• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    考慮剪切變形和彎剪相互作用的帶翼緣剪力墻數(shù)值模型

    2021-03-11 10:16張品樂(lè)何堯瓊張淦劉俊雄張智吉
    土木建筑與環(huán)境工程 2021年1期
    關(guān)鍵詞:剪力墻

    張品樂(lè) 何堯瓊 張淦 劉俊雄 張智吉

    摘 要:提出了一種基于柔度法的考慮剪切變形和彎剪耦合效應(yīng)的有限元模型,通過(guò)T形和L形剪力墻試件擬靜力試驗(yàn)驗(yàn)證了模型的正確性。結(jié)果表明,所有試件的破壞形態(tài)為無(wú)翼緣腹板端部混凝土壓碎、縱筋壓曲的彎曲破壞;增強(qiáng)無(wú)翼緣腹板端部約束和邊緣構(gòu)件約束,可以防止其發(fā)生受壓過(guò)早破壞;腹板和翼緣相交處未觀察到明顯的混凝土剝落現(xiàn)象,腹板和翼緣相交處的約束邊緣構(gòu)件抗震設(shè)計(jì)可以適當(dāng)放寬;隨著剪跨比的減小,試件延性明顯降低;當(dāng)翼緣處于受拉時(shí),試件表現(xiàn)出較高的強(qiáng)度、剛度和較低的延性?;谀P蛯?duì)鋼筋混凝土帶翼緣剪力墻的擬靜力試驗(yàn)進(jìn)行了非線性數(shù)值模擬分析,分析結(jié)果與試驗(yàn)結(jié)果吻合較好,表明模型能較好地模擬鋼筋混凝土帶翼緣剪力墻的非線性性能。

    關(guān)鍵詞:剪力墻;擬靜力試驗(yàn);纖維模型;剪切變形;彎剪相互作用

    1 Introduction

    Reinforced concrete walls are effective in resisting lateral loads placed on high-rise buildings [1]. They provide enough strength and deformation capacity to meet the demands of strong earthquake ground motions [2-4] A great deal of research has been performed to investigate the seismic behavior of RC walls [5-8]. Previous tests have been conducted on either rectangular shear walls or flanged shear walls with ordinary strength reinforcement. However, this paper focuses on the experimental study of the seismic behavior of flange RC shear walls with high strength stirrups. Six flanged RC shear wall specimens with high strength stirrups were tested to failure under cyclic loading. The effects of the axial load ratio, aspect ratio, and confinement on the failure mode, ductility capacity, hysteretic behavior, and energy dissipating capacity were investigated.

    Simulation of the nonlinear response of RC shear walls requires the use of a reliable computational model. Two-dimensional continuum plane stress or shell elements are usually used for this purpose, but such elements are computationally expensive. Previous studies have shown that beam-column elements can be used to simulate the nonlinear behavior of RC shear walls[9-10] In regards to this, much research has emerged in recent decades in the field of stiffness-based fiber beam-column elements[11-12]. So far, most stiffness-based element models become less accurate in highly nonlinear situations, since the displacement field is approximated through the assignment of the displacement interpolation function. In most cases, cubic Hermitian polynomials are used for the displacement interpolation functions. Simple numerical examples presented indicate that the conventional displacement formulation is unable to establish solutions associated with softening behavior, when used at the section or member level. This problem can be solved with the use of more elements per member; however, this leads to much less efficiency. Most efforts in the nonlinear analysis of RC structures have demonstrated that flexibility-based element methods offer greater accuracy and computational efficiency[13], since the element formulations satisfy the equilibrium of the bending moment, the axial force and the shear force along the element[14-15].

    2) The shear stiffness of the fiber is r3Ge, when the tensile strain of the fiber reaches the cracking strain of the concrete. The shear stiffness is r4Ge, when the tensile strain of the fiber reaches the yield strain of the reinforcement. The shear stiffness is r5Ge, when the tensile strain of the fiber reaches or exceeds the ultimate tensile strain of the reinforcement.

    The shear stiffness of the fiber between the two states can be obtained by interpolation. According to the latest research, r1=0.5, r2=0.02, r3=0.5, r4=0.15 and r5=0.02[19].

    4 Experiment details

    4.1 Specimen design and loading program

    In order to verify the fiber element model of flanged RC shear walls proposed in this study, six RC flanged shear wall specimens, named L500, L650, L800, T500, T650 and T800 respectively, were tested under cyclic loading. The vertical height of the walls was 1 400 mm, and their cross-section thickness was 100 mm. The design strength grade of the concrete was C40 (nominal cubic compressive strength fcu,k=40 MPa). The test average cubic compressive strength fcu of the concrete measured on cubes of 150 mm size was 47.2 MPa. The mechanical properties of the reinforcement are shown in Table 1. Specimen details and properties are summarized in Table 2, where the steel ratio ρs of the longitudinal reinforcement is defined as the ratio of the cross sectional area of the longitudinal reinforcement to the total wall cross sectional area, and the volumetric steel ratio ρv of the boundary element at the non-flange end is defined as the ratio of the volume of the stirrups to that of the wall (Chinese GB 50010-2010 code)[20]. Dimensions and reinforcement details of the specimens are shown in Fig.5.

