟女电影av网| 最新中文字幕久久久久| 我要搜黄色片| 在线看三级毛片| 欧美最黄视频在线播放免费| 一进一出抽搐gif免费好疼| 国产免费av片在线观看野外av| www.色视频.com| а√天堂www在线а√下载| 午夜精品久久久久久毛片777| 夜夜夜夜夜久久久久| 脱女人内裤的视频| 亚洲欧美日韩东京热| 999久久久精品免费观看国产| 夜夜躁狠狠躁天天躁| 少妇的逼水好多| 日本熟妇午夜| 国产精品一区二区性色av| 最好的美女福利视频网| 最新中文字幕久久久久| 国产黄色小视频在线观看| 桃红色精品国产亚洲av| 欧美日韩亚洲国产一区二区在线观看| 免费人成在线观看视频色| 国产精品乱码一区二三区的特点| av天堂中文字幕网| 久久精品国产自在天天线| 国产欧美日韩精品亚洲av| 少妇裸体淫交视频免费看高清| 啪啪无遮挡十八禁网站| 欧美丝袜亚洲另类 | 免费观看的影片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕久久专区| 久久香蕉精品热| 91av网一区二区| 国产精品精品国产色婷婷| a在线观看视频网站| 欧美黄色淫秽网站| 日日摸夜夜添夜夜添av毛片 | 欧美一区二区精品小视频在线| av天堂在线播放| 99热只有精品国产| 中国美女看黄片| av视频在线观看入口| 亚洲人与动物交配视频| 免费av毛片视频| 美女免费视频网站| 一区二区三区高清视频在线| 在线观看免费视频日本深夜| 搞女人的毛片| 99热精品在线国产| 性欧美人与动物交配| 欧美xxxx性猛交bbbb| 好男人在线观看高清免费视频| 亚洲精品久久国产高清桃花| 中文在线观看免费www的网站| 久久久国产成人免费| 99在线人妻在线中文字幕| av专区在线播放| 老司机午夜十八禁免费视频| 久久性视频一级片| 亚洲黑人精品在线| а√天堂www在线а√下载| 乱人视频在线观看| 欧美性猛交黑人性爽| 国产高清视频在线观看网站| 美女黄网站色视频| 美女免费视频网站| 少妇被粗大猛烈的视频| 国产精品,欧美在线| 欧美zozozo另类| 在线看三级毛片| 欧美乱色亚洲激情| 12—13女人毛片做爰片一| 搡老岳熟女国产| av在线蜜桃| 桃色一区二区三区在线观看| 美女 人体艺术 gogo| 99久久精品国产亚洲精品| 美女高潮的动态| 亚洲欧美精品综合久久99| 亚洲在线自拍视频| 国产视频内射| 精品人妻熟女av久视频| 两个人视频免费观看高清| 国产一区二区亚洲精品在线观看| 日韩成人在线观看一区二区三区| 成人特级黄色片久久久久久久| 国产精品乱码一区二三区的特点| 精品午夜福利视频在线观看一区| 91在线精品国自产拍蜜月| 一夜夜www| 国产欧美日韩一区二区精品| 精品一区二区三区av网在线观看| 黄色一级大片看看| 男人舔奶头视频| 五月玫瑰六月丁香| 欧美zozozo另类| 首页视频小说图片口味搜索| 亚洲av中文字字幕乱码综合| 大型黄色视频在线免费观看| 国产成人福利小说| 最近在线观看免费完整版| 国产久久久一区二区三区| 久久久久久久久久成人| 亚洲国产精品999在线| 哪里可以看免费的av片| 久9热在线精品视频| 久久久精品大字幕| 小说图片视频综合网站| 久久亚洲精品不卡| 69av精品久久久久久| 亚洲一区高清亚洲精品| 少妇的逼水好多| 日本黄色视频三级网站网址| 中文字幕人成人乱码亚洲影| 久久久精品欧美日韩精品| 男人和女人高潮做爰伦理| 亚洲第一电影网av| 国产毛片a区久久久久| 在线观看av片永久免费下载| 成年女人永久免费观看视频| 