• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-layer structures including zigzag sculptured thin films for corrosion protection of AISI 304 stainless steel?

    2021-03-19 03:21:58FatemeAbdi
    Chinese Physics B 2021年3期

    Fateme Abdi

    Department of Engineering Sciences,Faculty of Advanced Technologies,University of Mohaghegh Ardabili,Namin,Iran

    Keywords: corrosion protection,multilayer,zigzag thin film,EIS,equivalent circuit

    1. Introduction

    AISI 304 stain less steel has many applications in industry and technology due to its good mechanical properties and good corrosion resistance. However, this substance does not have high resistance to corrosion in the environments containing aggressive ions, such as Cl?and S?2, especially at high temperatures, and environments with very high or very low pHs.[1-3]Therefore,improving the corrosion resistance of this widely used substance is a fundamental requirement. So far,many methods have been employed to increase the corrosion resistance of the AISI 304 stainless steel. The previous older methods such as painting have been extensively used due to the good adhesion of paints to steel.[4]Paint is a thick coating, and the use of thin coatings to protect steel from corrosion is very essential. To do so, ion implantation,[5]arc ion plating,[6]sol-gel coating,[7,8]chemical deposition,[9]and physical depositions[5,10,11]have been used. The advantage of using physical depositions is that the layers are more controllable. In the previous study, the researchers used a physical coating to form multilayer structures on steel and revealed that the application of manganese nitride multilayer structure instead of the monolayer structure significantly increased the corrosion resistance.[12]The very purpose of the present study is to improve multilayer structures,for which the zigzag structure is used in the multilayer thin films.

    2. Experiment

    Sheets of AISI 304 stainless steel with dimensions of 20 mm×20 mm×1 mm and the compounds listed in Table 1 were considered as substrates. To begin with, all substrates were first cleaned in acetone, in alcohol, in in ultrasonic bath in sequence. Then, the substrates were glued to the substrate holder with a special vacuum adhesive. Manganese was considered as the protecting material,and the deposition was performed by using An Edwards(Edwards E19 A3)machine and electron beam at room temperature with a base pressure of 2×10?7Torr (1 Torr=1.33322×102Pa) over four steps.At each step of the deposition, thin films of manganese with 55-nm thickness were formed, so that the total thickness of the manganese thin films on the substrate was 220 nm. In the four-step deposition process,there is a 15-min interval between two depositions. The purpose of this interruption was to cool the previous layer and stabilize the grains. Figure 1(a)demonstrates the mentioned four-layer structure(conventional multilayer thin film).

    Table 1. Chemical compositions of AISI 304-type stainless steel used in this work.

    The next task was to deform the middle layers (layers 2 and 3). To do so, first a 55-nm-thin film of manganese was formed on a substrate. Then, a 110-nm zigzag structure was formed on the previous thin film,and finally a 55-nm-thin film of manganese was formed on this zigzag structure by returning the substrate to its original state. To form the zigzag structure,after forming the conventional 55-nm-thin film, the substrate was placed at an angle of 20?relative to the line perpendicular to the substrate,and this structure is called zigzag 1 structure for short. Figure 1(b)shows this structure.

    Fig.1. Schematic diagram of(a)conventional multilayer thin film,(b)multilayer thin film with zigzag 1 structure, and (c) multilayer thin film with zigzag 2 structure.

    To better investigate the effect of the geometry on the protection against corrosion,the other task was to convert each of zigzag arms into a zigzag structure. That is, after depositing a 55-nm-thin film, the zigzag structure was formed twice so that the thickness of each zigzag arm was 27.5 nm, and the total thickness of the middle layer(two zigzag structures containing 4 arms) was 110 nm. Finally, a 55-nm-thin film was deposited on them. Figure 1(c)shows a schematic representation of this design. This structure is called zigzag 2 structure for short.

    After forming the conventional multilayer thin films,zigzag 1 and zigzag 2 structures, their nitriding process was performed by using a furnace (Exciton, 1200-30/6, T.H, Iran equipped with Shinko temperature programmable controller- PCD33A). To do so, the samples were annealed with a 400-sccm nitrogen flux at 623 K.The annealing processes consisted of the following three stages:

    Stage AIt took an hour for the temperature to reach 623 K(in steps of 6?C per min).

