• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    石墨烯增強傳統(tǒng)砂巖文物修復材料性能研究

    2021-03-11 10:16喬榛王捷孫博王逢睿丁梓涵楊天宇
    土木建筑與環(huán)境工程 2021年1期
    關鍵詞:石墨烯力學性能

    喬榛 王捷 孫博 王逢睿 丁梓涵 楊天宇

    摘 要:川渝地區(qū)分布有8 000余處石窟和摩崖造像,大部分鑿刻于砂巖中,長期環(huán)境作用導致砂巖性能劣化,對賦存文化遺產(chǎn)的安全造成威脅。為了提升傳統(tǒng)砂巖文物修復材料的性能,將石墨烯納米片加入傳統(tǒng)修復材料中,運用傳統(tǒng)工藝制備出“CH@G”灰漿。結(jié)果表明,加入石墨烯納米片的CH@G灰漿的力學性能和體積穩(wěn)定性較傳統(tǒng)材料明顯提高。當石墨烯納米片的添加量為質(zhì)量百分比0.07%時,樣品力學性能最佳,56 d抗壓強度、抗折強度和抗拉強度分別為4.21、2.21、0.47 MPa,相對于傳統(tǒng)修復材料,強度分別提升了7.36%、19.46%、51.61%。FT-IR、Raman和XRD結(jié)果表明,石墨烯納米片對固化反應產(chǎn)物影響較小,并且可以在早期加速水化反應,從而提升早期強度。SEM結(jié)果表明,石墨烯納米片作為一種調(diào)節(jié)相,促使灰漿形成均勻致密的微觀結(jié)構(gòu)。

    關鍵詞:砂巖文物;灰漿;石墨烯;力學性能

    1 Introduction

    There are more than 8 000 grottoes and cliff statues located in Sichuan and Chongqing. These are mainly carved out of the thick sandstone and mudstone strata of the Jurassic Period of the Mesozoic Era. The most famous stone cultural relics are the Leshan Giant Buddha and the Dazu rock carvings[1]. The sandstone cultural relics have deteriorated over time due to both environmental causes and human activity, and conservation work has been carried out several times in the past decades in an effort to preserve them[2]. In 2001, Chinese experts used traditional materials to repair the head, chest and abdomen of the Leshan Giant Buddha.

    The mortar used for the conservation of traditional sandstone cultural relics is a cementitious material composed of lime, sand, slag and a small amount of cement. Cementitious materials possess relatively high compressive strength, but lack toughness and volume stability[3-5]. The traditional materials used in the chest and abdomen areas of the Leshan Giant Buddha show some deterioration due to multiple factors. The deterioration of the chest and abdomen (exfoliation, hollow, crack and water infiltration) is shown in Fig.1.

    Graphene, which has a high elastic modulus (1 TPa) and excellent mechanical properties (130 GPa)[6-10], is considered an ideal candidate for improving the mechanical properties of cementitious material, and previous results indicate that adding graphene to cementitious matrices can enhance the toughness of the resultant composites[11-15].

    In this paper, traditional mortar used in the conservation of sandstone cultural relics is named CH mortar due to its Chinese name “Chui Hui”. Graphene is used to improve their mechanical properties, and the mortars with graphene are defined as CH@G mortars. Mechanical properties, shrinkage rate, ultrasonic wave velocity, the composition of the products, morphology and the mechanism of the graphene effect are investigated.

    2 Experimental Section

    2.1 Materials

    2.1.1 CH mortar

    The raw materials of the CH mortar were lime, slag, sand and a small amount of cement. Mixing and ramming were employed to make the particles distribute uniformly.

    The cement and lime were local products. The X-Ray Diffraction (XRD) results are shown in Table 1. The sand was purchased from Xiamen ISO Standard Sand Co, Ltd.. The slag, which was steel mill waste, was purchased from Desheng Steel Co., Ltd. in Leshan. The particle size distribution curves of the slag and sand are shown in Fig.2.

    2.1.2 Graphene

    Graphene sheets was purchased from Deyang Carbonene Co. in Sichuan province. The microstructure and chemical composition were tested by Transmission Electron Microscope (TEM), High Resolution Transmission Electron Microscope (HRTEM) and X-ray Photoelectron Spectroscopy (XPS). As shown in Fig.3 (a), the microstructure of graphene is similar to overlapping nano-fibers. Fig.3 (b) shows the HRTEM image of the graphene sheet. The sheet has 6~7 single carbon layers. As shown in Fig.3 (c), the intensity of the C1s peak is greater than that of the O1s peak. The C1s spectrum contains four peaks, including peak A (C=C) at 284.4 eV, peak B (C—O) at 286.9 eV, peak C (C=O) at 287.7 eV, and peak D (COOH) at 288.8 eV.

    2.2 Specimen preparation

    The preparation procedureis illustrated in Fig.4. First, graphene and hexadecyl trimethyl ammonium bromide (CTAB) were dispersed into 50 mL deionized water and ultrasonicated for 10 min. Next, cement and lime were mixed and stirred, and slag and sand were added after 1 min of low speed stirring. Finally, the graphene dispersion was dropped into the CH mortar. Ramming was employed to make the particle distribution more uniform after mixing. The mixture was molded to different types of specimens for testing and characterization.

    Table 2 presents the recipes for preparations of various CH and CH@G mortars. The weight percentages of the graphene sheets in the mortars were 0.01%, 0.03%, 0.05%, 0.07% and 0.10% of all raw materials (lime, cement, slag and sand). The water binder ratios of all specimens were 0.30. The size of the samples for compressive strength was 70.7 mm×70.7 mm×70.7 mm, and the flexural strength test samples were 40 mm×40 mm×160 mm. The Brazilian disc test was used to test the tensile strength of the samples, and the size of the samples was φ50 mm×100 mm.