    The axial load was first applied to the center of the shear wall by the vertical jack, and kept constant during the test. Fig.6 shows the test setup including loading devices. The scheme of the loading program is shown in Fig.7. The loading history was started by applying two identical displacement cycles with increments of ±2 mm up to 10 mm, followed by increments of ±5 mm up to failure. Each test continued until the specimens dropped to 85% of the peak lateral load.

    4.2 Damage development and failure mode

    In this experiment, all specimens exhibited a flexural model characterized by the crushing of the concrete and the buckling of the reinforcement at the free web boundary, as shown in Fig.8. During the test, exural cracks were first observed at the

    bottom of the web when the specimens were loaded to approximately half the peak lateral load. Shear cracks began to form at a drift level of 0.4%. As the loading displacement increased to a drift level of 1.3%, vertical splitting of the free web was quite extensive, and severe crushing and spalling of the concrete cover were observed. As the loading displacement increased to a drift level of 3.0%, major crushing of the concrete occurred, and the outermost longitudinal reinforcing bars started to buckle. The lateral force dropped to 85% of the peak lateral load. The failure mechanism suggested that closely spaced stirrups and longer confined

    boundary elements should be used in the free web end, preventing premature failure under compression. No obvious concrete spalling was observed at the web-flange junction, suggesting that the seismic design of the boundary element at the web-flange junction should be relaxed.

    4.3 Loading capacity and ductility

    The loading capacity and displacement ductility of the shear wall specimens are shown in Table 3. As shown, the specimens exhibited bigger loading capacity but lower ductility capacity when the flange was in tension. With the decrease of the shear span ratio, the displacement ductility decreased. The smaller the shear span ratio, the closer the stirrups and the longer the confined boundary elements should be used in the free web end to achieve the goal of the displacement ductility coefficient of 3.0. For example, specimens T800, L800. The ductility in the negative position of T800, L800 were, 2.2, 1.9, respectively, meaning that the volumetric steel ratio of the boundary element (0.60%) was not enough for specimens T800 and L800 with the aspect ratio of 1.75. The use of high strength stirrups could restrain the compressed concrete and postpone the buckling of the longitudinal rebars in the free web boundary, preventing premature failure when the web was compressed. The ultimate drift ratio of all specimens greatly exceeded the allowable inter-story drift ratio value (1/120) of the RC shear wall according to the design provisions of the Chinese GB 50011-2010 code[21].

    4.4 Strain analysis

    Fig.9 shows the arrangements of the strain gauges of the reinforcement of the shear wall specimens. Fig.10 and Fig.11 show the strain evolution process of the longitudinal reinforcements and the stirrups of the shear wall specimens, respectively. As we can see from Fig.10, the strain distribution of the longitudinal reinforcement at the peak point remained approximately linear, so the plane cross-section assumption can be used for the design of the flanged RC shear wall. The compression strains of the longitudinal reinforcement at the intersection of the web and flange were extremely small, compared with the tensile strains at the free web boundary, indicating that it is not necessary to add special confinement reinforcement to the web-flange intersection. As shown in Fig.11, the stirrups that yielded were mainly concentrated in the middle and lower parts of the web, meaning that the shear damage was mainly concentrated in the middle and lower parts of the web. All of the high-strength stirrups at the free web boundary yielded, showing that the use of high strength stirrups at the free web boundary could confine the transverse deformation of the specimens, thus preventing premature failure when the web was compressed.

    4.5 Hysteretic behavior

    As shown in Fig.12, the hysteresis loops of specimens in the positive direction exhibited a much wider and thicker shape, showing that higher energy dissipation capacity could be achieved compared with in the negative direction. A pinching effect could be found from the hysteresis loops of specimens in the negative direction for the effect of shear deformation. The hysteresis curves of specimens with a cross-section height-to-width ratio of 6.5 were very plump, and their energy dissipation was very good. The bearing capacity of the T-shaped specimens was greater than that of the L-shaped specimens, because the effective flange width of the T-shaped specimens was bigger than that of L-shaped specimens. Considering the uncertainty of the seismic direction, the seismic performance of the L-shaped shear wall should be far inferior to that of the T-shaped shear wall.

    5 Model validation

    Shear wall sections are composed of three parts: Cover concrete, core concrete and rebar. Discretization of section fiber is shown in Fig.13. Section discretization schemes are shown in Table 4. Using a finite analysis program based on the flexibility-based element model that considers shear deformation and coupled flexural-shear effects this paper proposed, numerical analysis of shear wall specimens was carried out to obtain the force-displacement envelopes.