    Stage BThe samples were kept at this temperature for 4 h.

    Stage CThe device was turned off to cool down to temperature slowly from 623 K to room temperature.

    In all the above-mentioned stages, the nitrogen flux passed through the samples.

    Fig.2. The FESEM image of(a)conventional multilayer thin film,(b)multilayer thin film with zigzag 1 structure, and (c) multilayer thin film with zigzag 2 structure.

    The film thickness and cross sections of structures were observed by field emission scanning electron microscope(FESEM)(Hitachi S-4100 SEM,Japan). Figures 2(a)-2(c)show the FESEM images of the conventional multilayer thin film,zigzag 1 structure,and zigzag 2 structure respectively. To ensure the formation of manganese nitride phase and to investigate the crystallinity degree of the samples, x-ray diffraction(XRD) analysis was performed (model STADI MP Diffractometer, Germany (Cu-Kαradiation) in steps of 0.01?and count time of 1.0 s per step),In addition,the surface morphology of samples was examined by using an atomic force microscope(AFM)(Nt-mdt scanning probe microscope,BL022,Russia; with low stress silicon nitride tip of less than 200 ?A in radius and tip opening of 18?). Polarization test was performed to determine the corrosion rate and tendency. Furthermore, the electrochemical impedance spectroscopy(EIS)test was performed to investigate the corrosion resistances of different structures by using a three-electrode cell and the Ivum state model of Potentiostat device made by Ivum Company.The 3.5%NaCl solution was considered as the corrosive solution. Furthermore,the AgCl solution,reference electrode,and platinum electrode were used as auxiliary electrodes.

    The samples were placed in the fixture as a working electrode in such a way that only a circle with a diameter of 1 cm of the samples was exposed to the corrosive environment. Polarization measurements were performed at potentials ranging from ?1 V to 2 V at a rate of 50 mV/s. Moreover,the EIS test was performed in a frequency range from 1 kHz to 0.01 kHz with a voltage range of 0.01 V.Prior to the measurement,the samples were placed in the solution for 0.5 h to stabilize the open circuit potential (OCP). After performing the corrosion test,the SEM images were taken from the samples to observe the surface.

    3. Results

    3.1. XRD results

    Figures 3(a) and 3(b) indicate the XRD results of the 304 stainless steel as compared with the XRD of multilayer structures (conventional multilayer thin film, zigzag 1 structure, and zigzag 2 structure) before and after annealing at nitrogen flux, respectively. As the figures reveal that the XRD spectra of the 304 stainless steel have four peaks,which are located at 2θ =43.7?,2θ =50.7?,2θ =74.8?,and 2θ =90.8?which represent the γ-Fe (111), γ-Fe (200), γ-Fe (220), and γ-Fe(311)phases,respectively.

    Figure 3(a) demonstrates that in the XRD spectrum of the multilayer structures (conventional multilayer thin film,zigzag 1 structure and zigzag 2 structure), in addition to the peaks related to the substrate,namely the phases γ -Fe(200),γ -Fe (220), and γ -Fe (311), other peak is located at 2θ =43.03?, which represents the crystallographic orientation of Mn(330)(according to the standard card 00-020-0180).

    Figure 3(b)indicates that the XRD spectrum of the conventional manganese multilayer thin film does not change much in the nitrogen flux. Only the Mn (330) peak intensity increases slightly due to the grain growth as a result of annealing,and no phase of manganese nitride is observed. However,unlike this structure,the zigzag multilayer structure(zigzag 1 structure and zigzag 2 structure) has a peak at 2θ =40.44?,which indicates the formation of manganese nitride phase and represents the Mn4N (111) crystallographic orientation (according to the standard card 00-001-1202). The formation of the nitride phase in this structure can be attributed to the porosity nature of the sculptured thin film and the better possibility of reaction and nitride formation. Figure 3(b) shows that the magnesium nitride phase intensity,for the zigzag 2 structure is less than the zigzag 1 structure. The reason is due to the small zigzag arms of this structure.

    Fig.3. XRD patterns of AISI 304 stainless steel, conventional multilayer thin film, multilayer thin film with zigzag 1 structure, and multilayer thin film with zigzag 2 structure,before(a)and after(b)annealing.