    All samples for testing and characterization were cured in an environment (parameters: 8:00—20:00, 20 ℃, RH 65%, 20:00—8:00, 15 ℃, RH 75%) similar to that of the Leshan Giant Buddha area, and the parameters of the curing condition were controlled by a temperature and humidity curing box (BG/TH-100, Shanghai Bogong Equipment Co. Ltd.).

    2.3 Experimental methods

    2.3.1 Shrinkage rate and ultrasonic wave velocity

    The shrinkage rate of the specimens (40 mm×40 mm×160 mm) at different ages was measured by an electronic micrometer with an accuracy of 0.001 mm. The ultrasonic wave velocity of the samples (φ=50 mm, height=100 mm) at different ages was obtained by an RSM-SY5 (T) nonmetal acoustic detector.

    2.3.2 Mechanical properties

    Compressive strength, flexural strength and tensile strength were tested on a universal mechanical testing machine.The flexural strength of 40 mm×40 mm×160 mm samples was determined with a central-loading method, and then the compressive strength test was conducted after the flexural test on the remaining samples. The rate of loading was 2 mm/min. All test results were the average value of three replicate samples.

    2.3.3 Characterization

    The microstructure of all samples was examined by scanning electron microscope (Hitachi S-4800, Japan) and transmission electron microscope (Hillsboro, Tecnai G2 F20). Chemical state assignment was performed using X-ray photoelectron spectroscopy (Waltham, Thermal Scientific Escalab 250 Xi). Surface characterizations of specimens were obtained by FT-IR spectra analysis (Bruker, Tensor 27), Raman spectra analysis (France, LabRAM HR) and X-ray diffraction (Rigaku, D/max-2400).

    3 Results and discussion

    3.1 Shrinkage rate

    The shrinkage rates of all samples are shown in Fig.5. The shrinkage rate of the CH specimen increases rapidly during 0-7 d, and then slowly increases from 8 d to 14 d. Finally, the value remains almost constant after 15 d. The CH@G specimens show a tendency similar to that of the CH specimen, but all shrinkage rate values are lower than those of the CH specimen, indicating that the addition of grapheme can enhance the volume stability of the CH@G specimens. When percentage of graphene added is 0.07 wt%, the specimen has the lowest shrinkage rate (0.39%) and the attenuation is 34.74% compared to the CH specimen (0.59%).

    3.2 Ultrasonic wave velocity

    Ultrasonic wave velocity tests were employed to reflect the degree of solidification of the samples[16]. As shown in Fig.6, all specimen values first decrease and then increase. Finally, the value becomes stable. At 0 d, each sample has a high initial value due to the water filling in the pores. During 1-3 d, the water in the pores is absorbed by the cement and lime, and the wave velocity drops rapidly due to the loose and porous microstructure. At 4-14 d, the wave velocity of each specimen is simultaneously improved as the cement and lime solidify, and the velocity value increases as graphene is added. In the last period (15~28 d), the wave velocities become stable. At 28 d, the velocities of the CH@G specimens are higher than those of the CH specimen. The velocity of the CH@G-4 specimen is 1 670 m/s, which is the highest value among all the samples, and the increasement is 15.17% compared to the CH specimen.

    3.3 Mechanical properties

    3.3.1 Compressive strength

    As shown in Fig.7, the compressive strength of the CH specimen at 56 d is only 3.94 MPa. The compressive strengths of the CH@G specimens increase with the addition of graphene, and the highest strength is obtained at 0.07 wt%. The strength completion degree is used to describe the hardening rate of each sample. The compressive strength value of each sample at 56 d is used as the reference value in the compressive strength completion degree curve[17]. The hardening rate gets faster in the CH@G specimens. The compressive strength completion degree of the CH and the CH@G specimens (1-5) at 7 d are 52.30%, 60.80%, 62.69%, 65.90%, 66.11% and 65.78%, respectively, suggesting that the addition of graphene could accelerate the hydration of the CH@G specimens in the early days.

    3.3.2 Flexural strength

    The flexural strengths are shown in Fig.8. The flexural strengths of the CH specimen are 0.89 MPa (3 d), 1.34 MPa (7 d), 1.60 MPa (28 d) and 1.85 MPa (56 d). With the addition of graphene, the flexural strength at 56 d increased for different degrees and the largest increasement is 19.46% obtained in the CH@G-4 sample. The 56 d flexural strength values of each sample are used as the reference value in the flexural strength completion degree curve. The flexural strength completion degree curve shows a tendency similar to that of the compressive strength completion degree curve. The flexural strength completion degrees at 7 d are 72.40% (CH), 74.71% (CH@G-1), 75.22% (CH@G-2), 76.92% (CH@G-3), 76.94% (CH@G-4), and 76.33% (CH@G-5), indicating that the addition of graphene has the potential to enhance the hydration reaction.

    3.3.3 Tensile strength

    As shown in Fig.9, the tensile strength of the CH specimen at 3 d, 7 d, 28 d and 56 d are 0.13 MPa, 0.18 MPa, 0.24 MPa, and 0.31 MPa, respectively. The tensile strength of the CH@G specimens increases with the addition of graphene. The CH@G-4 sample exhibits the highest strength value (0.47 MPa), and the increasement is 51.61%. The result shows that the addition of graphene to the CH@G specimens has a significant influence on the tensile strength. The 56 d tensile strength value of each sample is used as the reference value in the tensile strength completion degree curve. The tensile strength completion degree of the CH specimen at 7 d is 58.1%. With the addition of graphene, the tensile strength completion degrees of the CH@G specimens, which are 60.00%, 60.00%, 64.12%, 61.73% and 62.23%, change a little at each dosage of graphene (0.01%, 0.03%, 0.05%, 0.07% and 0.10%).

