• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      機(jī)器學(xué)習(xí)與物理專題編者按

      2021-03-07 09:26:00
      物理學(xué)報(bào) 2021年14期
      關(guān)鍵詞:本專題交叉量子

      機(jī)器學(xué)習(xí), 尤其是深度學(xué)習(xí), 在很多方面取得了令人矚目的成就, 是當(dāng)前科學(xué)技術(shù)領(lǐng)域最為熱門、發(fā)展最快的方向之一. 其與物理的結(jié)合是最近幾年新興的交叉前沿領(lǐng)域, 受到了廣泛關(guān)注. 一方面, 運(yùn)用機(jī)器學(xué)習(xí)的方法可以解決一些復(fù)雜的、傳統(tǒng)方法很難或無法解決的物理問題; 另一方面, 物理中的一些概念、理論和方法也可以用于研究機(jī)器學(xué)習(xí). 二者的交叉融通帶來了新的機(jī)遇與挑戰(zhàn),將極大地促進(jìn)兩個(gè)領(lǐng)域的發(fā)展.

      本專題邀請(qǐng)了若干活躍在該新興領(lǐng)域的專家撰稿, 重點(diǎn)介紹機(jī)器學(xué)習(xí)與物理交叉方向的部分國(guó)際前沿課題和最新研究進(jìn)展. 內(nèi)容涵蓋了量子人工智能中的對(duì)抗學(xué)習(xí), 量子生成模型, 基于波動(dòng)與擴(kuò)散的機(jī)器學(xué)習(xí), 自動(dòng)微分, 絕熱量子算法設(shè)計(jì), 量子機(jī)器學(xué)習(xí)中的編碼與初態(tài)制備, 以及基于自旋體系的量子機(jī)器學(xué)習(xí)實(shí)驗(yàn)進(jìn)展等.

      希望本專題能夠幫助讀者了解機(jī)器學(xué)習(xí)與物理交叉方向的研究?jī)?nèi)容, 基本思想與方法, 最新進(jìn)展情況, 以及面臨的挑戰(zhàn)與機(jī)遇. 同時(shí), 也希望這個(gè)專題能夠激發(fā)讀者的興趣, 吸引更多的研究人員加入到此交叉領(lǐng)域的研究中.

      (客座編輯: 鄧東靈 清華大學(xué))

      Machine learning, especially deep learning, has achieved remarkable success in a wide range of applications. It is one of today’s most rapidly growing fields in science and technology. In recent years, the interplay between machine learning and physics has attracted tremendous attention, giving rise to a new interdisciplinary research frontier. On the one hand, we may utilize machine learning methods to tackle certain intricate physical problems that are beyond the capability of traditional approaches. On the other hand, certain concepts, ideas, and methods originated in physics can also be exploited to enhance the study of machine learning.Without a doubt, the fusion of machine learning and physics will bring us new opportunities and challenges, and significantly advance the studies in both fields.

      This special topic contains several review papers written by experts working actively in this emergent interdisciplinary field. These papers review a number of hot topics and some latest progresses, covering adversarial learning in quantum artificial intelligence, quantum generative models, machine learning based on waves and diffusions, automatic differentiation, machine learning assisted quantum adiabatic algorithm design, state preparation in quantum machine learning, experimental progress of quantum machine learning based on spin systems, etc.

      We hope this special topic can help readers gain a primary picture of the research content,basic ideas and methods, the latest developments, and the challenges and opportunities faced in the intersection of machine learning and physics. Meanwhile, we also hope this special topic can provide some inspiration to readers, and attract more researchers to join this exciting interdisciplinary field.

      Deng Dong-Ling

      猜你喜歡
      本專題交叉量子
      2022年諾貝爾物理學(xué)獎(jiǎng) 從量子糾纏到量子通信
      決定未來的量子計(jì)算
      “六法”巧解分式方程
      新量子通信線路保障網(wǎng)絡(luò)安全
      恒河靜默塵世喧囂
      佛羅里達(dá),花和陽光的國(guó)度
      一種簡(jiǎn)便的超聲分散法制備碳量子點(diǎn)及表征
      連一連
      基于Fast-ICA的Wigner-Ville分布交叉項(xiàng)消除方法
      我們的端午
      广南县| 鲁山县| 广宗县| 乌拉特中旗| 高要市| 平谷区| 丰县| 马公市| 白河县| 金坛市| 丰台区| 扶风县| 汉中市| 屯门区| 黔东| 工布江达县| 视频| 东乡| 达日县| 百色市| 盐津县| 会东县| 鄢陵县| 岑巩县| 绥阳县| 诸城市| 辽阳县| 丰原市| 水城县| 兴和县| 玛曲县| 潍坊市| 堆龙德庆县| 西乌珠穆沁旗| 平邑县| 宁安市| 梁河县| 新巴尔虎左旗| 醴陵市| 通州市| 克山县|