谷濤 李永豐 張自常 楊霞 曹晶晶 楊倩
摘要 :農(nóng)田雜草嚴(yán)重影響作物的產(chǎn)量和品質(zhì),對除草劑的過度依賴和長期使用,使雜草對除草劑的抗性問題日益突出。目前已有262種雜草(152種雙子葉和110種單子葉)的512個生物型對23類中的167個除草劑產(chǎn)生抗性。激素類除草劑作為除草劑的重要成員,為禾谷類作物田的雜草防除提供了保障,然而在使用了幾十年后,44種雜草對此類除草劑產(chǎn)生了抗藥性。本文對激素類除草劑的分類應(yīng)用、除草機理、抗性現(xiàn)狀、抗性機理等進行了綜述,以期為激素類除草劑的應(yīng)用和抗激素類除草劑雜草的防除提供參考。
關(guān)鍵詞 :雜草; 激素類除草劑; 抗藥性; 抗性機理
中圖分類號:
S 481, S 482.4文獻標(biāo)識碼: A
DOI: 10.16688/j.zwbh.2019595
Research progress in weed resistance to auxin herbicides
GU Tao, LI Yongfeng*, ZHANG Zichang, YANG Xia, CAO Jingjing, YANG Qian
(Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
Abstract :Weeds in farmlands seriously affect the yield and quality of crops, and the weed resistance has become a serious problem due to prolonged use and overreliance on limited herbicides. At present, 512 biotypes of 262 weeds (152 dicots and 110 monocots) have evolved resistance to 167 herbicides with 23 different sites of action. Auxin herbicides, as one of the important herbicides, provide a critical tool for weed control in cereal crops. However, 44 weed species have developed resistance to them after decades of continuous use. In this paper, the classification and application, weed control mechanism, resistance status and resistance mechanism on auxin herbicides were systematically summarized, in order to provide a reference for the application of auxin herbicides and control of resistant weeds.
Key words :weeds; auxin herbicides; herbicide resistance; resistance mechanism
雜草是農(nóng)田生態(tài)系統(tǒng)中非有意識栽培的植物。全球有雜草8 000多種,對農(nóng)業(yè)生產(chǎn)造成危害的有2 500余種[1]。我國幅員遼闊,氣候多樣,雜草種類龐雜。迄今為止,我國已發(fā)現(xiàn)農(nóng)田雜草1 400多種,其中641種列入《中國主要農(nóng)作物雜草名錄》,分屬89科374屬;這些雜草中,對我國農(nóng)業(yè)生產(chǎn)造成嚴(yán)重危害的雜草有130余種,惡性雜草37種[2]。多數(shù)雜草生長迅速、根系發(fā)達、繁殖能力突出,在農(nóng)田生態(tài)系統(tǒng)中具有較強的競爭能力,它們與作物競爭水分、養(yǎng)分和光照,嚴(yán)重影響農(nóng)作物的產(chǎn)量和品質(zhì)[3]。人類在栽培作物的過程中,與雜草進行了長期的斗爭,經(jīng)歷了從“徒手拔草”的人工除草時代到今天以化學(xué)除草為主,生態(tài)、物理方法為輔的綜合治理階段。我國使用化學(xué)除草劑始于20世紀(jì)70年代,此后大量的化學(xué)除草劑從國外引進,國內(nèi)化學(xué)除草劑的品種日益豐富。在這些除草劑中,激素類除草劑的作用不容忽視,此類除草劑的結(jié)構(gòu)與生長素吲哚3乙酸(IAA)類似,低濃度時對植物有促生作用,高濃度時殺死植物[4]。它的出現(xiàn)為禾谷類作物田闊葉雜草的防除提供了有力的保障。
單一除草劑大量使用,抗性問題日益凸顯,促使化學(xué)除草劑從單劑向復(fù)配劑的轉(zhuǎn)變。復(fù)配劑的出現(xiàn),一定程度上遏制了抗性雜草的蔓延,保證了糧食生產(chǎn)安全,但交互抗性和多抗性雜草的出現(xiàn),又縮短了復(fù)配劑的使用壽命,增加了農(nóng)業(yè)生產(chǎn)者的除草壓力,尤其是作用方式獨特的激素類除草劑也相繼出現(xiàn)抗性問題,給雜草的有效治理帶來了前所未有的挑戰(zhàn)。全球?qū)W者在雜草生物學(xué)與生態(tài)學(xué)、雜草群落演替規(guī)律、雜草化學(xué)與生物防治技術(shù),以及綜合防治技術(shù)等方面進行了大量的研究工作[5],取得了一系列可喜的成績,但也發(fā)現(xiàn)了一些亟待解決的問題。本文總結(jié)了雜草對激素類除草劑的抗性現(xiàn)狀,歸納了雜草對激素類除草劑抗性機理方面的研究進展,展望了今后的研究趨勢,為激素類除草劑的研究和應(yīng)用提供參考。