    3.4 Products characteristics

    3.4.1 FT-IR spectra

    The FT-IR spectra of graphene, CH mortar and CH@G mortars at 28 d are presented in Fig.10. As shown in Fig.10, a characteristic broad band that is responsible for hydroxyl stretching can be observed around 3 450 cm-1. The —COOH carbonyl stretching at 1 730 cm-1for graphene is very weak, likely because the absorption is slight and is obscured by the range band of C=C at 1 630 cm-1 [18-19]. The spectra of the CH mortar and the CH@G mortars have similar characteristic peaks such as 3 460 cm-1 (—OH), 1 470 cm-1 (O—C—O) and 778 cm-1(O—C—O), 950 cm-1(C—S—H) and 510 cm-1 (Si—O—Si). The results indicate that the addition of graphene has little influence on the composition of the products. However, the characteristic peaks of graphene can rarely be observed in the FT-IR spectra of the CH@G mortars. The Raman spectra are employed to further analyze the existence of graphene in the CH@G mortars.

    3.4.2 Raman spectra

    The Raman spectra of graphene, CH mortar and CH@G mortars at 28 d are shown in Fig.11. The spectrum of graphene contains three peaks, namely D peak at 1 350 cm-1, G peak at 1 582 cm-1 and 2D peak at 2 700 cm-1. The D peak and 2D peak represent the high-frequency E2g phonon at the center of the Brillouin zone, and the G peak corresponds to the breathing modes of six-atom rings[20]. The spectrum of the CH mortar has four characteristic peaks, including [CO3] bending vibration, [CO3] symmetric stretching vibration, C bending vibration and O bending vibration, and similar characteristic peaks are observed in the spectra of the CH@G mortars. The results confirm that the addition of graphene has little influence on the composition of the products. A weakened peak at 1 550 cm-1, the G peak of graphene, can be observed in the spectra of CH@G-2, CH@G-3, CH@G-4 and CH@G-5, and the intensity of this peak increased as the percentage of graphene added increased. It suggests that the graphene has been successfully added into the CH@G mortars.

    3.4.3 XRD

    XRD patterns of CH mortar, CH@G-2 mortar and CH@G-4 mortar curing at different ages are shown in Fig.12. The specimens are mainly composed of Ca(OH)2, CaCO3, SiO2, AFt and unhydrated C3S, but C-S-H could not be indexed by XRD due to its amorphous property[21]. The peak intensity of unhydrated C3S can be used to analyze the hydration rate of each sample. As shown in Fig.12 (a), the peak intensity of unhydrated C3S in the CH specimen at 1 d is a little higher than those specimens of CH@G-2 and CH@G-4, indicating that the hydration rate of the CH mortar is equivalent to that of the CH@G-2 and CH@G-4 mortars at the first period (0-1 d). From Fig.12 (b), the peak intensity of unhydrated C3S in the CH specimen at 3 d is much higher than those specimens of CH@G-2 and CH@G-4, and the peak shows a decreasing trend with the increasing contents of graphene. The results suggest that the hydration rate of the CH mortar is much slower than that of the CH@G-2 mortar and the CH@G-4 mortar at the second period (1-3 d). The hydration rate of the CH mortar is slower than that of the CH@G-2 mortar and the CH@G-4 mortar at the third period (3-7 d), as shown in Fig.12 (c). In the fourth period, the peak intensity of the unhydrated C3S in the CH mortar is as great as those of the CH@G-2 mortar and the CH@G-4 mortar.

    The peak of Ca(OH)2 at 18° can be used to analyze the amount of Ca(OH)2 due to its good crystallinity[22]. The intensity of Ca(OH)2 in CH at 1 d is as high as that in the CH@G-2 and CH@G-4, meaning that the hydration rate of each sample is similar to that in first period. The intensity of Ca(OH)2 in the CH at 3 d is higher than that in CH@G-2 and CH@G-4, indicating that the hydration rate of the CH@G specimens is quicker than that of the CH specimen. The trend shows a tendency similar to the change of C3S. The results of XRD demonstrate that graphene could enhance the hydration of cement in the early days, leading to higher strength of the CH@G mortars.

    3.5 Product morphology

    As shown in Fig.13 (a), the CH specimen is mainly the crystal aggregation of laminated Ca(OH)2 and fibrous C—S—H, and the whole microstructure is loose. Fig.13 (b), (c) show the morphology of the CH@G-2 specimen and the CH@G-3 specimen, and the microstructure of the two specimens is similar to that of the CH specimen.

    As shown in Fig.13 (d), a small amount of graphene sheets exist between particles, and the microstructure is still loose, indicating that the effect of the graphene is not significant at this content. From Fig.13 (e), graphene sheets can be observed in the CH@G-4 specimen, and the microstructure of the CH@G-4 specimen is more uniform and dense compared with the CH specimen. As shown in Fig.13 (f), more graphene sheets can be observed, but the graphene shows a tendency to agglomerate. It can be concluded that the effect of graphene in the CH@G-5 specimen is

    3.6 Mechanism analysis

    According to the experimental results and the discussion above, the possible mechanism by which the addition of graphene influences the mechanical properties of CH mortar can be illustrated as follows (Fig.14). In the hydration process, a complex reaction is carried out among C2S, C3S, C3A and C4AF. The products of hydration are AFt, AFm, Ca(OH)2 and C—S—H. The corresponding reactions are expressed by Eqs. (1)~(4).