久9热在线精品视频| 一级av片app| 啦啦啦观看免费观看视频高清| 人人妻人人看人人澡| 亚洲国产日韩欧美精品在线观看| 我的老师免费观看完整版| 脱女人内裤的视频| 精品人妻偷拍中文字幕| 有码 亚洲区| 免费大片18禁| 久久草成人影院| 免费看美女性在线毛片视频| 久久精品影院6| 宅男免费午夜| 女生性感内裤真人,穿戴方法视频| 亚洲片人在线观看| 五月玫瑰六月丁香| 免费大片18禁| 亚洲五月婷婷丁香| 中文字幕精品亚洲无线码一区| 嫁个100分男人电影在线观看| 非洲黑人性xxxx精品又粗又长| 无人区码免费观看不卡| 男人狂女人下面高潮的视频| 又黄又爽又刺激的免费视频.| 亚洲,欧美,日韩| 好看av亚洲va欧美ⅴa在| 91在线观看av| 免费av不卡在线播放| 亚洲天堂国产精品一区在线| 美女黄网站色视频| 日韩欧美三级三区| 在线观看美女被高潮喷水网站 | 午夜影院日韩av| 国产高清激情床上av| 色综合亚洲欧美另类图片| 国产一区二区在线av高清观看| 亚洲av美国av| 琪琪午夜伦伦电影理论片6080| 亚洲内射少妇av| 乱人视频在线观看| 亚洲欧美日韩卡通动漫| 免费观看的影片在线观看| 三级毛片av免费| 99久久精品一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 久久国产乱子免费精品| 欧美成人一区二区免费高清观看| 我要搜黄色片| 观看美女的网站| 中出人妻视频一区二区| 免费看光身美女| 1000部很黄的大片| 噜噜噜噜噜久久久久久91| 国产美女午夜福利| 一本综合久久免费| 自拍偷自拍亚洲精品老妇| avwww免费| 日韩av在线大香蕉| 久久久久精品国产欧美久久久| 日日摸夜夜添夜夜添av毛片 | 怎么达到女性高潮| 日韩欧美国产一区二区入口| 亚洲av日韩精品久久久久久密| 久久久久九九精品影院| 国产 一区 欧美 日韩| 熟女电影av网| 免费电影在线观看免费观看| 男人和女人高潮做爰伦理| 日韩欧美国产在线观看| 亚洲电影在线观看av| 亚洲精品色激情综合| 欧美在线一区亚洲| 亚洲精品456在线播放app | 国产不卡一卡二| 亚洲综合色惰| 日韩亚洲欧美综合| 亚洲三级黄色毛片| 日本五十路高清| 噜噜噜噜噜久久久久久91| 国产精品美女特级片免费视频播放器| 黄色丝袜av网址大全| 国产aⅴ精品一区二区三区波| 国产精品国产高清国产av| 变态另类成人亚洲欧美熟女| 久久人人爽人人爽人人片va | 国产淫片久久久久久久久 | 久久性视频一级片| 日本撒尿小便嘘嘘汇集6| 天堂网av新在线| 三级男女做爰猛烈吃奶摸视频| 日本与韩国留学比较| 久久精品影院6| 一区二区三区四区激情视频 | 青草久久国产| 真实男女啪啪啪动态图| 神马国产精品三级电影在线观看| 亚洲熟妇中文字幕五十中出| 国产精品久久视频播放| 国产成人a区在线观看| 成人av一区二区三区在线看| 免费看美女性在线毛片视频| 久久国产精品人妻蜜桃| 亚洲精品在线观看二区| 亚洲熟妇中文字幕五十中出| 午夜激情欧美在线| 国产熟女xx| 日韩欧美 国产精品| 欧美日韩乱码在线| 老女人水多毛片| 国产高潮美女av| 午夜福利免费观看在线| 亚洲第一欧美日韩一区二区三区| 波野结衣二区三区在线| 久久人人精品亚洲av| 精品午夜福利在线看| 性色avwww在线观看| 日韩大尺度精品在线看网址| 国产精品久久久久久久电影| 国产不卡一卡二| 听说在线观看完整版免费高清| 十八禁人妻一区二区| 搡老熟女国产l中国老女人| 