1 激素類除草劑的種類及其作用方式
自1942年發(fā)現(xiàn)2,4滴的除草活性以后,許多激素類除草劑被相繼開發(fā)利用。根據(jù)分子結(jié)構(gòu)中的芳基、雜環(huán)或羧酸位置的不同,激素類除草劑可分為苯甲酸(benzoic acids)、苯氧羧酸(phenoxy carboxylic acids)、吡啶羧酸(pyridine carboxylic acids)、喹啉羧酸(quinoline carboxylic acids)、嘧啶羧酸(pyrimidine carboxylic acids)、芳基吡啶甲酸酯(arylpicolinate)和其他,共7類。如常見除草劑麥草畏屬于苯甲酸類(圖1a);2,4滴、2,4滴丁酯、2甲4氯等屬于苯氧羧酸類(圖1b);氯氨吡啶酸、氨氯吡啶酸、三氯吡氧乙酸、二氯吡啶酸、氯氟吡氧乙酸等屬于吡啶羧酸類(圖1c);二氯喹啉酸屬于喹啉羧酸類(圖1d);氯丙嘧啶酸屬于嘧啶羧酸類(圖1e);氯氟吡啶酯、氟氯吡啶酯等屬于芳基吡啶甲酸酯類(圖1f);草除靈不屬于上述任何一類,歸為其他類(圖1g)。
激素類除草劑可影響植物體內(nèi)的激素平衡,對植物生長和發(fā)育有廣泛的影響。植物在激素類除草劑的作用下“過度”生長,從而死亡[4]。Grossmann等將雜草對激素類除草劑的反應(yīng)分為三個階段:第一階段是刺激階段,這一過程發(fā)生在除草劑作用后的數(shù)小時內(nèi),1氨基環(huán)丙烷1羧酸合成酶(1aminocyclopropane1carboxylic acid (ACC) synthase,ACS EC 4.4.1.14)被大量誘導(dǎo)合成,乙烯含量增加,植物畸形生長(葉偏上性生長,組織膨大,莖卷曲),脫落酸開始累積。第二階段是抑制階段,發(fā)生在24 h之內(nèi),此時根莖生長受阻,氣孔關(guān)閉,蒸騰作用減弱,碳同化和淀粉合成變少,活性氧ROS增加。第三個階段是組織衰敗階段,葉綠體損傷,進而失綠,膜和維管系統(tǒng)崩塌,最終植物萎蔫、壞死[4]。除對植物的生理生化有影響以外,最新的研究發(fā)現(xiàn),激素類除草劑主要通過受體蛋白發(fā)揮效應(yīng)。受體蛋白在感知除草劑后,調(diào)控下游基因表達,對植物造成影響。受體蛋白的差異是激素類除草劑在作物和雜草之間產(chǎn)生選擇性的主要原因[67]。
激素類除草劑在農(nóng)業(yè)生產(chǎn)中具有重要的作用,水稻、小麥、玉米、油菜等大宗作物田,均有激素類除草劑的使用(表1)。大多數(shù)激素類除草劑用來防除闊葉雜草,對禾本科雜草無效,但是也有個別除草劑可以用來防除禾本科雜草,如二氯喹啉酸、氯氟吡啶酯等。二氯喹啉酸是巴斯夫公司于1984年開發(fā)的除草劑,其經(jīng)濟、高效、安全,對“臭名昭著”的稻田雜草稗草Echinochloa spp.有特效。氯氟吡啶酯(靈斯科)是陶氏益農(nóng)新開發(fā)的激素類除草劑,登記作物為水稻,可用來防除稗草、千金子Leptochloa chinensis等禾本科雜草,野慈姑Sagittaria trifolia、雨久花Monochoria korsakowii等闊葉類雜草,異型莎草Cyperus difformis、碎米莎草C.iria等莎草,殺草譜廣,應(yīng)用前景廣闊。二氯吡啶酸、草除靈分別為陶氏益農(nóng)和拜耳股份公司開發(fā)的除草劑,可用作油菜田闊葉雜草的防除。激素類除草劑除了在作物田中大顯身手外,在非耕地如草原、牧場、森林等領(lǐng)域也起到了重要的作用,這些除草劑包括氯氨吡啶酸、氨氯吡啶酸、氯丙嘧啶酸等(表1)。
2 雜草對激素類除草劑的抗藥性現(xiàn)狀
從20世紀(jì)50年代發(fā)現(xiàn)鴨跖草Commelina communis和野胡蘿卜Daucus carota對2,4滴的抗藥性開始,激素類除草劑的抗性問題引起了人們的廣泛關(guān)注。20世紀(jì)70-80年代,發(fā)現(xiàn)抗激素類除草劑雜草生物型僅有8例;21世紀(jì)初(2000年-2019年),發(fā)現(xiàn)抗性雜草生物型已達47例(圖2)。對激素類除草劑產(chǎn)生抗藥性的雜草主要為闊葉類雜草,禾本科雜草僅有止血馬唐Digitaria ischaemum和一些稗屬雜草。目前,已經(jīng)有17科44種雜草對激素類除草劑產(chǎn)生了抗藥性[8](表2)。闊葉雜草中菊科、十字花科、莧科占比最大,它們對2,4滴、麥草畏、氨氯吡啶酸、二氯吡啶酸、2甲4氯、三氯吡氧乙酸等除草劑產(chǎn)生了抗藥性。禾本科雜草中止血馬唐、普通稗Echinochloa crusgalli var. crusgalli、孔雀稗E.cruspavonis、西來稗E.crusgalli var.zelayensis、光頭稗E.colona、無芒稗E.crusgalli var.mitis、長芒稗E.crusgalli var. caudate和水稗E.phyllopogon對二氯喹啉酸產(chǎn)生了抗性(表2)。