    Graphene sheets involve active groups (—OH, —COOH, and —SO3H) after being functionalized by CTAB, and acid-based reactions take place between these active groups and Ca(OH)2, leading to a strong covalent force on the interface between the graphene and the CH matrix[6]. The reaction sites and patterns are simultaneously controlled by the graphene, which is called the template effect[23]. The products of hydration grow forward from the surface of the graphene in the same direction, exhibit in an ordered way, and form a uniform and compacted microstructure. The resultant products improve the strength and volume stability of the CH@G mortars. Once the microstructure starts to crack or lose stability, they would disperse into the pores and cracks as filler to retard crack propagation.

    4 Conclusion

    Grapheneis used to enhance the mechanical properties of CH@G mortars in this study. With the increase of graphene sheets, the mechanical properties of the CH@G mortars are enhanced. The specimen with the highest strength is found at 0.07 wt% level of graphene addition, where the compressive strength, flexural strength and tensile strength at 56 d are 4.21 MPa, 2.21 MPa and 0.47 MPa, respectively. FT-IR and Raman spectra show that the addition of graphene has little influence on the composition of the products, and from the XRD results, the graphene could enhance the hydration in the early days.

    Acknowledgements

    The authors would like to acknowledge the financial support from the Sichuan Science and Technology Program (No. 2020YFS0391) and Key Research Project of China Railway Academy Co. Ltd. (No. 2019-KJ011-Z010-A2, No. 2020-KJ009-Z009-A2).

    References:

    [1] WEI J P, ZHU B L. Study on the sandstone weathering sensitivity caused by the changes of temperature and humidity [J]. Advanced Materials Research, 2011, 243-249: 645-649.

    [2] LI J H, LIU Z L, YU H, et al. The geological heritage of mount Emei in Sichuan Province and its geological significance [J]. Advances in Earth Science, 2015, 30(6): 691-699.

    [3] SINGH A P, MISHRA M, CHANDRA A, et al. Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application [J]. Nanotechnology, 2011, 22(46): 465701.

    [4] PAN Z, HE L, QIU L, et al. Mechanical properties and microstructure of a graphene oxide-cement composite [J]. Cement and Concrete Composites, 2015, 58: 140-147.

    [5] DU H J, PANG S D. Enhancement of barrier properties of cement mortar with graphene nanoplatelet [J]. Cement and Concrete Research, 2015, 76: 10-19.

    [6] CAO M L, ZHANG H X, ZHANG C. Effect of graphene on mechanical properties of cement mortars [J]. Journal of Central South University, 2016, 23(4): 919-925.

    [7] LIU H T, JIN J Z, YU Y J, et al. The mechanical properties and micro-structure of oil well cement enhanced by graphene oxide [J]. Materials Science Forum, 2018, 916: 200-204.

    [8] JIANG R S, WANG B M. Mechanical properties and microstructure of graphene-cement composites [J]. Key Engineering Materials, 2017, 748: 295-300.

    [9] LING X, WU J X, XU W G, et al. Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy [J]. Small, 2012, 8(9)1365-1372

    [10] ZHANG S, ZHANG X W, LIU X K, et al. Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles [J]. Applied Physics Letters, 2014, 104(12): 121109.

    [11] PANG H, CHEN T, ZHANG G M, et al. An electrically conducting polymer/graphene composite with a very low percolation threshold [J]. Materials Letters, 2010, 64(20): 2226-2229.

    [12] BLANTER Y M, MARTIN I. Transport through normal-metal-graphene contacts [J]. Physical Review B, 2007, 76(15): 155433.

    [13] WALKER L S, MAROTTO V R, RAFIEE M A, et al. Toughening in graphene ceramic composites [J]. ACS Nano, 2011, 5(4): 3182-3190.

    [14] ALKHATEB H, ALOSTAZ A, CHENG A, et al. Materials genome for graphene-cement nanocomposites [J]. Journal of Nanomechanics and Micromechanics, 2013, 3(3): 67-77.

    [15] LV S, MA Y J, QIU C C, et al. Regulation of GO on cement hydration crystals and its toughening effect [J]. Magazine of Concrete Research, 2013, 65(20): 1246-1254.

    [16] CARETTE J, STAQUET S. Monitoring the setting process of mortars by ultrasonic P and S-wave transmission velocity measurement [J]. Construction and Building Materials, 2015, 94: 196-208.

    [17] WANG N, CHEN W W, ZHANG J K, et al. Evolution of properties under realistic curing conditions of calcined ginger nut grouting mortars used in anchoring conservation of earthen sites [J]. Journal of Cultural Heritage, 2019, 40: 69-79.

    [18] QIAO Z, MAO J. Multifunctional poly (melamine-urea-formaldehyde)/graphene microcapsules with low infrared emissivity and high thermal conductivity [J]. Materials Science and Engineering: B, 2017, 226: 86-93.

    [19] QIAO Z, MAO J. Enhanced thermal properties with graphene oxide in the urea-formaldehyde microcapsules containing paraffin PCMs [J]. Journal of Microencapsulation, 2017, 34(1): 1-9.

    [20] FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene [J]. Nature Nanotechnology, 2013, 8(4): 235-246.

    [21] LUO K, LI J, LU Z Y, et al. Effect of nano-SiO2 on early hydration of natural hydraulic lime [J]. Construction and Building Materials, 2019, 216: 119-127.

    [22] QIAO Z, SUN B, WANG F, et al. Age performance of Leshan Giant Buddha restoration material by metakaolin modified [J]. Bulletin of the Chinese Ceramic Society, 2020 39(2): 543-551.