    Satisfactory agreement between the analytical results and the experimental results can be seen in Fig.14. It should be noted that in calculating the ultimate load, the proposed method is approximately 95% of the test results, because the boundary condition on the top of the specimens is fully free in the simulative analysis, but in the test, the vertical jack exerts friction on the top of the specimens. Furthermore, as seen in Fig.14, the section discretization of various numbers of fibers has little effect on the computational efficiency, since the element formulations strictly enforce force equilibrium.

    6 Conclusions

    In this paper,a new flexibility-based nonlinear finite element model which considers shear deformation and coupled flexural-shear effects is proposed, and cyclic loading tests of T-shaped and L-shaped shear wall specimens are carried out to verify the proposed model. The following conclusions can be drawn:

    1) All shear wall specimens exhibited a flexural failure model characterized by the crushing of concrete and the buckling of steel at the free web boundary.

    2) The use of high strength stirrups could effectively restrain the compressed concrete and postpone the buckling of the longitudinal rebars in the free web boundary, preventing premature failure when the web was compressed. The ultimate drift ratio of all specimens greatly exceeded the allowable inter-story drift ratio value (1/120) of RC shear walls according to the design provisions of the Chinese GB 50011-2010 code.

    3) No obvious concrete spalling was observed at the web-flange junction, and the compression strains of the longitudinal reinforcement at the intersection of the web and flange were extremely small, compared with the tensile strains at the free web boundary, indicating that it is not necessary to add special confinement reinforcement to the web-flange intersection.

    4) The specimens exhibited higher strength and stiffness but lower ductility capacity when the flange was in tension. The displacement ductility decreased when the shear span ratio decreased. The volumetric steel ratio of the boundary element (0.60%) was not enough for specimens with an aspect ratio under 2.0 to achieve the goal of the displacement ductility coefficient of 3.0.

    5) The strain distribution of the longitudinal reinforcement at the peak point remained approximately linear, so the plane cross-section assumption can be used for the design of flanged RC shear walls.

    6) A new flexibility-based fiber element model that considered shear deformation and coupled flexural-shear effects was proposed for simulating the nonlinear response of special shaped shear walls, dominated by flexural failure with a small slenderness ratio. There was a good agreement between analytical and experimental results, demonstrating that the model offers excellent accuracy and requires few elements per member, offering a more efficient alternative to the traditional flexibility-based fiber element model in the nonlinear analysis of special-shaped RC shear walls.

    Acknowledgements

    The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant No: 51568028).

    References:

    [1] WANG B, SHI Q X, CAI W Z. Seismic behavior of flanged reinforced concrete shear walls under cyclic loading [J].ACI Structural Journal, 2018, 115(5): 1231-1242.

    [2] JI X D, LIU D, QIAN J R. Improved design of special boundary elements for T-shaped reinforced concrete walls [J]. Earthquake Engineering and Engineering Vibration, 2017, 16(1): 83-95.

    [3] MA J X, LI B. Seismic behavior of L-shaped RC squat walls under various lateral loading directions [J]. Journal of Earthquake Engineering, 2019, 23(3): 422-443.

    [4] ZHANG X M, QIN Y, CHEN Z H, et al. Experimental behavior of innovative T-shaped composite shear walls under in-plane cyclic loading [J]. Journal of Constructional Steel Research, 2016, 120: 143-159.

    [5] DING R, TAO M X, NIE X, et al. Analytical model for seismic simulation of reinforced concrete coupled shear walls [J]. Engineering Structures, 2018, 168: 819-837.

    [6] REZAPOUR M, GHASSEMIEH M. Macroscopic modelling of coupled concrete shear wall [J]. Engineering Structures, 2018, 169: 37-54.

    [7] WU Y T, LAN T Q, XIAO Y, et al. Macro-modeling of reinforced concrete structural walls: state-of-the-art [J]. Journal of Earthquake Engineering, 2017, 21(4): 652-678.

    [8] LU X L, YANG J H. Seismic behavior of T-shaped steel reinforced concrete shear walls in tall buildings under cyclic loading [J]. The Structural Design of Tall and Special Buildings, 2015, 24(2)141-157.

    [9] MAZARS J, KOTRONIS P, DAVENNE L. A new modelling strategy for the behaviour of shear walls under dynamic loading [J]. Earthquake Engineering & Structural Dynamics, 2002, 31(4): 937-954.

    [10] BOLANDER J Jr, WIGHT J K. Finite element modeling of shear-wall-dominant buildings [J]. Journal of Structural Engineering, 1991, 117(6): 1719-1739.

    [11] KIM J, LEE S. The behavior of reinforced concrete columns subjected to axial force and biaxial bending [J]. Engineering Structures, 2000, 22(11): 1518-1528.

    [12] HAJJAR J F, SCHILLER P H, MOLODAN A. A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip [J]. Engineering Structures, 1998, 20(8): 663-676.