    3.2. AFM results

    The surface morphology of the conventional multilayer thin film and zigzag multilayer structures (zigzag 1 structure and zigzag 2 structure)is investigated after annealing in nitrogen flux,by using the atomic force microscopy(AFM).

    Fig.4.The 2D and 3D AFM images of(a)conventional multilayer thin film,(b)multilayer thin film with zigzag 1 structure,and(c)multilayer thin film with zigzag 2 structure.

    Figure 4 demonstrates the two-dimensional (2D) and three-dimensional(3D)images of these samples.As the figure evidently indicates,the sample with the zigzag 1 structure has a smaller grain size than that of the conventional multilayer sample.

    In addition,the sample with zigzag 2 structure has smaller grains than the sample with zigzag 1 structure, which can be attributed to the shadowing effect in the glancing angle deposition.

    The reason why the smaller grain sizes can change the geometry of thin film from the conventional multilayer thin film into zigzag 1 and zigzag 2 structures can be explained as follows:

    (i) The conventional multilayer thin film consists of four 55-nm-thick layers with the least porosity, so the possibility with which the diffusion process takes place in this structure during the annealing is high and large columns might be formed in this process.

    (ii) Compared with the conventional multilayer thin film,zigzag 1 structure has high porosity, which reduces its grain size. Thus the diffusion process will be less effective.

    (iii) Zigzag 2 structure has higher porosity and smaller grains than the previous two structures due to the shortness of the columns, with the thickness of the middle layer being smaller.

    In fact, the grain size increases with thickness increasing. So, conventional multilayer structures and zigzag structure 1 have larger grains than zigzag 2 structure due to their longer arm length in each step of deposition. Average grain size(DAFM), average surface roughness(Rave), and deviation from the mean(Rms)obtained by using Nova software are presented in Table 2.

    Table 2. Details of experimental results for AISI 304 stainless steel.

    As figure 3 indicates, the reason for the reduction in nitride phase intensity by converting zigzag 1 structure into zigzag 2 structure is due to the shrinkage of the grains in this process.

    3.3. Corrosion results

    3.3.1. Polarization test results

    Figure 5 shows the polarization curves of conventional multilayer thin film and zigzag structures (zigzag 1 structure and zigzag 2 structure)in a 3.5%salt solution. The corrosion current and corrosion potential obtained from these curves(using the Tafel slope) are given in columns 5 and 6 of Table 2, respectively. The results reveal that the zigzag multilayer structures(zigzag 1 and zigzag 2 structures)have higher corrosion potential and lower corrosion current than the conventional multilayer thin film.Given that the current corrosion and the potential corrosion control the corrosion rate and corrosion tendency,respectively,the zigzag multilayer structures have a lower corrosion tendency and corrosion rate than that of the conventional multilayer thin film due to the formation of the nitride phase.

    As figure 5 indicates,the zigzag 2 structure has the lowest corrosion current,the highest corrosion potential,and thereby resulting in the highest corrosion resistance. Considering the fact that this structure has a lower nitride phase intensity than that of the zigzag 1 structure,the reason for the higher corrosion resistance,in addition to the nitride phase formation,can be attributed to the geometry of the zigzag 2 structure and the greater number of interfaces, which will be further explained in the subsection of the EIS results.

    Fig.5. Potentiodynamic polarization curve of conventional multilayer thin film, multilayer thin film with zigzag 1 structure, and multilayer thin film with zigzag 2 structure.

    3.3.2. EIS test results

    The Nyquist curves of the conventional multilayer thin film structure and the zigzag multilayer structures (zigzag1 and zigzag 2 structures)are presented in Fig.6.

    Fig.6. Experimental Nyquist diagram of conventional multilayer thin film,multilayer thin film with zigzag 1 structure, and multilayer thin film with zigzag 2 structure.

    This figure demonstrates that the Nyquist curve of the conventional multilayer thin film has an inductive loop that occurs at low frequencies. The above-mentioned inductive behavior indicates the production of corrosion products and the formation of salt on the sample surface through the pitting of Chlorine ions on the sample surface.[13-17]The mentioned behavior is not observed in the Nyquist curves of zigzag structures. The comparison between Nyquist curves reveals that zigzag 1 structure has a better corrosion resistance than the conventional multilayer thin film due to the presence of nitride phase in this structure. Moreover, the results show that zigzag 2 structure has a much higher corrosion resistance than zigzag 1 structure. The mentioned finding can be attributed to the zigzag geometry of this structure.The equivalent circuit of these structures is provided to better evaluate the EIS results of different multilayer structures.