    [23] LV S, MA Y J, QIU C C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites [J]. Construction and Building Materials, 2013, 49: 121-127.

    (編輯 章潤紅)

    猜你喜歡
    石墨烯力學性能
    聚氨酯/聚磷酸銨復合泡沫阻燃性能的優(yōu)化方法綜述
    廢棄塑料制品改性瀝青混凝土力學性能研究
    Mg元素對A356合金力學性能影響
    Mg元素對A356合金力學性能影響
    氧化石墨烯在純棉織物上的抗菌應用
    石墨烯負載納米銀復合材料的制備及催化性能研究
    功率芯片表面絕緣層厚度對石墨烯散熱效果的影響
    綜合化學實驗設計:RGO/MnO復合材料的合成及其電化學性能考察
    基于短纖維增強的復合氣壓砂輪基體性能研究
    石墨烯量子電容的理論研究
    国产高清视频在线播放一区| 可以免费在线观看a视频的电影网站| 97人妻精品一区二区三区麻豆 | 99国产精品99久久久久| 成人午夜高清在线视频 | 国产亚洲欧美在线一区二区| 日韩三级视频一区二区三区| 欧美性猛交黑人性爽| 日本精品一区二区三区蜜桃| 99精品欧美一区二区三区四区| 欧美性猛交黑人性爽| 亚洲五月天丁香| av福利片在线| 一进一出抽搐动态| 精品国产乱码久久久久久男人| 亚洲男人天堂网一区| 国产野战对白在线观看| 久久久久久久久中文| 丝袜人妻中文字幕| 在线天堂中文资源库| av中文乱码字幕在线| 午夜激情av网站| 精品久久久久久成人av| 亚洲国产欧美一区二区综合| 男女床上黄色一级片免费看| 国产成人欧美| 国产亚洲精品综合一区在线观看 | 极品教师在线免费播放| 日韩免费av在线播放| 在线国产一区二区在线| 在线看三级毛片| 国产黄色小视频在线观看| 国产亚洲精品第一综合不卡| 不卡av一区二区三区| 精品欧美一区二区三区在线| 久久人妻福利社区极品人妻图片| 午夜福利一区二区在线看| 国产精品国产高清国产av| 久久久久久久久久黄片| 老司机靠b影院| 亚洲成人免费电影在线观看| 国产99白浆流出| 欧美成人免费av一区二区三区| 国产黄a三级三级三级人| 啦啦啦免费观看视频1| 亚洲av五月六月丁香网| 亚洲av电影不卡..在线观看| 一本一本综合久久| 亚洲av第一区精品v没综合| 婷婷六月久久综合丁香| 亚洲精品在线美女| 国产亚洲精品综合一区在线观看 | 亚洲一卡2卡3卡4卡5卡精品中文| 国产91精品成人一区二区三区| 999久久久精品免费观看国产| 麻豆一二三区av精品| 性欧美人与动物交配| av视频在线观看入口| 色在线成人网| 一区二区三区激情视频| 一本大道久久a久久精品| 国产片内射在线| 国产日本99.免费观看| 国产成人精品无人区| 岛国视频午夜一区免费看| 国产亚洲精品第一综合不卡| 搞女人的毛片| 看片在线看免费视频| 国产精品久久电影中文字幕| 国产色视频综合| 免费女性裸体啪啪无遮挡网站| 91麻豆精品激情在线观看国产| 欧美+亚洲+日韩+国产| av电影中文网址| 午夜久久久久精精品| 国产麻豆成人av免费视频| 国产精品爽爽va在线观看网站 | 深夜精品福利| 亚洲人成网站在线播放欧美日韩| xxx96com| 久久久国产成人精品二区| 一夜夜www| 日韩成人在线观看一区二区三区| 欧美亚洲日本最大视频资源| 激情在线观看视频在线高清| 国产精品美女特级片免费视频播放器 | 免费在线观看亚洲国产| 国产成人一区二区三区免费视频网站| 精品日产1卡2卡| 最近最新中文字幕大全电影3 | 婷婷精品国产亚洲av在线| 啦啦啦免费观看视频1| 丰满的人妻完整版| videosex国产| 日日干狠狠操夜夜爽| 午夜老司机福利片| 精品卡一卡二卡四卡免费| 亚洲成人久久性| 天堂√8在线中文| 别揉我奶头~嗯~啊~动态视频| 99精品在免费线老司机午夜| 波多野结衣高清无吗| 色综合站精品国产| 国产97色在线日韩免费| 亚洲色图av天堂| 亚洲精品一区av在线观看| 女生性感内裤真人,穿戴方法视频| 久久久国产成人免费| 亚洲 欧美一区二区三区| 午夜福利高清视频| 久久精品国产亚洲av高清一级| 日韩一卡2卡3卡4卡2021年| 在线观看舔阴道视频| 亚洲av成人不卡在线观看播放网| 欧美日韩中文字幕国产精品一区二区三区| 午夜福利成人在线免费观看| 婷婷精品国产亚洲av| 国产精品香港三级国产av潘金莲| 亚洲精华国产精华精| 久久伊人香网站| 亚洲午夜精品一区,二区,三区| 国产av一区二区精品久久| 十八禁人妻一区二区| 级片在线观看| 日韩免费av在线播放| 19禁男女啪啪无遮挡网站| 久久香蕉激情| 天天一区二区日本电影三级| 男女床上黄色一级片免费看| 