激素類除草劑中,2,4滴已經(jīng)使用了70多年,抗性雜草出現(xiàn)最早,相關(guān)報道最多。目前對2,4滴產(chǎn)生抗藥性的雜草主要有長葉車前Plantago lanceolata[9]、黃花藺Limnocharis flava[8]、絲路薊Cirsium arvense[8]、飛廉Carduus nutans[8]、意大利薊Carduus pycnocephalus[8]、野萵苣Lactuca serriola[10]、賽金盞Arctotheca calendula[8]、苦苣菜Sonchus oleraceus[8]、蘇門白酒草Conyza sumatrensis[8](種名已訂正為Erigeron sumatrensis)、節(jié)毛飛廉Carduus acanthoides[8]、尖瓣花Sphenoclea zeylanica[8]、豬殃殃Galium aparine[8]、野胡蘿卜[11]、水虱草Fimbristylis miliacea[8]、野芥Sinapis arvensis[8,1213]、野蘿卜Raphanus raphanistrum[1416]、東方大蒜芥Sisymbrium orientale[8,1718]、蕪菁Brassica rapa[8]、短果芥Hirschfeldia incana[8]、直立石龍尾Limnophila erecta[8]、糙果莧Amaranthus tuberculatus[1921]、長芒莧Amaranthus palmeri[8]、綠穗莧Amaranthus hybridus[22]、竹節(jié)菜[8]、虞美人Papaver rhoeas[8,2325]、地膚Kochia scoparia[2628]等(表2)。1957年,在美國夏威夷發(fā)現(xiàn)了抗2,4滴的鴨跖草。同年,在加拿大安大略首次發(fā)現(xiàn)了抗2,4滴的野胡蘿卜[8]。2007年,Burke等在美國華盛頓州發(fā)現(xiàn)的野萵苣生物型對2,4滴、2甲4氯和麥草畏均產(chǎn)生了抗藥性,其中對2,4滴抗性達到了25倍[10]。2009年,Bernards等在美國內(nèi)布拉斯加州發(fā)現(xiàn)了抗2,4滴的糙果莧,其相對抗性指數(shù)為9.12[19]。1999年到2013年間,在澳大利亞發(fā)現(xiàn)了多個抗2,4滴的野蘿卜生物型,其中2010年發(fā)現(xiàn)的抗性生物型對激素類(O/4)、ALS抑制劑類(B/2)、類胡蘿卜素合成抑制劑類(F1/12)三種作用方式不同的除草劑產(chǎn)生了抗藥性[1416]。2016年,Dellaferrera等在阿根廷發(fā)現(xiàn)了對2,4滴、麥草畏、草甘膦產(chǎn)生了抗藥性的綠穗莧[22]。同年,Patton等首次發(fā)現(xiàn)了抗2,4滴的長葉車前種群,該種群對2,4滴抗性指數(shù)達到了6.2倍以上[9]。2017年,Christoffoleti等發(fā)現(xiàn)了對O/4、光系統(tǒng)Ⅱ抑制劑類(C2/7)、光系統(tǒng)Ⅰ抑制劑類(D/22)、PPO抑制劑類(E/14)、EPSP合酶抑制劑類(G/9)等5種作用方式不同的除草劑均產(chǎn)生抗藥性的蘇門白酒草[8]。
麥草畏作為激素類除草劑中的重要一員,屬于苯甲酸類激素類除草劑,被廣泛應(yīng)用于小麥、玉米田的雜草防除。對其產(chǎn)生抗性的雜草主要有鼬瓣花Galeopsis tetrahit[29]、野萵苣[10]、藍花矢車菊Centaurea cyanus[8]、地膚[2628,3039]、藜Chenopodium album[4042]、野芥[8,43]、綠穗莧[22]、虞美人[23]等。其中地膚、藜等為農(nóng)田常見雜草,在我國各地均有分布,部分田塊發(fā)生量大,危害嚴(yán)重。早在1994年,Cranston等和Goss等就發(fā)現(xiàn)了對麥草畏和氯氟吡氧乙酸產(chǎn)生抗藥性的地膚[30,32],此后大量的抗性地膚生物型被發(fā)現(xiàn)[2628,31,3339]。如2009年,Crespo等在美國內(nèi)布拉斯加州采集了67個地膚種群,對其抗性指數(shù)進行測定,結(jié)果最不敏感種群和最敏感種群的相對抗性指數(shù)達到了11.3[31]。2015年,Ghanizadeh等發(fā)現(xiàn)了兩個抗麥草畏的藜種群(種群L和M),抗性指數(shù)分別為7和19[40];2017年發(fā)現(xiàn)這兩個抗性種群對氯氨吡啶酸、氨氯吡啶酸、二氯吡啶酸有交互抗性[41]。
二氯喹啉酸是在二氯吡啶酸結(jié)構(gòu)基礎(chǔ)上開發(fā)的激素類除草劑,作為主要除稗劑,已經(jīng)使用了近30年。目前稗屬雜草中的普通稗[4460]、西來稗[6164]、孔雀稗[8]、光頭稗[6566]、無芒稗[67]、長芒稗[68]和水稗[69]對其產(chǎn)生了抗藥性。1992年,LopezMartinez等在西班牙南部單季稻區(qū)發(fā)現(xiàn)了兩種抗二氯喹啉酸的稗草生物型I、R,抗性指數(shù)分別達到6和26,發(fā)現(xiàn)的另一個生物型X對二氯喹啉酸和莠去津均產(chǎn)生了抗藥性[44]。2000年,我國湖南省安鄉(xiāng)縣發(fā)現(xiàn)了抗二氯喹啉酸的普通稗草,其相對抗性指數(shù)為28.7[45]。2007年,吳聲敢等發(fā)現(xiàn)采自浙江陶堰和塘下的稗草種群對二氯喹啉酸的相對抗性指數(shù)非常高,達695.8和718.5[46]。2010年,Xu等從我國江蘇、安徽和上海等多個稻區(qū)采集西來稗種群,其中部分種群對二氯喹啉酸產(chǎn)生了抗性,抗性指數(shù)處于3.3~66.9之間[61]。除了稗屬雜草以外,馬唐屬的止血馬唐[70]和拉拉藤屬鋸鋸藤Galium spurium[7173]也對二氯喹啉酸產(chǎn)生了抗性,關(guān)于二氯喹啉酸抗性報道已屢見不鮮[8,4473],其抗性問題非常普遍,抗性水平呈上升態(tài)勢。