    Figure 7 shows the equivalent circuits for the conventional and zigzag multilayer structures(zigzag 1 and zigzag 2 structures). In these circuits, Rsis the resistance of the solution,L is the coefficient related to the inductive behavior,and CC1,2is the capacitance related to the coating and is observed in incomplete coatings where the solution penetrates the coating. Subscripts 1 and 2 indicate the existence of two coatings with different substances. Due to the fact that the formation of oxides and nitrides on the surface does not change r thickness much,two types of capacitors are considered in the equivalent circuit.

    Fig.7. Equivalent circuit of the experimental EIS data of (a) conventional multilayer thin film and(b)multilayer thin film with zigzag 1 structure and multilayer thin film with zigzag 2 structure.

    Cdlis the double-layer capacitance formed at the metalcoating interface and is obtained from the following equation

    where d is the thickness of the coating,A is the area exposed to the solution,and ε is the dielectric constant of the coating.Rdlis the resistance related to the double layer capacitance,and R1,2is the resistance related to the coating. Due to the heterogeneity and roughness of the surfaces of the electrodes,capacitors are not considered to be ideal, and the parameters α1,α2,α3respectively express how far they are from the ideal capacitor. Corrosion resistances for different circuits are obtained from the difference between the impedance at infinite frequency and impedance at zero frequency,respectively.

    Fig.8. Bode (column I) and phase (column II) diagrams of all samples for experimental results (solid line) and simulation results (dashed line of(a)conventional multilayer thin film,(b)multilayer thin film with zigzag 1 structure,and(c)multilayer thin film with zigzag 2 structure.

    Bode and phase plots obtained from experiments and simulations performed by equivalent circuits of different multilayer structures (conventional multilayer thin film, zigzag 1 structure,and zigzag 2 structure)are presented in Fig.8.These figures indicate the best fit between the experimental and simulation results.

    Table 3 presents the equivalent circuit quantities obtained by using the simulations with ZView software. The data indicate that the zigzag structures(zigzag 1structure,and zigzag 2 structure)have smaller coating capacitance(Ccor)than the conventional multilayer thin film. The mentioned finding can be attributed to the smaller grains of zigzag structures than that of the multilayer structure due to the shadowing effect. Because the coating capacitance is a set of parallel capacitors,the total capacitance decreases as the number of parallel capacitors increases(decrease of the grain size and increase of the number of grain boundaries).

    This table shows that the zigzag structures have high electrical resistances as compared with the conventional multilayer thin film due to the better nitride phase formation in these structures. The better formation of the nitride phase in the zigzag structures also eliminates the inductive behavior. The findings reveal that zigzag 2 structure has a smaller double layer capacitance (Cd) than zigzag 1 structure due to the geometry of the zigzag structure,since the capacitance decreases as the dielectric is tilted. The loss of induction behavior and the increase of electrical resistance with the decrease of the double layer and coatings capacitances in zigzag 2 structures increase the electrical impedance,and thus increasing the corrosion resistance of this structure.

    Table 3. Electrochemical parameters of AISI 304 stainless steel obtained from fitting of EIS spectra by equivalent circuit.

    3.4. SEM results

    To examine the surfaces of the samples after corrosion, SEM images of the conventional multilayer thin film and zigzag multilayer structures (zigzag 1 and zigzag 2 structures) are studied after corrosion test. These images are shown in Fig.8.Comparison of Fig.9(a) with Figs. 9(b) and 9(c), which show the SEM images of the conventional multilayer thin film and zigzag multilayer structures,respectively,reveal that the surface of the conventional multilayer thin film has a higher degradation than zigzag structures. Zigzag 1 structures have less degradation than the conventional multilayer structure. Moreover,zigzag 2 structure has a more suitable structure for protecting steel from corrosion.

    Fig.9. SEM micrograph of (a) conventional multilayer thin film, (b) multilayer thin film with zigzag 1 structure, and (c) multilayer thin film with zigzag 2 structure.