    [13] ZERIS C A, MAHIN S A. Behavior of reinforced concrete structures subjected to biaxial excitation [J]. Journal of Structural Engineering, 1991, 117(9): 2657-2673.

    [14] KILDASHTI K, MIRGHADERI R. Assessment of seismic behaviour of SMRFs with RBS connections by means of mixed-based state-space approach [J]. The Structural Design of Tall and Special Buildings, 2009, 18(5)485-505.

    [15] MERGOS P, BEYER K. Modelling shear-flexure interaction in equivalent frame models of slender reinforced concrete walls [J]. The Structural Design of Tall and Special Buildings, 2014, 23(15)1171-1189.

    [16] HOEHLER M S, STANTON J F. Simple phenomenological model for reinforcing steel under arbitrary load [J]. Journal of Structural Engineering, 2006, 132(7): 1061-1069.

    [17] HOSHIKUMA J, KAWASHIMA K, NAGAYA K, et al. Stress-strain model for confined reinforced concrete in bridge piers [J]. Journal of Structural Engineering, 1997, 123(5): 624-633.

    [18] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete [J]. Journal of Structural Engineering, 1988, 114(8): 1804-1826.

    [19] LI H N, LI B. Experimental study on seismic restoring performance of reinforced concrete shear walls [J]. Journal of Build Structures, 2004, 25(5): 35-42.

    [20] Code for Design of Concrete Structures: GB 50010-2010 [S]. Beijing: China Architecture & Building Press, 2010.

    [21] Code for Seismic Design of Buildings: GB 50011-2010 [S]. Beijing: China Architecture & Building Press, 2010.

    (編輯 章潤(rùn)紅)