雜草除了對以上幾種激素類除草劑產(chǎn)生抗性以外,對其他激素類除草劑諸如氯氨吡啶酸、氨氯吡啶酸、二氯吡啶酸、氯氟吡氧乙酸等也產(chǎn)生了抗性。其中對氯氨吡啶酸產(chǎn)生抗性的雜草主要有糙果莧[20]、虞美人[23]、藜[41],對氨氯吡啶酸產(chǎn)生抗性的雜草主要有翅果假吐金菊Soliva sessilis[8]、糙果莧[20]、藜[41]、黃星薊Centaurea solstitialis[8,7476]、斑點矢車菊Centaurea stoebe ssp. micranthos[77]、野芥[8,78],對二氯吡啶酸產(chǎn)生抗性的雜草主要有翅果假吐金菊[8]、藜[41]、斑點矢車菊[77]、黃星薊[74,76,79],對氯氟吡氧乙酸產(chǎn)生抗性的雜草主要有繁縷Stellaria media[8]、鼬瓣花[29]、地膚[2627,32,3637,39]。2017年,Crespo等對前期采集的糙果莧材料進行抗性水平分析,發(fā)現(xiàn)糙果莧種群FS對2,4滴、氯氨吡啶酸、氨氯吡啶酸三種激素類除草劑產(chǎn)生了交互抗性,抗性指數(shù)分別為52、3.9、3.6[20]。2016年,Mangin等首次報道了斑點矢車菊對二氯吡啶酸和氨氯吡啶酸的抗藥性,其中對氨氯吡啶酸的抗性指數(shù)高達25 600[77]。激素類除草劑的抗性問題已不容忽視,解決雜草對激素類除草劑的抗性問題已刻不容緩。
3 雜草對激素類除草劑的抗性機理
雖然已經(jīng)發(fā)現(xiàn)44種雜草對激素類除草劑產(chǎn)生了抗藥性,但是由于激素類除草劑的作用機理復(fù)雜,對其抗性機制的研究一直是難點。梳理目前已獲得的研究結(jié)果,激素類除草劑的抗性機理可以分為兩類:即由于抗性相關(guān)基因位點突變而產(chǎn)生抗藥性和非位點突變產(chǎn)生抗藥性。
3.1 抗性相關(guān)基因位點突變
激素類除草劑抗性機理研究比較多的是關(guān)于二氯喹啉酸的抗性研究?,F(xiàn)有證據(jù)表明,對二氯喹啉酸的抗藥性與植物體內(nèi)乙烯生物合成有關(guān)(圖3)[4,6063,69,73,8184]。植物接觸二氯喹啉酸后,激發(fā)ACS和ACC氧化酶(ACC oxidase,ACO EC 1.14.17.4)的活性,體內(nèi)乙烯含量增加,副產(chǎn)物—氰化物(cyanide)大量增加,植物受到氰化物的毒害,生長受到抑制進而死亡[82]。ACS和ACO是乙烯生物合成途徑中的關(guān)鍵酶,β氰丙氨酸合成酶(βcyanoalanine synthase,βCAS EC 4.4.1.9)是植物體內(nèi)降解氰化物的關(guān)鍵酶,這3個酶被認(rèn)為與二氯喹啉酸的抗藥性緊密相關(guān)(圖3)。如2015年,董明超等從二氯喹啉酸抗性和敏感生物型稗草材料中克隆ACO基因(EcACO),并通過異源表達對其功能進行驗證,結(jié)果發(fā)現(xiàn)抗性和敏感生物型材料EcACO之間存在5個差異位點,其中3個位點處于保守區(qū)域內(nèi),敏感材料的EcACO催化乙烯生成速率是抗性材料的2.15倍,預(yù)示著ACO位點突變引起的酶活性變化可能是該型稗草產(chǎn)生抗性的原因[85]。
用孟德爾規(guī)律對雜草的抗性特征進行遺傳分析,發(fā)現(xiàn)對二氯喹啉酸產(chǎn)生抗性的豬殃殃[72]和對二氯吡啶酸產(chǎn)生抗性的黃星薊[76]的抗性性狀屬單基因隱性遺傳。類似研究發(fā)現(xiàn),抗2,4滴和氨氯吡啶酸地膚的抗性性狀受顯性基因控制,回交試驗表明抗2,4滴、氨氯吡啶酸和麥草畏的基因可能位于相鄰的連鎖區(qū)域[86]。2009年,Preston等也發(fā)現(xiàn)抗麥草畏地膚生物型的抗性性狀受單基因顯性控制[26]。上述這些研究表明激素類除草劑的抗藥性可能與靶標(biāo)位點突變相關(guān)。目前,在擬南芥中已經(jīng)發(fā)現(xiàn)了TIR1、AFB1、AFB2、AFB3、AFB4、AFB5等6個激素受體,這些受體發(fā)生突變或缺失后,擬南芥表現(xiàn)為對激素不敏感或者發(fā)育缺陷[8790],進一步研究發(fā)現(xiàn)蛋白AUX/IAA與ARF(生長素響應(yīng)因子)參與了這一過程(圖3)[6,91]。當(dāng)激素或者激素類除草劑不施加作用時,AUX/IAA與ARF結(jié)合,阻遏了下游基因的表達;當(dāng)激素或激素類除草劑施加作用時,SCFs復(fù)合物中的激素受體TIR/AFB識別AUX/IAA,并將其泛素化,最后泛素化的AUX/IAA被26S蛋白酶體降解,原來被阻遏的基因在ARF的作用下轉(zhuǎn)錄表達。激素或者激素類除草劑在TIR/AFB識別AUX/IAA的過程中起到了一個“分子膠”的作用[4](圖3)。不同的TIR/AFB蛋白負責(zé)識別不同激素或激素類除草劑,TIR/AFB和AUX/IAA的突變可能導(dǎo)致雜草對某種激素類除草劑產(chǎn)生抗藥性[87]。如Leclere等對敏感地膚生物型和兼抗2,4滴、氯氟吡氧乙酸、麥草畏的地膚生物型進行轉(zhuǎn)錄組測序,提取抗性相關(guān)基因進行比對,發(fā)現(xiàn)抗性和敏感生物型的IAA16存在位點差異,基因IAA16的突變導(dǎo)致抗藥性產(chǎn)生[27]。