    4. Conclusions

    In the present study,conventional multilayer thin film and multilayer thin films including zigzag structures(zigzag 1 and zigzag 2 structures)are considered for the corrosion protection of AISI 304 stainless steel. Surface and crystalline studies of structures by using AFM and XRD reveal that although the zigzag structures have smaller grains than conventional multilayer structure due to the shadowing effect, nitride phase formation is better due to the porosity of these structures. The investigation of corrosion tests and SEM images indicate that multilayer thin films including zigzag structures have a lower corrosion rate,lower corrosion tendency,and higher corrosion resistance,and zigzag 2 structure has the best coating for corrosion protection in the samples. The equivalent circuit simulation by ZView software shows that the high corrosion resistance of zigzag 2 is attributed to the loss of inductance,the decrease of double layer capacitance, the decrease of coating capacitance,and the increase of the electrical resistance.

    亚洲av.av天堂| 亚洲精品亚洲一区二区| 热99在线观看视频| 狠狠狠狠99中文字幕| 成人性生交大片免费视频hd| 国产在视频线在精品| 国产伦理片在线播放av一区| 麻豆久久精品国产亚洲av| 亚洲伊人久久精品综合 | 久久精品国产鲁丝片午夜精品| 欧美激情国产日韩精品一区| 少妇人妻一区二区三区视频| 免费大片18禁| 国产中年淑女户外野战色| 日本一本二区三区精品| 成人毛片60女人毛片免费| 国产私拍福利视频在线观看| 男插女下体视频免费在线播放| 精品久久久久久成人av| 少妇高潮的动态图| 亚洲欧美成人综合另类久久久 | 欧美日韩综合久久久久久| 亚洲精品成人久久久久久| 激情 狠狠 欧美| 亚洲欧美中文字幕日韩二区| 国产精品电影一区二区三区| 久久久亚洲精品成人影院| 国产一区亚洲一区在线观看| 男人和女人高潮做爰伦理| 级片在线观看| 18+在线观看网站| 成人欧美大片| 亚洲天堂国产精品一区在线| 亚洲欧美成人精品一区二区| 老司机影院毛片| 亚洲激情五月婷婷啪啪| 国产精品一及| 国产成人精品婷婷| 亚洲最大成人av| 亚洲av熟女| 免费观看的影片在线观看| 欧美3d第一页| 国产色婷婷99| 小说图片视频综合网站| 亚洲真实伦在线观看| 丰满人妻一区二区三区视频av| 国产精品女同一区二区软件| 99久久精品国产国产毛片| 国产老妇伦熟女老妇高清| 男人的好看免费观看在线视频| 大香蕉97超碰在线| 婷婷色av中文字幕| 中文字幕久久专区| 色5月婷婷丁香| www.av在线官网国产| 成年女人看的毛片在线观看| 