日本撒尿小便嘘嘘汇集6| 一区二区三区国产精品乱码| 悠悠久久av| 亚洲国产欧美日韩在线播放| 大型黄色视频在线免费观看| 国内毛片毛片毛片毛片毛片| 黄色丝袜av网址大全| 一级黄色大片毛片| 日韩三级视频一区二区三区| 在线看三级毛片| 9191精品国产免费久久| 成人三级黄色视频| 母亲3免费完整高清在线观看| 国产aⅴ精品一区二区三区波| 免费在线观看影片大全网站| 国产精品精品国产色婷婷| 欧美一级毛片孕妇| 国产精品98久久久久久宅男小说| 国产精品一区二区三区四区久久 | 国产亚洲欧美98| 在线av久久热| 中文资源天堂在线| 亚洲国产看品久久| 久久久久九九精品影院| 在线国产一区二区在线| 亚洲精品久久成人aⅴ小说| 免费人成视频x8x8入口观看| 欧美一级a爱片免费观看看 | 18禁美女被吸乳视频| 欧美中文综合在线视频| 日韩免费av在线播放| 制服丝袜大香蕉在线| 99热这里只有精品一区 | 黄片播放在线免费| 精品久久久久久,| 麻豆av在线久日| 日日夜夜操网爽| 亚洲真实伦在线观看| 男女视频在线观看网站免费 | 精品国产超薄肉色丝袜足j| 啦啦啦 在线观看视频| 亚洲成国产人片在线观看| 欧美日韩瑟瑟在线播放| 一二三四社区在线视频社区8| 国产精品美女特级片免费视频播放器 | 18禁美女被吸乳视频| www国产在线视频色| 免费无遮挡裸体视频| 香蕉av资源在线| 真人一进一出gif抽搐免费| 亚洲av中文字字幕乱码综合 | 欧美日韩亚洲国产一区二区在线观看| 久久久久久免费高清国产稀缺| 黄色视频不卡| 久久久久久亚洲精品国产蜜桃av| 国产成+人综合+亚洲专区| 一区二区日韩欧美中文字幕| 操出白浆在线播放| 日本熟妇午夜| 天堂√8在线中文| 欧美丝袜亚洲另类 | 母亲3免费完整高清在线观看| 日本一本二区三区精品| 国产野战对白在线观看| 午夜精品久久久久久毛片777| 两性午夜刺激爽爽歪歪视频在线观看 | 天堂√8在线中文| 性欧美人与动物交配| 亚洲国产高清在线一区二区三 | 人妻丰满熟妇av一区二区三区| 2021天堂中文幕一二区在线观 | 神马国产精品三级电影在线观看 | 日韩一卡2卡3卡4卡2021年| 又黄又爽又免费观看的视频| 夜夜看夜夜爽夜夜摸| 精品国产美女av久久久久小说| 免费在线观看黄色视频的| 亚洲最大成人中文| 亚洲无线在线观看| 夜夜躁狠狠躁天天躁| 午夜影院日韩av| a在线观看视频网站| 可以在线观看毛片的网站| 18禁黄网站禁片免费观看直播| 男人操女人黄网站| www日本在线高清视频| 亚洲成av片中文字幕在线观看| 国产成人欧美在线观看| 国内少妇人妻偷人精品xxx网站 | 黑丝袜美女国产一区| 成人18禁在线播放| 美女免费视频网站| aaaaa片日本免费| 在线观看免费视频日本深夜| 国产黄色小视频在线观看| 啦啦啦观看免费观看视频高清| 久久久国产欧美日韩av| 一级作爱视频免费观看| 国产视频一区二区在线看| 99国产综合亚洲精品| 两个人看的免费小视频| 国产高清激情床上av| 非洲黑人性xxxx精品又粗又长| 变态另类成人亚洲欧美熟女| 国产伦人伦偷精品视频| 色播在线永久视频| 99在线人妻在线中文字幕| 亚洲av电影不卡..在线观看| 男女午夜视频在线观看| 日韩有码中文字幕| 欧美三级亚洲精品| 18美女黄网站色大片免费观看| 在线观看舔阴道视频| 久久久久久久久久黄片| 在线播放国产精品三级| 国产又色又爽无遮挡免费看| 免费在线观看亚洲国产| 日韩免费av在线播放| 久久精品91无色码中文字幕| 亚洲国产精品合色在线| 制服丝袜大香蕉在线| 脱女人内裤的视频| 黄色女人牲交| 欧美成人免费av一区二区三区| 18禁观看日本| 精品欧美国产一区二区三| 成人国产综合亚洲| 亚洲欧美一区二区三区黑人| 99久久99久久久精品蜜桃| 亚洲,欧美精品.| 可以免费在线观看a视频的电影网站| 12—13女人毛片做爰片一| 亚洲精华国产精华精| 香蕉久久夜色| 精品久久久久久久毛片微露脸| 亚洲欧洲精品一区二区精品久久久| 人人妻人人澡欧美一区二区| 热99re8久久精品国产| 熟女电影av网| 亚洲aⅴ乱码一区二区在线播放 | 久久狼人影院| 亚洲欧美精品综合久久99| 日韩免费av在线播放| a在线观看视频网站| 757午夜福利合集在线观看| 成人免费观看视频高清| 淫妇啪啪啪对白视频| av欧美777| aaaaa片日本免费| 国产一级毛片七仙女欲春2 | 日韩精品青青久久久久久| 俺也久久电影网| 岛国在线观看网站| 国产伦人伦偷精品视频| 一本综合久久免费| 亚洲性夜色夜夜综合| 脱女人内裤的视频| 国产欧美日韩精品亚洲av| 国产精品 欧美亚洲| 久久国产乱子伦精品免费另类| 久久香蕉激情| 丝袜在线中文字幕| 午夜福利视频1000在线观看| 午夜两性在线视频| 18禁裸乳无遮挡免费网站照片 | 免费高清在线观看日韩| 久久国产亚洲av麻豆专区| 国产成年人精品一区二区| √禁漫天堂资源中文www| 亚洲真实伦在线观看| 国产精华一区二区三区| 久久国产亚洲av麻豆专区| 国产成+人综合+亚洲专区| 欧美日韩亚洲国产一区二区在线观看| 搞女人的毛片| 亚洲,欧美精品.