[7] PRIGGE M, GREENHAM K, ZHANG Y, et al. The Arabidopsis auxin receptor Fbox proteins AFB4 and AFB5 are required for response to the synthetic auxin picloram[J]. G3: Genes, Genomes, Genetics, 2016, 6(5): 13831390.
[8] HEAP I. International survey of herbicide resistant weeds [DB/OL]. http:∥www.weedscience.com. 20191009.
[9] PATTON A J, WEISENBERGER D V, SCHORTGEN G P. 2, 4Dresistant buckhorn plantain (Planta golanceolata) in managed turf [J]. Weed Technology, 2018, 32(2): 182189.
[10]BURKE I C, YENISH J P, PITTMANN D, et al. Resistance of a prickly lettuce (Lactuca serriola) biotype to 2, 4D [J]. Weed Technology, 2009, 23(4): 586591.
[11]STACHLER J M, KELLS J J, PENNER D. Resistance of wild carrot (Daucus carota) to 2, 4D in Michigan [J]. Weed Technology, 2000, 14(4): 734739.
[12]HALL J C, WEBB S R, DESHPANDE S. An overview of auxinic herbicide resistance: wild mustard (Sinapis arvensis L.) as a case study [J]. ACS Symposium Series, 1996, 645: 2843.
[13]YAJIMA W, HALL J C, KAV N N V. Proteomelevel differences between auxinicherbicidesusceptible andresistant wild mustard (Sinapis arvensis L.) [J]. Journal of Agricultural & Food Chemistry, 2004, 52(16): 50635070.
[14]OWEN M J, MARTINEZ N J, POWLES S B. Multiple herbicideresistant wild radish (Raphanus raphanistrum) populations dominate Western Australian cropping fields [J]. Crop and Pasture Science, 2015, 66(10): 10791085.
[15]WALSH M J, POWLES S B, BEARD B R, et al. Multipleherbicide resistance across four modes of action in wild radish (Raphanus raphanistrum) [J]. Weed Science, 2004, 52(1): 813.
[16]WALSH M J, OWEN M J, POWLES S B. Frequency and distribution of herbicide resistance in Raphanus raphanistrum populations randomly collected across the Western Australian wheatbelt [J]. Weed Research, 2007, 47(6): 542550.
[17]PRESTON C, DOLMAN F C, BOUTSALIS P. Multiple resistance to acetohydroxyacid synthaseinhibiting and auxinic herbicides in a population of oriental mustard (Sisymbrium orientale) [J]. Weed Science, 2013, 61(2): 185192.
[18]DANG H T, MALONE J M, BOUTSALIS P, et al. Reduced translocation in 2,4Dresistant oriental mustard populations (Sisymbrium orientale L.) from Australia [J]. Pest Management Science, 2017, 74(6): 15241532.