欧美三级亚洲精品| 一个人观看的视频www高清免费观看| 精品久久久久久成人av| 一级黄色大片毛片| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美一区二区三区在线观看| av欧美777| 99热只有精品国产| 一区福利在线观看| 免费人成视频x8x8入口观看| 午夜福利视频1000在线观看| x7x7x7水蜜桃| 蜜桃久久精品国产亚洲av| 国产成人a区在线观看| 久久精品国产亚洲av涩爱 | 又黄又爽又刺激的免费视频.| 欧美成人a在线观看| 给我免费播放毛片高清在线观看| 听说在线观看完整版免费高清| 99国产精品一区二区蜜桃av| 国产精品美女特级片免费视频播放器| 国产中年淑女户外野战色| 久久伊人香网站| 欧美一级a爱片免费观看看| 国内精品一区二区在线观看| 亚洲中文字幕一区二区三区有码在线看| 我的老师免费观看完整版| 免费av毛片视频| 国产私拍福利视频在线观看| 亚洲性夜色夜夜综合| 国产成人av教育| 在线播放无遮挡| 一级a爱片免费观看的视频| 一本久久中文字幕| 可以在线观看毛片的网站| 久久欧美精品欧美久久欧美| 男女视频在线观看网站免费| 18+在线观看网站| 久久精品国产自在天天线| 亚洲七黄色美女视频| 中文字幕人妻熟人妻熟丝袜美| 欧美最新免费一区二区三区 | 欧美成人一区二区免费高清观看| 国产大屁股一区二区在线视频| 在线观看66精品国产| 国产精品,欧美在线| 欧美色视频一区免费| 熟妇人妻久久中文字幕3abv| 国产91精品成人一区二区三区| 在现免费观看毛片| 黄色配什么色好看| 美女高潮喷水抽搐中文字幕| 成年免费大片在线观看| 伦理电影大哥的女人| 丰满人妻一区二区三区视频av| 禁无遮挡网站| 波多野结衣巨乳人妻| 热99在线观看视频| 熟女人妻精品中文字幕| 欧美不卡视频在线免费观看| 国产黄a三级三级三级人| 色综合欧美亚洲国产小说| 国产精品亚洲一级av第二区| 亚洲aⅴ乱码一区二区在线播放| 99久国产av精品| 成人特级黄色片久久久久久久| 国产成人福利小说| 亚洲avbb在线观看| 久久国产乱子伦精品免费另类| 亚洲欧美日韩卡通动漫| 九色国产91popny在线| 国产三级中文精品| 18禁在线播放成人免费| 亚洲人成网站高清观看| 亚洲美女黄片视频| 亚洲av成人av| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久久久亚洲av鲁大| 给我免费播放毛片高清在线观看| 99热精品在线国产| 麻豆久久精品国产亚洲av| 久久性视频一级片| 国产乱人伦免费视频| 欧美激情在线99| 中文字幕久久专区| 亚洲国产精品sss在线观看| 久久亚洲真实| 在线观看舔阴道视频| 999久久久精品免费观看国产| 亚洲av日韩精品久久久久久密| 成年免费大片在线观看| 久久精品91蜜桃| 亚洲av.av天堂| 精品久久久久久久末码| 精品熟女少妇八av免费久了| 成年女人永久免费观看视频| 禁无遮挡网站| 欧美高清性xxxxhd video| 变态另类成人亚洲欧美熟女| 免费高清视频大片| 色综合婷婷激情| 亚洲精品在线美女| 最新中文字幕久久久久| 国产精品久久久久久人妻精品电影| 在线观看美女被高潮喷水网站 | 国产高清视频在线观看网站| 精品久久久久久,| 亚洲自偷自拍三级| 日本 欧美在线| 国产av一区在线观看免费| 成人国产综合亚洲| 亚洲国产精品sss在线观看| 99国产综合亚洲精品| 久久性视频一级片| 欧美极品一区二区三区四区| 