| 国产区一区二久久| 中文亚洲av片在线观看爽| 欧美日韩亚洲综合一区二区三区_| 日本一本二区三区精品| 国产成人系列免费观看| 麻豆av在线久日| 亚洲欧洲精品一区二区精品久久久| 成年版毛片免费区| 18禁国产床啪视频网站| 中国美女看黄片| 精品午夜福利视频在线观看一区| 国产精品国产高清国产av| АⅤ资源中文在线天堂| 99久久综合精品五月天人人| 亚洲中文字幕一区二区三区有码在线看 | 久久久精品国产亚洲av高清涩受| 不卡av一区二区三区| 免费在线观看完整版高清| 精品一区二区三区四区五区乱码| 欧美不卡视频在线免费观看 | 亚洲av第一区精品v没综合| 日本三级黄在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产91精品成人一区二区三区| tocl精华| 成人一区二区视频在线观看| 自线自在国产av| а√天堂www在线а√下载| 国产片内射在线| 黑人巨大精品欧美一区二区mp4| 波多野结衣高清作品| 日韩高清综合在线| 欧美国产日韩亚洲一区| 精品国产超薄肉色丝袜足j| 日韩三级视频一区二区三区| av片东京热男人的天堂| 国产免费男女视频| 国产精品香港三级国产av潘金莲| 精品欧美国产一区二区三| 真人做人爱边吃奶动态| 国产又色又爽无遮挡免费看| 午夜免费激情av| 亚洲午夜理论影院| 男女做爰动态图高潮gif福利片| 1024手机看黄色片| 中文资源天堂在线| 亚洲国产精品999在线| 18禁美女被吸乳视频| 国产99久久九九免费精品| 日本精品一区二区三区蜜桃| 欧美最黄视频在线播放免费| 亚洲熟妇熟女久久| 看片在线看免费视频| 国产一区二区在线av高清观看| 欧美久久黑人一区二区| 波多野结衣高清作品| 欧美一级a爱片免费观看看 | 欧美人与性动交α欧美精品济南到| 精品国产亚洲在线| 午夜精品久久久久久毛片777| 国产成人欧美| 无人区码免费观看不卡| 人人妻,人人澡人人爽秒播| 一级作爱视频免费观看| 久久欧美精品欧美久久欧美| 夜夜夜夜夜久久久久| 国产三级在线视频| 欧美成人免费av一区二区三区| 美女免费视频网站| 日本三级黄在线观看| 少妇被粗大的猛进出69影院| 最近最新中文字幕大全电影3 | 国产成人啪精品午夜网站| 久久亚洲精品不卡| 九色国产91popny在线| 亚洲男人天堂网一区| 国产成人av激情在线播放| 十八禁网站免费在线| 我的亚洲天堂| av欧美777| 午夜老司机福利片| 久久精品亚洲精品国产色婷小说| 国产蜜桃级精品一区二区三区| 操出白浆在线播放| 亚洲自偷自拍图片 自拍| 在线观看一区二区三区| 欧美色视频一区免费| 久久精品国产综合久久久| 黄色女人牲交| 国产成人av教育| 精品福利观看| 中文字幕人妻丝袜一区二区| 亚洲人成伊人成综合网2020| 日本黄色视频三级网站网址| 国内毛片毛片毛片毛片毛片| 国产又黄又爽又无遮挡在线| 自线自在国产av| 麻豆av在线久日| 亚洲中文日韩欧美视频| 男女下面进入的视频免费午夜 | 可以在线观看毛片的网站| 精品国产美女av久久久久小说| 国产又黄又爽又无遮挡在线| 国产黄a三级三级三级人| 99国产精品99久久久久| 免费观看人在逋| 757午夜福利合集在线观看| 啪啪无遮挡十八禁网站| 精品一区二区三区视频在线观看免费| 女警被强在线播放| 欧美av亚洲av综合av国产av| 午夜久久久在线观看| 丰满的人妻完整版| 中文字幕久久专区| 极品教师在线免费播放| 老熟妇乱子伦视频在线观看| 十八禁人妻一区二区| 黄色 视频免费看| 日韩有码中文字幕| 亚洲国产精品sss在线观看| 美女扒开内裤让男人捅视频| 岛国视频午夜一区免费看| 啦啦啦观看免费观看视频高清| 亚洲专区中文字幕在线| 99久久国产精品久久久| 2021天堂中文幕一二区在线观 | 国产精品二区激情视频| 精品久久久久久久人妻蜜臀av| 99国产综合亚洲精品| 少妇熟女aⅴ在线视频| 亚洲精华国产精华精| 国产午夜福利久久久久久| 免费在线观看黄色视频的| 国产三级在线视频| 狂野欧美激情性xxxx| 男女午夜视频在线观看| 午夜福利欧美成人| 18禁美女被吸乳视频| 国产1区2区3区精品| 波多野结衣高清作品| 男女那种视频在线观看| 久久精品国产亚洲av香蕉五月| 特大巨黑吊av在线直播 | 夜夜爽天天搞| 日韩国内少妇激情av| 久久人妻福利社区极品人妻图片| 一区二区三区国产精品乱码| 欧美激情极品国产一区二区三区| 久久国产精品人妻蜜桃| 