[19]BERNARDS M L, CRESPO R J, KRUGER G R, et al. A waterhemp (Amaranthus tuberculatus) population resistant to 2, 4D [J]. Weed Science, 2012, 60(3): 379384.
[20]CRESPO R J, WINGEYER A B, KRUGER G R, et al. Multipleherbicide resistance in a 2,4Dresistant waterhemp population from Nebraska [J]. Weed Science, 2017, 65(6): 743754.
[21]SHERGILL L S, BARLOW B R, BISH M D, et al. Investigations of 2,4D and multiple herbicide resistance in a Missouri waterhemp (Amaranthus tuberculatus) population [J]. Weed Science, 2018, 66(3): 386389.
[22]DELLAFERRERA I, CORTS E, PANIGO E, et al. First report of Amaranthus hybridus with multiple resistance to 2, 4D, dicamba, and glyphosate [J/OL]. Agronomy, 2018, 8(8): 140.DOI:10.3390/agronomy8080140.
[23]REYCABALLERO J, MENNDEZ J, GINBORDONABA J, et al. Unravelling the resistance mechanisms to 2,4D (2,4dichlorophenoxyacetic acid) in corn poppy (Papaver rhoeas) [J]. Pesticide Biochemistry and Physiology, 2016, 133: 6772.
[24]JOEL T, ROJANODELGADO A M, JORDI R C, et al. Enhanced 2,4D metabolism in two resistant Papaver rhoeas populations from Spain [J/OL]. Frontiers in Plant Science, 2017, 8:1584.DOI:10.3389/fpls.2017.01584.
[25]KATI V, SCARABEL L, THIERYLANFRANCHI D, et al. Multiple resistance of Papaver rhoeas L. to 2,4D and acetolactate synthase inhibitors in four European countries [J]. Weed Research, 2019, 59(5): 367376.
[26]PRESTON C, BELLES D S, WESTRA P H, et al. Inheritance of resistance to the auxinic herbicide dicamba in kochia (Kochia scoparia) [J]. Weed Science, 2009, 57(1): 4347.
[27]LECLERE S, WU Chenxi, WESTRA P, et al. Crossresistance to dicamba, 2, 4D, and fluroxypyr in Kochia scoparia is endowed by a mutation in an AUX/IAA gene [J]. Proceedings of the National Academy of Sciences, 2018, 115(13): 29112920.
[28]NANDULA V K, MANTHEY F A. Response of kochia (Kochia scoparia) inbreds to 2,4D and dicamba [J]. Weed Technology, 2002, 16(1): 5054.
[29]WEINBERG T, STEPHENSON G R, MCLEAN M D, et al. MCPA(4chloro2ethylphenoxy acetate)resistance in hempnettle (Galeopsis terahit L.) [J]. Journal of Agricultural and Food Chemistry,2006, 54(24): 91269134.
[30]CRANSTON H J, KERN A J, HACKETT J L, et al. Dicamba resistance in kochia [J]. Weed Science, 2001, 49(2): 164170.
[31]CRESPO R J, BERNARDS M L, SBATELLA G M, et al. Response of Nebraska kochia (Kochia scoparia) accessions to dicamba [J]. Weed Technology, 2014, 28(1): 151162.
[32]GOSS G A, DYER W E. Physiological characterization of auxinic herbicideresistant biotypes of kochia (Kochia scoparia) [J]. Weed Science, 2003, 51(6): 839844.
[33]KERN A J, CHAVERRA M E, CRANSTON H J, et al. Dicambaresponsive genes in herbicideresistant and susceptible biotypes of kochia (Kochia scoparia) [J]. Weed Science, 2005, 53(2): 139145.
[34]HOWATT K A, PHILIP W, NISSEN S J. Ethylene effect on kochia (Kochia scoparia) and emission following dicamba application [J]. Weed Science, 2006, 54(1): 3137.
[35]VARANASI V K, GODAR A S, CURRIE R S, et al. Fieldevolved resistance to four modes of action of herbicides in a single kochia (Kochia scoparia L. Schrad.) population [J]. Pest Management Science, 2015, 71(9): 12071212.
[36]JHA P, KUMAR V, LIM C A. Variable response of kochia [Kochia scoparia (L.) Schrad.] to auxinic herbicides dicamba and fluroxypyr in Montana [J]. Canadian Journal of Plant Science, 2015, 95(5): 965972.
[37]KUMAR V, JHA P. Differences in germination, growth, and fecundity characteristics of dicambafluroxypyrresistant and susceptible Kochia scoparia [J/OL]. PLoS ONE, 2016, 11(8): e0161533.DOI:10.1371/journal.pone.016133.
[38]PETTINGA D J, OU J, PATTERSON E L, et al. Increased chalcone synthase (CHS) expression is associated with dicamba resistance in Kochia scoparia [J]. Pest Management Science, 2018, 74(10): 23062315.
[39]KUMAR V, CURRIE R S, JHA P, et al. First report of kochia (Bassia scoparia) with crossresistance to dicamba and furoxypyr in Western Kansas [J]. Weed Technology, 2019, 33(2): 335341.
[40]GHANIZADEH H, HARRINGTON K C, JAMES T K, et al. A quick test using seeds for detecting dicamba resistance in fathen (Chenopodium album) [J]. Australian Journal of Crop Science, 2015, 9(4): 337343.