美女被艹到高潮喷水动态| 黄色一级大片看看| 久久久久久九九精品二区国产| 久久久久久久久久黄片| 国产精品久久久久久人妻精品电影| 91麻豆av在线| 亚洲专区国产一区二区| 好男人在线观看高清免费视频| 桃色一区二区三区在线观看| 国产中年淑女户外野战色| 丁香六月欧美| 两个人的视频大全免费| 亚洲国产精品sss在线观看| 亚洲av电影在线进入| 国产人妻一区二区三区在| 国产成人a区在线观看| 国产精品综合久久久久久久免费| 日本 av在线| 一夜夜www| 亚洲美女搞黄在线观看 | 国产成人啪精品午夜网站| netflix在线观看网站| 国内少妇人妻偷人精品xxx网站| 色吧在线观看| 少妇的逼好多水| 欧美性猛交黑人性爽| 精品午夜福利视频在线观看一区| 国内少妇人妻偷人精品xxx网站| 偷拍熟女少妇极品色| 怎么达到女性高潮| 成年版毛片免费区| 日本免费一区二区三区高清不卡| 观看美女的网站| 中文在线观看免费www的网站| 欧美日韩国产亚洲二区| 美女高潮喷水抽搐中文字幕| 国产精品伦人一区二区| 国产乱人视频| 久久性视频一级片| 在线观看免费视频日本深夜| 毛片一级片免费看久久久久 | 精品国产三级普通话版| 一级av片app| 免费在线观看影片大全网站| 丝袜美腿在线中文| 99久久99久久久精品蜜桃| 亚洲18禁久久av| 亚洲av电影不卡..在线观看| 国产精品影院久久| 毛片女人毛片| 久久久久久久久久成人| 男女床上黄色一级片免费看| 偷拍熟女少妇极品色| 97超视频在线观看视频| 十八禁人妻一区二区| 亚洲天堂国产精品一区在线| 国语自产精品视频在线第100页| 久久精品久久久久久噜噜老黄 | 成人午夜高清在线视频| 搡老妇女老女人老熟妇| 亚洲欧美日韩高清专用| 中文字幕高清在线视频| 2021天堂中文幕一二区在线观| 精品久久久久久久久av| 亚洲人成电影免费在线| 成熟少妇高潮喷水视频| 在线十欧美十亚洲十日本专区| 日本成人三级电影网站| 男人舔女人下体高潮全视频| 俄罗斯特黄特色一大片| 舔av片在线| 欧美日韩中文字幕国产精品一区二区三区| 日韩av在线大香蕉| 欧美最黄视频在线播放免费| 自拍偷自拍亚洲精品老妇| 亚洲黑人精品在线| 亚洲最大成人手机在线| 无人区码免费观看不卡| 亚洲第一电影网av| 丰满乱子伦码专区| 亚洲av二区三区四区| 看十八女毛片水多多多| 日本黄色视频三级网站网址| 国产精品一区二区性色av| 1000部很黄的大片| 国产主播在线观看一区二区| 国产精品久久久久久人妻精品电影| 免费黄网站久久成人精品 | 国产91精品成人一区二区三区| 国产精品一区二区三区四区久久| 国产一区二区在线av高清观看| 亚洲乱码一区二区免费版| 一进一出好大好爽视频| 97超视频在线观看视频| 制服丝袜大香蕉在线| 性插视频无遮挡在线免费观看| 一个人观看的视频www高清免费观看| 免费人成视频x8x8入口观看| 美女cb高潮喷水在线观看| 亚洲精品456在线播放app | 日本精品一区二区三区蜜桃| 一级黄片播放器| 1000部很黄的大片| 村上凉子中文字幕在线| 国产高清视频在线观看网站| 美女高潮的动态| 日韩中文字幕欧美一区二区| 琪琪午夜伦伦电影理论片6080| 国产黄色小视频在线观看| 国产大屁股一区二区在线视频| 极品教师在线视频| 精品一区二区免费观看| 2021天堂中文幕一二区在线观| 免费看a级黄色片| 久久婷婷人人爽人人干人人爱| av欧美777| 男女做爰动态图高潮gif福利片| 精品乱码久久久久久99久播| 中文字幕熟女人妻在线| 