国语自产精品视频在线第100页| 三级国产精品欧美在线观看| 亚洲精品成人久久久久久| 国产精品人妻久久久影院| 亚洲美女视频黄频| 久久国产乱子免费精品| 亚洲综合色惰| 色综合亚洲欧美另类图片| 高清av免费在线| 欧美性猛交黑人性爽| 乱人视频在线观看| 一级二级三级毛片免费看| 一夜夜www| 午夜老司机福利剧场| 天天躁日日操中文字幕| 国产老妇伦熟女老妇高清| 午夜激情福利司机影院| 欧美高清成人免费视频www| 亚洲成人av在线免费| 日韩制服骚丝袜av| 亚洲综合精品二区| 成人欧美大片| 亚洲欧美日韩无卡精品| 美女内射精品一级片tv| 天堂网av新在线| 我的老师免费观看完整版| 欧美精品国产亚洲| 精品欧美国产一区二区三| 亚洲图色成人| 日韩成人伦理影院| 国产色婷婷99| 精品一区二区三区视频在线| 国产视频内射| 久久久久久久久久久丰满| 国产精品野战在线观看| 搞女人的毛片| 岛国毛片在线播放| 国产白丝娇喘喷水9色精品| 天天一区二区日本电影三级| 国产老妇女一区| 日产精品乱码卡一卡2卡三| 最新中文字幕久久久久| АⅤ资源中文在线天堂| 视频中文字幕在线观看| 在现免费观看毛片| 韩国av在线不卡| 国产精品久久电影中文字幕| 日韩视频在线欧美| 国产伦理片在线播放av一区| 亚洲中文字幕一区二区三区有码在线看| 2021天堂中文幕一二区在线观| 99在线人妻在线中文字幕| 麻豆成人午夜福利视频| 日韩一区二区视频免费看| 午夜福利在线在线| 亚洲精品影视一区二区三区av| 国产在线一区二区三区精 | 国产成人免费观看mmmm| 三级毛片av免费| 尾随美女入室| 在线观看一区二区三区| 国内精品宾馆在线| 中文资源天堂在线| 热99在线观看视频| 亚洲最大成人手机在线| 亚洲国产日韩欧美精品在线观看| 精品国产三级普通话版| 国产亚洲av嫩草精品影院| 黄色欧美视频在线观看| 亚洲自拍偷在线| 国产精品久久久久久av不卡| 欧美潮喷喷水| 国产三级在线视频| 久久久久九九精品影院| 小蜜桃在线观看免费完整版高清| 欧美bdsm另类| 国产精华一区二区三区| 麻豆成人av视频| 少妇丰满av| 欧美成人一区二区免费高清观看| 美女被艹到高潮喷水动态| 午夜福利在线在线| 日日摸夜夜添夜夜爱| 中文在线观看免费www的网站| 寂寞人妻少妇视频99o| 精品久久久久久久久av| 免费看日本二区| 在线观看66精品国产| av又黄又爽大尺度在线免费看 | .国产精品久久| 最近最新中文字幕免费大全7| 一本一本综合久久| 两性午夜刺激爽爽歪歪视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 岛国在线免费视频观看| 国产乱人偷精品视频| 亚洲av日韩在线播放| 综合色av麻豆| 亚洲图色成人| 国产亚洲5aaaaa淫片| 日日干狠狠操夜夜爽| 久久精品国产亚洲av天美| 日本免费在线观看一区| 日本免费a在线| 国产在线一区二区三区精 | 欧美xxxx黑人xx丫x性爽| 一级爰片在线观看| 少妇被粗大猛烈的视频| 午夜福利视频1000在线观看| 亚洲精华国产精华液的使用体验| 日韩欧美三级三区| 青春草国产在线视频| 伦理电影大哥的女人| 亚洲av男天堂| 久久精品夜色国产| 一个人看的www免费观看视频| 国产成人免费观看mmmm| 国产单亲对白刺激| 人妻夜夜爽99麻豆av| 美女xxoo啪啪120秒动态图| 九九爱精品视频在线观看| 我的老师免费观看完整版| 国产精品精品国产色婷婷| 九九爱精品视频在线观看| 纵有疾风起免费观看全集完整版 | 色播亚洲综合网| av在线老鸭窝| 少妇被粗大猛烈的视频| 非洲黑人性xxxx精品又粗又长| 国内精品一区二区在线观看| 色哟哟·www| 18禁动态无遮挡网站| 日本-黄色视频高清免费观看| 久久久久久大精品| 国产成人精品一,二区| 日韩av在线免费看完整版不卡| 成人午夜高清在线视频| 欧美变态另类bdsm刘玥| 国产成人91sexporn| 国产淫片久久久久久久久| 国产探花极品一区二区| 