    猜你喜歡
    剪力墻
    剪力墻結(jié)構(gòu)設(shè)計(jì)應(yīng)用于建筑結(jié)構(gòu)設(shè)計(jì)的影響分析
    建筑工程結(jié)構(gòu)設(shè)計(jì)中的剪力墻設(shè)計(jì)分析
    分析建筑結(jié)構(gòu)設(shè)計(jì)中剪力墻結(jié)構(gòu)的設(shè)計(jì)要點(diǎn)
    剪力墻結(jié)構(gòu)在高層建筑結(jié)構(gòu)設(shè)計(jì)中的布置原則
    短肢剪力墻結(jié)構(gòu)設(shè)計(jì)中若干問(wèn)題的探討
    淺談剪力墻結(jié)構(gòu)設(shè)計(jì)在建筑中的應(yīng)用
    結(jié)構(gòu)設(shè)計(jì)中剪力墻結(jié)構(gòu)的設(shè)計(jì)研究
    框架—剪力墻結(jié)構(gòu)和剪力墻結(jié)構(gòu)在結(jié)構(gòu)設(shè)計(jì)上的區(qū)別
    淺談剪力墻結(jié)構(gòu)設(shè)計(jì)
    淺析剪力墻結(jié)構(gòu)中端柱的設(shè)計(jì)計(jì)算
    成年版毛片免费区| 日本免费一区二区三区高清不卡| av天堂在线播放| 免费电影在线观看免费观看| 成人午夜高清在线视频 | 好看av亚洲va欧美ⅴa在| 在线观看66精品国产| 嫩草影视91久久| 久久婷婷人人爽人人干人人爱| 色综合站精品国产| 久久午夜亚洲精品久久| 国内久久婷婷六月综合欲色啪| 国产精品亚洲美女久久久| 国产爱豆传媒在线观看 | 国产成人精品久久二区二区91| 久久久久久大精品| 女生性感内裤真人,穿戴方法视频| 国内毛片毛片毛片毛片毛片| 久久精品国产亚洲av香蕉五月| 神马国产精品三级电影在线观看 | 欧美精品啪啪一区二区三区| 老司机在亚洲福利影院| 麻豆成人av在线观看| 国产99白浆流出| 亚洲全国av大片| 亚洲成人久久性| 自线自在国产av| 在线观看一区二区三区| 亚洲,欧美精品.| 久热这里只有精品99| 欧美性猛交黑人性爽| 后天国语完整版免费观看| 久久久久精品国产欧美久久久| 精品国产国语对白av| 丝袜在线中文字幕| 亚洲熟妇熟女久久| 国产精品美女特级片免费视频播放器 | 国产不卡一卡二| 亚洲性夜色夜夜综合| 午夜精品久久久久久毛片777| 国产人伦9x9x在线观看| 黄网站色视频无遮挡免费观看| 丰满的人妻完整版| 国产欧美日韩精品亚洲av| 欧美性猛交黑人性爽| 国产精品二区激情视频| 国产三级黄色录像| 天天添夜夜摸| 一夜夜www| 啪啪无遮挡十八禁网站| 母亲3免费完整高清在线观看| 亚洲五月婷婷丁香| 美女 人体艺术 gogo| 精品欧美一区二区三区在线| 久久久久精品国产欧美久久久| 国产1区2区3区精品| 日韩国内少妇激情av| 久热爱精品视频在线9| 老汉色∧v一级毛片| 精品久久久久久,| 国产精品久久久人人做人人爽| 99在线人妻在线中文字幕| 制服丝袜大香蕉在线| 中国美女看黄片| 日本一区二区免费在线视频| 国产亚洲欧美精品永久| 国产精品 欧美亚洲| 亚洲精品av麻豆狂野| 亚洲九九香蕉| 亚洲三区欧美一区| 午夜福利高清视频| 搡老岳熟女国产| 老汉色av国产亚洲站长工具| 国产亚洲精品久久久久5区| a在线观看视频网站| 欧美日韩一级在线毛片| 国产精品亚洲av一区麻豆| www.熟女人妻精品国产| 国产成人av激情在线播放| 久久久久精品国产欧美久久久| 国产在线精品亚洲第一网站| 色尼玛亚洲综合影院| 最新美女视频免费是黄的| 亚洲中文日韩欧美视频| 老熟妇乱子伦视频在线观看| 一区二区三区激情视频| 好男人电影高清在线观看| 久久国产精品男人的天堂亚洲| 亚洲激情在线av| 一个人免费在线观看的高清视频| 免费搜索国产男女视频| 免费在线观看黄色视频的| 亚洲一区高清亚洲精品| 夜夜躁狠狠躁天天躁| 91在线观看av| 色老头精品视频在线观看| 男人舔女人的私密视频| 国产成人系列免费观看| 欧美激情极品国产一区二区三区| 91av网站免费观看| 国产成人系列免费观看| 国产激情欧美一区二区| 99热这里只有精品一区 | 狠狠狠狠99中文字幕| 久久久久久大精品| 亚洲欧美一区二区三区黑人| 桃红色精品国产亚洲av| 精品熟女少妇八av免费久了| www国产在线视频色| 黑人欧美特级aaaaaa片| 91在线观看av| 精品少妇一区二区三区视频日本电影| 亚洲精品在线观看二区| 色综合亚洲欧美另类图片| 亚洲精品国产精品久久久不卡| 欧美zozozo另类| 国产真实乱freesex| 精品一区二区三区av网在线观看| 一进一出抽搐gif免费好疼| 哪里可以看免费的av片| 中文字幕另类日韩欧美亚洲嫩草| 