九九热线精品视视频播放| 神马国产精品三级电影在线观看| 美女免费视频网站| 国产一区二区激情短视频| 中亚洲国语对白在线视频| 久久99热6这里只有精品| 亚洲第一电影网av| 国产亚洲精品av在线| 在线观看免费视频日本深夜| 变态另类成人亚洲欧美熟女| 亚洲 国产 在线| 美女高潮喷水抽搐中文字幕| 中国美女看黄片| 久久草成人影院| 精品一区二区三区av网在线观看| 亚洲欧美日韩高清在线视频| xxxwww97欧美| 日本三级黄在线观看| 国产免费男女视频| 色5月婷婷丁香| 亚洲色图av天堂| 成人av一区二区三区在线看| 亚洲精品成人久久久久久| 亚洲性夜色夜夜综合| 国产麻豆成人av免费视频| 久久久久久久亚洲中文字幕 | 脱女人内裤的视频| 国产精品国产高清国产av| 国产爱豆传媒在线观看| 日韩精品青青久久久久久| 九色成人免费人妻av| 免费电影在线观看免费观看| 狠狠狠狠99中文字幕| 久久亚洲真实| 久久久色成人| 精品久久久久久成人av| 国产亚洲精品综合一区在线观看| 熟妇人妻久久中文字幕3abv| 欧美+亚洲+日韩+国产| 色综合亚洲欧美另类图片| 欧美性猛交黑人性爽| 最后的刺客免费高清国语| 国产单亲对白刺激| 看黄色毛片网站| 97碰自拍视频| 三级国产精品欧美在线观看| 热99在线观看视频| 欧美午夜高清在线| 91在线精品国自产拍蜜月| 免费在线观看亚洲国产| 色尼玛亚洲综合影院| 在线观看舔阴道视频| 免费在线观看日本一区| 男人的好看免费观看在线视频| 国产精品伦人一区二区| 午夜视频国产福利| 变态另类成人亚洲欧美熟女| 国产精品av视频在线免费观看| 97碰自拍视频| 国产精品精品国产色婷婷| 毛片女人毛片| 午夜老司机福利剧场| 午夜福利成人在线免费观看| 亚洲国产精品合色在线| 人人妻人人澡欧美一区二区| 亚洲欧美日韩无卡精品| 国产精品av视频在线免费观看| 色综合站精品国产| 最好的美女福利视频网| 琪琪午夜伦伦电影理论片6080| 观看美女的网站| 成熟少妇高潮喷水视频| 日韩欧美国产一区二区入口| 亚洲av一区综合| 亚洲成av人片免费观看| 久久草成人影院| 亚洲精品一卡2卡三卡4卡5卡| 久久99热这里只有精品18| 国产精品av视频在线免费观看| 性色av乱码一区二区三区2| 免费在线观看成人毛片| 欧美黄色淫秽网站| 成人特级黄色片久久久久久久| 亚洲自偷自拍三级| 亚洲欧美日韩高清专用| 婷婷精品国产亚洲av| 午夜精品一区二区三区免费看| 亚洲第一电影网av| 国产老妇女一区| 亚洲成av人片在线播放无| 最新中文字幕久久久久| 亚洲精品色激情综合| 国产淫片久久久久久久久 | 久久人人爽人人爽人人片va | 日韩中字成人| 亚洲熟妇熟女久久| 亚洲人与动物交配视频| 搡老熟女国产l中国老女人| 村上凉子中文字幕在线| 嫩草影院入口| 九色国产91popny在线| 国内少妇人妻偷人精品xxx网站| 亚洲内射少妇av| 成人鲁丝片一二三区免费| 757午夜福利合集在线观看| 亚洲av.av天堂| 熟女人妻精品中文字幕| 搡老熟女国产l中国老女人| 国内揄拍国产精品人妻在线| 青草久久国产| 丁香六月欧美| 国产av在哪里看| 欧美在线一区亚洲| 九色国产91popny在线| 国产三级中文精品| 久久天躁狠狠躁夜夜2o2o| 淫妇啪啪啪对白视频| 日韩人妻高清精品专区| 久久久久久久精品吃奶| 男人狂女人下面高潮的视频| 熟女电影av网| 99国产综合亚洲精品| 99久久成人亚洲精品观看| 男人舔奶头视频| 天美传媒精品一区二区| 黄色丝袜av网址大全|