免费不卡的大黄色大毛片视频在线观看 | 女人被狂操c到高潮| av天堂中文字幕网| 男女国产视频网站| 午夜久久久久精精品| 日韩av在线免费看完整版不卡| 卡戴珊不雅视频在线播放| 波野结衣二区三区在线| 国产高清视频在线观看网站| 午夜福利成人在线免费观看| 午夜福利在线在线| 国产精品嫩草影院av在线观看| 欧美日韩国产亚洲二区| 免费av毛片视频| 午夜激情福利司机影院| 精品一区二区三区人妻视频| 深爱激情五月婷婷| 啦啦啦观看免费观看视频高清| 美女大奶头视频| 久久国内精品自在自线图片| 亚洲国产精品合色在线| 欧美一区二区国产精品久久精品| 国产又黄又爽又无遮挡在线| 色噜噜av男人的天堂激情| 中文乱码字字幕精品一区二区三区 | 日韩成人伦理影院| 国产一区二区三区av在线| 美女xxoo啪啪120秒动态图| 99热这里只有是精品在线观看| 99久久精品一区二区三区| 亚洲精品亚洲一区二区| 一级毛片久久久久久久久女| 亚洲人成网站在线播| 欧美三级亚洲精品| 一边亲一边摸免费视频| 青春草国产在线视频| 九草在线视频观看| 草草在线视频免费看| 一边摸一边抽搐一进一小说| 啦啦啦观看免费观看视频高清| 日本黄色视频三级网站网址| 国产av不卡久久| 国产中年淑女户外野战色| 亚洲精华国产精华液的使用体验| 国产极品精品免费视频能看的| 亚州av有码| 国内精品宾馆在线| 真实男女啪啪啪动态图| 精品不卡国产一区二区三区| 精品久久久久久久久亚洲| 日韩制服骚丝袜av| 一区二区三区乱码不卡18| 高清毛片免费看| 久久久久久久久久久免费av| 日本午夜av视频| 搡老妇女老女人老熟妇| 非洲黑人性xxxx精品又粗又长| 日韩一区二区视频免费看| 日产精品乱码卡一卡2卡三| 99九九线精品视频在线观看视频| 桃色一区二区三区在线观看| 高清视频免费观看一区二区 | 国产一区二区三区av在线| av在线播放精品| 一级毛片aaaaaa免费看小| 色噜噜av男人的天堂激情| 国产麻豆成人av免费视频| .国产精品久久| 免费大片18禁| 波多野结衣巨乳人妻| 高清日韩中文字幕在线| av线在线观看网站| 日韩欧美精品v在线| 国产真实乱freesex| 成人亚洲欧美一区二区av| 99九九线精品视频在线观看视频| 亚洲人成网站在线观看播放| 亚洲欧洲日产国产| 中文在线观看免费www的网站| 欧美日韩在线观看h| 国产人妻一区二区三区在| 久久久久久久久久久免费av| 欧美性感艳星| kizo精华| 国产一区二区在线av高清观看| 尤物成人国产欧美一区二区三区| 亚洲欧美成人综合另类久久久 | 精品一区二区免费观看| 亚洲欧美精品综合久久99| 久久久久久九九精品二区国产| 亚洲高清免费不卡视频| 精品少妇黑人巨大在线播放 | 看免费成人av毛片| 日韩成人av中文字幕在线观看| 啦啦啦观看免费观看视频高清| 精品久久久久久电影网 | 色吧在线观看| 高清毛片免费看| 村上凉子中文字幕在线| 麻豆乱淫一区二区| 国产爱豆传媒在线观看| 成人av在线播放网站| 色网站视频免费| 搡老妇女老女人老熟妇| 两性午夜刺激爽爽歪歪视频在线观看| 美女xxoo啪啪120秒动态图| 国产激情偷乱视频一区二区| 中文精品一卡2卡3卡4更新| 亚洲精品一区蜜桃| 少妇丰满av| 麻豆av噜噜一区二区三区| 国产女主播在线喷水免费视频网站 | 一本一本综合久久| 日本-黄色视频高清免费观看| 99久久无色码亚洲精品果冻| 99久久九九国产精品国产免费| 成人漫画全彩无遮挡| 国产精品野战在线观看| 男女边吃奶边做爰视频| 青春草视频在线免费观看| 日韩大片免费观看网站 | 亚洲精品久久久久久婷婷小说 | 精品不卡国产一区二区三区| 亚洲婷婷狠狠爱综合网| 国产精品一区二区在线观看99 | 午夜免费激情av| 精品酒店卫生间| 一个人免费在线观看电影| 麻豆一二三区av精品| 精品午夜福利在线看| 乱码一卡2卡4卡精品| 午夜a级毛片| 亚洲一区高清亚洲精品| av在线观看视频网站免费| 热99re8久久精品国产| 国产女主播在线喷水免费视频网站 | 