俄罗斯特黄特色一大片| 国产三级黄色录像| 亚洲精品国产精品久久久不卡| 欧美日韩中文字幕国产精品一区二区三区| 深夜精品福利| 欧美激情极品国产一区二区三区| 琪琪午夜伦伦电影理论片6080| 51午夜福利影视在线观看| 久久午夜亚洲精品久久| 少妇的丰满在线观看| 国产男靠女视频免费网站| 久久久国产精品麻豆| e午夜精品久久久久久久| 日韩国内少妇激情av| av在线播放免费不卡| 麻豆av在线久日| 久久久久久久久免费视频了| 国产野战对白在线观看| 视频在线观看一区二区三区| 一级毛片精品| 18禁黄网站禁片免费观看直播| 亚洲国产精品成人综合色| 天堂影院成人在线观看| 18禁观看日本| 最近最新免费中文字幕在线| 中文字幕av电影在线播放| 精品人妻1区二区| 亚洲七黄色美女视频| www.熟女人妻精品国产| 亚洲av成人不卡在线观看播放网| 亚洲aⅴ乱码一区二区在线播放 | 免费无遮挡裸体视频| 宅男免费午夜| 国内精品久久久久久久电影| 欧美日韩精品网址| 日本精品一区二区三区蜜桃| 美女 人体艺术 gogo| 一本综合久久免费| 国产蜜桃级精品一区二区三区| 麻豆av在线久日| 久久伊人香网站| 精品久久久久久久人妻蜜臀av| 亚洲成人久久性| 黄色视频,在线免费观看| 色综合欧美亚洲国产小说| 黄色毛片三级朝国网站| 久久精品91蜜桃| 亚洲精品美女久久av网站| 亚洲aⅴ乱码一区二区在线播放 | 日韩国内少妇激情av| 午夜免费成人在线视频| av在线播放免费不卡| 国产av不卡久久| 亚洲av电影在线进入| 俄罗斯特黄特色一大片| 99久久无色码亚洲精品果冻| 精品欧美国产一区二区三| 一级毛片精品| 午夜久久久在线观看| av片东京热男人的天堂| 免费在线观看日本一区| 黑人巨大精品欧美一区二区mp4| 国产私拍福利视频在线观看| 精品乱码久久久久久99久播| 韩国av一区二区三区四区| 久久亚洲真实| 国产精品影院久久| 久久青草综合色| 18禁黄网站禁片午夜丰满| 老汉色av国产亚洲站长工具| 亚洲av成人不卡在线观看播放网| 叶爱在线成人免费视频播放| 精品日产1卡2卡| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成av片中文字幕在线观看| 欧美亚洲日本最大视频资源| 国产成人精品无人区| 国产高清视频在线播放一区| 观看免费一级毛片| 国产黄色小视频在线观看| 亚洲av成人不卡在线观看播放网| 在线播放国产精品三级| 动漫黄色视频在线观看| 一个人免费在线观看的高清视频| 成人三级做爰电影| 最新在线观看一区二区三区| 欧美激情高清一区二区三区| 亚洲成人久久性| 免费在线观看日本一区| av视频在线观看入口| 亚洲五月色婷婷综合| 麻豆成人午夜福利视频| 中文亚洲av片在线观看爽| 国产v大片淫在线免费观看| 亚洲精品美女久久久久99蜜臀| 9191精品国产免费久久| 深夜精品福利| 一级黄色大片毛片| 精品一区二区三区四区五区乱码| 好男人电影高清在线观看| 香蕉久久夜色| 中出人妻视频一区二区| 国产亚洲av嫩草精品影院| 岛国视频午夜一区免费看| 国产高清视频在线播放一区| 91老司机精品| 999久久久精品免费观看国产| 亚洲激情在线av| 国产精品免费一区二区三区在线| 后天国语完整版免费观看| 国产亚洲精品综合一区在线观看 | 中文字幕高清在线视频| 亚洲自拍偷在线| 母亲3免费完整高清在线观看| 日韩一卡2卡3卡4卡2021年| 日韩精品中文字幕看吧| 国产精品九九99| 精品午夜福利视频在线观看一区| 欧美色欧美亚洲另类二区| 激情在线观看视频在线高清| av欧美777| 国产精品爽爽va在线观看网站 | 在线国产一区二区在线| 久久久久亚洲av毛片大全| 黄色视频不卡| 一本一本综合久久| 精品国产国语对白av| 18禁观看日本| 嫩草影院精品99| 好男人在线观看高清免费视频 | 成人三级黄色视频| 人人妻人人澡人人看| 亚洲人成网站高清观看| 色哟哟哟哟哟哟| 色综合亚洲欧美另类图片| 欧美黑人巨大hd| 十分钟在线观看高清视频www| 9191精品国产免费久久| 久久国产乱子伦精品免费另类| 亚洲性夜色夜夜综合| 日韩一卡2卡3卡4卡2021年| 亚洲av中文字字幕乱码综合 | 一本综合久久免费| 99热这里只有精品一区 | 好看av亚洲va欧美ⅴa在| 国产高清视频在线播放一区| 97人妻精品一区二区三区麻豆 | 国产极品粉嫩免费观看在线| 成人一区二区视频在线观看| 男人舔奶头视频| 女性生殖器流出的白浆| 1024手机看黄色片| 欧美日韩瑟瑟在线播放| 一级a爱片免费观看的视频| 欧美激情高清一区二区三区| 久久伊人香网站| 熟女电影av网| 日本免费a在线| 欧美另类亚洲清纯唯美| 亚洲精品av麻豆狂野| 国产亚洲av高清不卡| 国产又色又爽无遮挡免费看| 丝袜人妻中文字幕| 