[41]GHANIZADEH H, HARRINGTON K C. Crossresistance to auxinic herbicides in dicambaresistant Chenopodium album [J]. New Zealand Journal of Agricultural Research, 2017, 60(1): 4553.
[42]GHANIZADEH H, HARRINGTON K C, JAMES T K. A comparison of dicamba absorption, translocation and metabolism in Chenopodium album populations resistant and susceptible to dicamba [J]. Crop Protection, 2018, 110: 112116.
[43]MEIKLE A, FINCH R P, MCROBERTS N, et al. A molecular genetic assessment of herbicideresistant Sinapis arvensis [J]. Weed Research, 1999, 39(2): 149158.
[44]LOPEZMARTINEZ N, MARSHALL G, DEPRADO R. Resistance of barnyardgrass(Echinochloa crusgalli) to atrazine and quinclorac [J]. Pesticide Science, 1997, 51(2): 171175.
[45]李擁兵, 黃華枝, 黃炳球, 等. 我國中部和南方稻區(qū)稗草對二氯喹啉酸的抗藥性研究[J].華南農(nóng)業(yè)大學(xué)學(xué)報, 2002, 23(2): 3336.
[46]吳聲敢, 趙學(xué)平, 吳長興, 等. 我國長江中下游稻區(qū)稗草對二氯喹啉酸的抗藥性研究[J]. 雜草科學(xué), 2007, 27(3): 2526.
[47]MALIK M S, BURGOS N R, TALBERT R E. Confirmation and control of propanilresistant and quincloracresistant barnyardgrass (Echinochloa crusgalli) in rice [J]. Weed Technology, 2010, 24(3): 226233.
[48]RAHMAN M M, SAHID I B, JURAIMI A S. Study on resistant biotypes of Echinochloa crusgalli in Malaysia [J]. Australian Journal of Crop Science, 2010, 4(2): 106114.
[49]俞欣妍, 葛林利, 劉麗萍, 等. 直播稻田稗草對二氯喹啉酸, 氰氟草酯與雙草醚除草劑復(fù)合抗性的初步研究[J]. 江蘇農(nóng)業(yè)學(xué)報, 2010, 26(6): 14381440.
[50]楊彩,馮莉, 楊紅梅, 等. 稻田稗草對丁草胺和二氯喹啉酸抗藥性的測定[J]. 農(nóng)藥, 2011, 50(8): 606607.
[51]常向前, 張舒, 余柳青, 等. 湖北省稻田稗草對二氯喹啉酸的抗性及生物學(xué)特性觀察[J]. 湖北農(nóng)業(yè)科學(xué), 2011(24): 109111.
[52]馬國蘭, 余柳青, 劉都才, 等. 湖南稻區(qū)稗草對二氯喹啉酸的抗性研究[J]. 雜草科學(xué), 2012, 30(1): 2225.
[53]YANG Xia, YU Xinyan, LI Yongfeng, et al. De novo assembly and characterization of the barnyardgrass (Echinochloa crusgalli) transcriptome using nextgeneration pyrosequencing [J/OL]. PLoS ONE, 2013, 8(7): e69168.DOI:10.1371/journal.pone.0069168.
[54]LI Gang, WU Shenggan, CAI Leiming, et al. Identification and mRNA expression profile of glutamate receptorlike gene in quincloracresistant and susceptible Echinochloa crusgalli [J]. Gene, 2013, 531(2): 489495.
[55]馬國蘭, 柏連陽, 劉都才, 等. 我國長江中下游稻區(qū)稗草對二氯喹啉酸的抗藥性研究[J]. 中國水稻科學(xué), 2013, 27(2): 184190.
[56]MATZENBACHER F O, BORTOLY E D, KALSING A, et al. Distribution and analysis of the mechanisms of resistance of barnyardgrass (Echinochloa crusgalli) to imidazolinone and quinclorac herbicides [J]. Journal of Agricultural Science, 2015, 153(6): 115.
[57]張紀(jì)利, 吳尚, 李保同, 等. 江西省稻田稗草對丁草胺和二氯喹啉酸的抗藥性測定[J]. 雜草科學(xué), 2015(3): 2933.
[58]WU Lamei, FANG Yong, YANG Haona, et al. Effects of droughtstress on seed germination and growth physiology of quincloracresistant Echinochloa crusgalli [J/OL]. PLoS ONE, 2019, 14(4): e0214480.DOI:10.1371/journal.pone.0214480.
[59]MARCHESI C, SALDAIN N E. First report of herbicideresistant Echinochloa crusgalli in Uruguayan rice fields [J]. Agronomy, 2019, 9(12): 790.
[60]PENG Qiong, HAN Heping, YANG Xia. Quinclorac resistance in Echinochloa crusgallifrom China [J]. Rice Science, 2019, 26(5): 300308.
[61]XU Jiangyan, LYU Bo, WANG Qiong, et al. A resistance mechanism dependent upon the inhibition of ethylene biosynthesis [J]. Pest Management Science, 2013, 69(12): 14071414.
[62]GAO Yuan, PAN Lang, SUN Yu, et al. Resistance to quinclorac caused by the enhanced ability to detoxify cyanide and its molecular mechanism in Echinochloa crusgalli var. zelayensis [J]. Pesticide Biochemistry and Physiology, 2017, 143: 231238.