国产高清激情床上av| 国产精品亚洲av一区麻豆| 老熟妇仑乱视频hdxx| 亚洲色图 男人天堂 中文字幕| 好男人电影高清在线观看| 成人国语在线视频| 久久天堂一区二区三区四区| 看片在线看免费视频| 国产伦人伦偷精品视频| 亚洲人成网站在线播放欧美日韩| bbb黄色大片| 成人三级黄色视频| 最近最新中文字幕大全电影3 | 制服人妻中文乱码| 琪琪午夜伦伦电影理论片6080| 搞女人的毛片| 俺也久久电影网| 天天躁夜夜躁狠狠躁躁| 老司机福利观看| 国产精品免费一区二区三区在线| 久久国产亚洲av麻豆专区| 日本a在线网址| 熟女电影av网| 亚洲人成伊人成综合网2020| 国产主播在线观看一区二区| 啦啦啦韩国在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| 又紧又爽又黄一区二区| 无人区码免费观看不卡| 久久精品夜夜夜夜夜久久蜜豆 | 老司机深夜福利视频在线观看| 中亚洲国语对白在线视频| 99久久久亚洲精品蜜臀av| 国产精品亚洲av一区麻豆| 丰满的人妻完整版| 中文字幕高清在线视频| 色播亚洲综合网| 国产成人欧美| 中出人妻视频一区二区| 亚洲成av片中文字幕在线观看| 在线观看舔阴道视频| 最近最新免费中文字幕在线| 精品电影一区二区在线| 国产亚洲欧美精品永久| 国产成年人精品一区二区| 韩国av一区二区三区四区| 久久亚洲真实| 亚洲全国av大片| 欧美另类亚洲清纯唯美| 哪里可以看免费的av片| 欧美精品啪啪一区二区三区| 亚洲色图 男人天堂 中文字幕| 久久人人精品亚洲av| 国产片内射在线| 女性生殖器流出的白浆| 美女国产高潮福利片在线看| 真人一进一出gif抽搐免费| 久久国产乱子伦精品免费另类| 欧美大码av| 成在线人永久免费视频| 在线观看免费视频日本深夜| 国产日本99.免费观看| 在线永久观看黄色视频| 亚洲av片天天在线观看| 欧美成人一区二区免费高清观看 | 久久精品91蜜桃| 亚洲免费av在线视频| 久久中文看片网| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久视频播放| 午夜福利在线在线| 在线播放国产精品三级| or卡值多少钱| 国产精品亚洲一级av第二区| 亚洲成a人片在线一区二区| 午夜免费观看网址| 国产亚洲精品一区二区www| 俺也久久电影网| 国产亚洲精品第一综合不卡| 黑人欧美特级aaaaaa片| 日本免费a在线| 欧美三级亚洲精品| 久久草成人影院| 亚洲av成人av| 激情在线观看视频在线高清| 国产国语露脸激情在线看| 在线观看一区二区三区| 一级毛片高清免费大全| av超薄肉色丝袜交足视频| 大型黄色视频在线免费观看| svipshipincom国产片| a级毛片a级免费在线| 久久久久久久久久黄片| 熟妇人妻久久中文字幕3abv| 好男人在线观看高清免费视频 | 高潮久久久久久久久久久不卡| 精品国产乱码久久久久久男人| 在线观看www视频免费| 可以免费在线观看a视频的电影网站| 亚洲成av片中文字幕在线观看| 亚洲va日本ⅴa欧美va伊人久久| 99riav亚洲国产免费| 91字幕亚洲| 色尼玛亚洲综合影院| 亚洲狠狠婷婷综合久久图片| 亚洲熟女毛片儿| 女人被狂操c到高潮| 一二三四社区在线视频社区8| 又黄又爽又免费观看的视频| 18禁黄网站禁片午夜丰满| 日韩欧美一区二区三区在线观看| 欧美日本视频| 一区二区三区精品91| 丁香欧美五月| 免费一级毛片在线播放高清视频| 老鸭窝网址在线观看| av天堂在线播放| xxx96com| 国产成人精品无人区| 亚洲 国产 在线| 亚洲天堂国产精品一区在线| 午夜亚洲福利在线播放| 国产精品综合久久久久久久免费| 色尼玛亚洲综合影院| 99国产综合亚洲精品| 色哟哟哟哟哟哟| 欧美另类亚洲清纯唯美| a级毛片a级免费在线| 动漫黄色视频在线观看| 99久久综合精品五月天人人| 琪琪午夜伦伦电影理论片6080| 国产视频一区二区在线看| 免费看日本二区| 国产亚洲欧美在线一区二区| 一边摸一边做爽爽视频免费| 性欧美人与动物交配| 亚洲精品国产精品久久久不卡| 少妇 在线观看| 桃色一区二区三区在线观看| 亚洲熟妇中文字幕五十中出| 欧美精品亚洲一区二区| 国产视频内射| 十八禁网站免费在线| 国产精品一区二区精品视频观看| 国产欧美日韩一区二区精品| 亚洲精品一区av在线观看| 国产成人啪精品午夜网站| 国产精品免费一区二区三区在线| 国产激情欧美一区二区| 听说在线观看完整版免费高清| 天天一区二区日本电影三级| 欧美日韩福利视频一区二区| 香蕉av资源在线| 色婷婷久久久亚洲欧美| 三级毛片av免费| 日本精品一区二区三区蜜桃| 欧美日韩精品网址| 亚洲一区高清亚洲精品| 美女高潮到喷水免费观看| 黄网站色视频无遮挡免费观看| 成熟少妇高潮喷水视频|