国产区一区二久久| 草草在线视频免费看| 在线观看舔阴道视频| 国产v大片淫在线免费观看| 成人午夜高清在线视频 | 欧美黄色片欧美黄色片| 欧美午夜高清在线| 精品国产美女av久久久久小说| 亚洲国产欧美日韩在线播放| 999精品在线视频| 99久久久亚洲精品蜜臀av| 国产成人欧美| 亚洲成人精品中文字幕电影| 亚洲精品中文字幕一二三四区| 午夜成年电影在线免费观看| 亚洲精品中文字幕在线视频| 国产精品精品国产色婷婷| 成人18禁高潮啪啪吃奶动态图| 悠悠久久av| 嫩草影院精品99| 成人国语在线视频| 熟女电影av网| 亚洲精华国产精华精| 最新美女视频免费是黄的| 日本免费一区二区三区高清不卡| 黑丝袜美女国产一区| 黄色a级毛片大全视频| 久久香蕉精品热| 99re在线观看精品视频| АⅤ资源中文在线天堂| 最近最新免费中文字幕在线| 国产精品野战在线观看| 一级a爱片免费观看的视频| 无人区码免费观看不卡| 777久久人妻少妇嫩草av网站| 国产一卡二卡三卡精品| 成人国语在线视频| 午夜福利在线在线| 久久亚洲真实| 在线国产一区二区在线| 日韩三级视频一区二区三区| 婷婷丁香在线五月| 国产99白浆流出| 久久久久久久久久黄片| 老司机午夜福利在线观看视频| 国产亚洲精品久久久久久毛片| 两个人免费观看高清视频| 1024手机看黄色片| 中文资源天堂在线| 欧美日韩中文字幕国产精品一区二区三区| 可以免费在线观看a视频的电影网站| 国产乱人伦免费视频| 天堂动漫精品| 国产人伦9x9x在线观看| 亚洲av成人不卡在线观看播放网| 黄色片一级片一级黄色片| 亚洲午夜精品一区,二区,三区| 精品国产一区二区三区四区第35| 1024手机看黄色片| 国产亚洲精品一区二区www| 亚洲中文av在线| 国产亚洲欧美98| 男人舔女人的私密视频| 日韩大码丰满熟妇| 侵犯人妻中文字幕一二三四区| 亚洲中文av在线| 窝窝影院91人妻| 美女免费视频网站| 狂野欧美激情性xxxx| 观看免费一级毛片| 999精品在线视频| 亚洲五月婷婷丁香| 少妇熟女aⅴ在线视频| 免费av毛片视频| 亚洲国产中文字幕在线视频| 老熟妇仑乱视频hdxx| 久久亚洲精品不卡| 亚洲人成伊人成综合网2020| 亚洲专区国产一区二区| 19禁男女啪啪无遮挡网站| 日韩大尺度精品在线看网址| 国产免费av片在线观看野外av| 一卡2卡三卡四卡精品乱码亚洲| 成年版毛片免费区| 大型av网站在线播放| 成年免费大片在线观看| 国产精品亚洲一级av第二区| 一夜夜www| 久久精品亚洲精品国产色婷小说| 91九色精品人成在线观看| 欧美性猛交黑人性爽| 一级毛片精品| 色在线成人网| 国产精品精品国产色婷婷| 亚洲第一电影网av| 午夜免费观看网址| 成人三级做爰电影| 91成人精品电影| 日韩一卡2卡3卡4卡2021年| 国产精品亚洲一级av第二区| 日韩视频一区二区在线观看| 久久人妻av系列| 久久久久久久久久黄片| 在线av久久热| 欧美日本亚洲视频在线播放| 久久久久九九精品影院| 不卡一级毛片| 国产精品久久久久久人妻精品电影| 曰老女人黄片| 久久人妻福利社区极品人妻图片| 亚洲男人的天堂狠狠| 男女做爰动态图高潮gif福利片| bbb黄色大片| 777久久人妻少妇嫩草av网站| 日本 欧美在线| 一级毛片精品| 午夜福利一区二区在线看| 可以免费在线观看a视频的电影网站| 中文字幕久久专区| 精品国产一区二区三区四区第35| 日本撒尿小便嘘嘘汇集6| 无遮挡黄片免费观看| 午夜精品在线福利| 国产黄片美女视频| 在线观看午夜福利视频| 亚洲午夜精品一区,二区,三区| 一级片免费观看大全| 亚洲午夜理论影院| 女人高潮潮喷娇喘18禁视频| 久久精品国产99精品国产亚洲性色| 老司机靠b影院| 久久精品91无色码中文字幕| 正在播放国产对白刺激| 亚洲成av片中文字幕在线观看| 国产激情久久老熟女| 女人高潮潮喷娇喘18禁视频| 熟女少妇亚洲综合色aaa.| 久久精品人妻少妇| 久久性视频一级片| 久久婷婷成人综合色麻豆| a级毛片在线看网站| netflix在线观看网站| 欧美日韩亚洲综合一区二区三区_| 国产成人av激情在线播放| 男女做爰动态图高潮gif福利片| 国内精品久久久久久久电影| 天天躁狠狠躁夜夜躁狠狠躁| aaaaa片日本免费| 悠悠久久av| 精品一区二区三区四区五区乱码| 亚洲一区二区三区色噜噜| 99久久无色码亚洲精品果冻| 亚洲熟女毛片儿| 久久精品国产亚洲av高清一级| 成人精品一区二区免费| 精品国产美女av久久久久小说| 婷婷丁香在线五月| 亚洲成人精品中文字幕电影| 法律面前人人平等表现在哪些方面| 日本黄色视频三级网站网址| 免费看日本二区| netflix在线观看网站| 男人舔女人的私密视频| 色综合站精品国产| 国产视频内射| 久久久久国产精品人妻aⅴ院| 久久人人精品亚洲av| 