[63]GAO Yuan, LI Jun, PAN Xukun. Quinclorac resistance induced by the suppression of the expression of 1aminocyclopropane1carboxylic acid(ACC) synthase and ACC oxidase genes in Echinochloa crusgalli var. zelayensis [J]. Pesticide Biochemistry and Physiology, 2018, 146: 2532.
[78]MITHILA J, HALL J C. Production of an auxinic herbicideresistant microsporederived doubled haploid wild mustard (Sinapis arvensis L.) plant [J]. Crop Protection, 2007, 26(3): 357362.
[79]VALENZUELAVALENZUELA J M, LOWNDS N K, STERLING T M. Clopyralid uptake, translocation, metabolism, and ethylene induction in picloramresistant yellow starthistle (Centaurea solstitialis L.) [J]. Pesticide Biochemistry and Physiology, 2001, 71(1): 1119.
[80]LUSK C S, HURRELL G A, HARRINGTON K C, et al. Resistance of Ranunculus acris to flumetsulam, thifensulfuronmethyl and MCPA in New Zealand dairy pastures [J]. New Zealand Journal of Agricultural Research, 2015, 58(3): 271280.
[81]GROSSMANN K, SCHELTRUP F. Selective induction of 1aminocyclopropane1carboxylic acid (ACC) synthase activity is involved in the selectivity of the auxin herbicide quinclorac between barnyard grass and rice [J]. Pesticide Biochemistry and Physiology, 1997, 58(2):145153.
[82]GROSSMANN K, KWIATKOWSKI J. The mechanism of quinclorac selectivity in grasses [J]. Pesticide Biochemistry and Physiology, 2000, 66(2): 8391.
[83]GROSSMANN K. Mode of action of auxin herbicides: A new ending to a long, drawn out story [J]. Trends in Plant Science, 2001, 5(12): 506508.
[84]GROSSMANN K. Auxin herbicide action: lifting the veil step by step [J]. Plant Signaling & Behavior, 2007, 2(5): 421423.
[85]董明超, 楊霞, 張自常, 等. 抗性稗草1氨基環(huán)丙烷1羧酸氧化酶基因的克隆與表達分析[J]. 中國農(nóng)業(yè)科學(xué), 2015, 48(20): 40774085.
[86]JUGULAM M, MCLEAN M D, HALL J C. Inheritance of picloram and 2, 4D resistance in wild mustard (Brassica kaber) [J]. Weed Science, 2005, 53(4): 417423.
[87]MOCKAITIS K, ESTELLE M. Auxin receptors and plant development: a new signaling paradigm [J]. Annual Review of Cell and Developmental Biology, 2008, 24(1): 5580.
[88]DHARMASIRI N, DHARMASIRI S, ESTELLE M. The Fbox protein TIR1 is an auxin receptor [J]. Nature, 2005, 435(7041): 441445.
[89]KEPINSKI S, LEYSER O. The Arabidopsis Fbox protein TIR1 is an auxin receptor [J]. Nature, 2005, 435(7041): 446451.
[90]DHARMASIRI N, DHARMASIRI S, WEIJERS D, et al. Plant development is regulated by a family of auxin receptor F box proteins [J]. Developmental Cell, 2005, 9(1): 109119.
[91]XU Tan, CALDERONVILLALOBOS L I A, SHARON M, et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase [J]. Nature, 2007, 446(7136): 640645.
[92]RIAR D S, BURKE I C, YENISH J P, et al. Inheritance and physiological basis for 2,4D resistance in prickly lettuce (Lactuca serriola L.) [J]. Journal of Agricultural and food Chemistry, 2011, 59(17): 94179423.
[93]GOGGIN D E, CAWTHRAY G R, POWLES S B. 2,4D resistance in wild radish: reduced herbicide translocation via inhibition of cellular transport [J]. Journal of Experimental Botany, 2016, 67(11): 32233235.
[94]LOVELACE M L, TALBERT R E, HOAGLAND R E, et al. Quinclorac absorption and translocation characteristics in quincloracand propanilresistant and susceptible barnyardgrass (Echinochloa crusgalli) biotypes [J]. Weed Technology, 2007, 21(3): 683687.
[95]CHAYAPAKDEE P, SUNOHARA Y, ENDO M, et al. Quinclorac resistance in Echinochloa phyllopogon is associated with reduced ethylene synthesis rather than enhanced cyanide detoxification by βcyanoalanine synthase [J]. Pest Management Science, 2020, 76(4): 11951204.
[96]LI Gang, XU Mingfeng, CHEN Liping, et al. A novel EcGH3 gene with a different expression pattern in quincloracresistant and susceptible barnyardgrass (Echinochloa crusgalli) [J]. Plant Gene, 2016, 5: 6570.
[97]WALSH M J, MAGUIRE N, POWLES S B. Combined effects of wheat competition and 2,4D amine on phenoxy herbicide resistant Raphanus raphanistrum populations [J]. Weed Research, 2009, 49(3): 316325.
[98]WALSH T A, NEAL R, MERLO A O, et al. Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2, 4dichlorophenoxyacetic acid or indole3acetic acid in Arabidopsis [J]. Plant Physiology, 2006, 142(2): 542552.
(責(zé)任編輯:田 喆)