亚洲国产精品成人综合色| 精品欧美一区二区三区在线| 不卡av一区二区三区| 巨乳人妻的诱惑在线观看| 黄频高清免费视频| 国产亚洲欧美精品永久| 一二三四在线观看免费中文在| 国产蜜桃级精品一区二区三区| 99国产综合亚洲精品| 亚洲第一电影网av| 老司机在亚洲福利影院| 18禁国产床啪视频网站| 夜夜爽天天搞| 亚洲第一电影网av| 亚洲精品在线美女| 久久精品影院6| 久久久精品国产亚洲av高清涩受| 看黄色毛片网站| 2021天堂中文幕一二区在线观 | 身体一侧抽搐| 亚洲一卡2卡3卡4卡5卡精品中文| 日本三级黄在线观看| 在线十欧美十亚洲十日本专区| 国内揄拍国产精品人妻在线 | 日韩欧美一区二区三区在线观看| 1024视频免费在线观看| 日日夜夜操网爽| 国产三级在线视频| 91av网站免费观看| 91麻豆av在线| 色婷婷久久久亚洲欧美| 亚洲成人免费电影在线观看| 波多野结衣高清作品| 麻豆成人午夜福利视频| 啦啦啦观看免费观看视频高清| 亚洲精品在线美女| 久久久国产精品麻豆| 黑人欧美特级aaaaaa片| 日韩欧美国产一区二区入口| 亚洲成人久久爱视频| 美国免费a级毛片| 国产av不卡久久| 国产视频内射| 黑人巨大精品欧美一区二区mp4| 99国产精品一区二区蜜桃av| 观看免费一级毛片| 少妇粗大呻吟视频| a在线观看视频网站| 黄色毛片三级朝国网站| 国产成人系列免费观看| 国产日本99.免费观看| 国产精品亚洲美女久久久| 国产精品久久久人人做人人爽| 精品久久久久久成人av| 国产黄片美女视频| 成人国产一区最新在线观看| 一本大道久久a久久精品| 日本五十路高清| 色播在线永久视频| 亚洲精品中文字幕在线视频| 天堂√8在线中文| 日韩av在线大香蕉| 国产激情偷乱视频一区二区| 久久精品aⅴ一区二区三区四区| 午夜久久久在线观看| 欧美三级亚洲精品| 黄色视频不卡| 亚洲专区字幕在线| 欧美大码av| 一本精品99久久精品77| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美网| 午夜日韩欧美国产| 在线十欧美十亚洲十日本专区| 好看av亚洲va欧美ⅴa在| 国产精品一区二区免费欧美| 欧美最黄视频在线播放免费| 99精品在免费线老司机午夜| 亚洲国产欧美网| 久久久久国产精品人妻aⅴ院| 少妇 在线观看| 日韩有码中文字幕| 国产成人一区二区三区免费视频网站| 两性夫妻黄色片| 国产成人欧美在线观看| 精品一区二区三区av网在线观看| 国产1区2区3区精品| 国产亚洲精品一区二区www| 精品国产亚洲在线| 国产精品综合久久久久久久免费| 午夜两性在线视频| 最好的美女福利视频网| www.999成人在线观看| 亚洲五月天丁香| 香蕉国产在线看| 午夜久久久在线观看| 精品高清国产在线一区| 国产成人av激情在线播放| 亚洲人成网站高清观看| 在线播放国产精品三级| 人人妻人人看人人澡| 久久草成人影院| 少妇的丰满在线观看| e午夜精品久久久久久久| 欧美成人一区二区免费高清观看 | 久久久久九九精品影院| 欧美色视频一区免费| 91大片在线观看| 亚洲av成人一区二区三| 熟妇人妻久久中文字幕3abv| 久久久久亚洲av毛片大全| 18禁国产床啪视频网站| 国产99久久九九免费精品| 侵犯人妻中文字幕一二三四区| 男人舔女人下体高潮全视频| 母亲3免费完整高清在线观看| 久久草成人影院| 亚洲国产日韩欧美精品在线观看 | 免费在线观看亚洲国产| 国产又黄又爽又无遮挡在线| 国产精品99久久99久久久不卡| 午夜福利在线在线| 欧美日韩中文字幕国产精品一区二区三区| 91字幕亚洲| 国产不卡一卡二| 免费看美女性在线毛片视频| 免费在线观看成人毛片| 久久国产亚洲av麻豆专区| 国产成人欧美| 午夜视频精品福利| 日本精品一区二区三区蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久久久免费视频了| avwww免费| 午夜久久久在线观看| 两个人免费观看高清视频| xxxwww97欧美| ponron亚洲| 国产主播在线观看一区二区| 大香蕉久久成人网| 亚洲最大成人中文| 深夜精品福利| a级毛片在线看网站| 国产精品久久电影中文字幕| 一级a爱视频在线免费观看| 一级a爱片免费观看的视频| 成人亚洲精品一区在线观看| 欧美人与性动交α欧美精品济南到| 久久久国产成人精品二区| 中文资源天堂在线| 国产精品久久久久久亚洲av鲁大| 18禁国产床啪视频网站| 狠狠狠狠99中文字幕| 91老司机精品| 亚洲五月色婷婷综合| 亚洲av成人一区二区三| 丝袜在线中文字幕| 欧美黑人欧美精品刺激| 欧美日韩福利视频一区二区| 黄片播放在线免费| 韩国av一区二区三区四区| 婷婷亚洲欧美| 老熟妇仑乱视频hdxx| 日本精品一区二区三区蜜桃|