国产精品一区www在线观看| 九九在线视频观看精品| 免费观看的影片在线观看| av天堂中文字幕网| 一边摸一边抽搐一进一小说| 全区人妻精品视频| 最近手机中文字幕大全| 全区人妻精品视频| 2021少妇久久久久久久久久久| 人体艺术视频欧美日本| 春色校园在线视频观看| 免费观看在线日韩| 久久久久网色| 91久久精品电影网| 午夜激情欧美在线| 日韩精品青青久久久久久| 国产黄色视频一区二区在线观看 | 亚洲精品456在线播放app| 神马国产精品三级电影在线观看| 少妇人妻精品综合一区二区| 日韩精品青青久久久久久| 熟女人妻精品中文字幕| 久久热精品热| 中文字幕精品亚洲无线码一区| 天天躁夜夜躁狠狠久久av| www.色视频.com| 久久精品久久久久久久性| 亚洲av中文av极速乱| 51国产日韩欧美| 中文天堂在线官网| 欧美xxxx性猛交bbbb| 国产高潮美女av| 亚洲最大成人手机在线| 边亲边吃奶的免费视频| 简卡轻食公司| 国产免费一级a男人的天堂| 亚洲最大成人手机在线| 边亲边吃奶的免费视频| 狂野欧美白嫩少妇大欣赏| 久久精品人妻少妇| 99热全是精品| 91av网一区二区| 成人二区视频| 国内揄拍国产精品人妻在线| 亚洲国产精品久久男人天堂| 亚洲伊人久久精品综合 | 中文欧美无线码| 色视频www国产| 久久99蜜桃精品久久| 三级国产精品片| 蜜臀久久99精品久久宅男| 亚洲人与动物交配视频| 亚洲乱码一区二区免费版| 人妻系列 视频| 婷婷色麻豆天堂久久 | 成人国产麻豆网| 亚洲不卡免费看| 亚洲av成人精品一二三区| 国产久久久一区二区三区| 搡女人真爽免费视频火全软件| 国产久久久一区二区三区| 精品一区二区免费观看| 国产高清三级在线| 有码 亚洲区| 亚洲av中文字字幕乱码综合| 国产精品女同一区二区软件| 看免费成人av毛片| 亚洲国产最新在线播放| 精品不卡国产一区二区三区| 精品欧美国产一区二区三| 日韩欧美 国产精品| 国产淫片久久久久久久久| 在线观看av片永久免费下载| 久久人人爽人人片av| 国产三级在线视频| 成人亚洲精品av一区二区| 亚洲欧美成人综合另类久久久 | 国产精品日韩av在线免费观看| 赤兔流量卡办理| 中国国产av一级| 欧美日韩国产亚洲二区| 久久6这里有精品| .国产精品久久| 插阴视频在线观看视频| 寂寞人妻少妇视频99o| 能在线免费观看的黄片| 自拍偷自拍亚洲精品老妇| 亚洲一区高清亚洲精品| 在线观看一区二区三区| 国产大屁股一区二区在线视频| 在线免费观看的www视频| 国产免费又黄又爽又色| 国产国拍精品亚洲av在线观看| 一级毛片aaaaaa免费看小| 日韩强制内射视频| 麻豆成人av视频| 欧美zozozo另类| 黄色日韩在线| 免费观看性生交大片5| 久久这里有精品视频免费| 久久久久久国产a免费观看| 成人午夜精彩视频在线观看| 亚州av有码| 久久精品国产亚洲av天美| 99久久中文字幕三级久久日本| 久久久精品大字幕| a级毛片免费高清观看在线播放| 国产成人午夜福利电影在线观看| 91在线精品国自产拍蜜月| 女人久久www免费人成看片 | 国产极品天堂在线| 99热这里只有是精品在线观看| 欧美日韩精品成人综合77777| 亚洲人成网站在线播| 最近最新中文字幕免费大全7| 成人综合一区亚洲| 偷拍熟女少妇极品色| 岛国毛片在线播放| 亚洲最大成人手机在线| 久久久午夜欧美精品| 久久久国产成人精品二区| 男人舔女人下体高潮全视频| 最近最新中文字幕大全电影3| 一边亲一边摸免费视频| 特级一级黄色大片| 97热精品久久久久久| 两个人的视频大全免费| 久久精品国产亚洲网站| 精品国产三级普通话版| 黄色欧美视频在线观看| 深爱激情五月婷婷| 免费av不卡在线播放| 国内精品宾馆在线| 国产av在哪里看| 久久久久久久久久久免费av| 亚洲国产最新在线播放| 日韩av不卡免费在线播放| 超碰97精品在线观看| 精品久久久久久电影网 | 欧美一区二区亚洲| 国产免费男女视频| 久久午夜福利片| 亚洲精品aⅴ在线观看| 秋霞在线观看毛片| 久久精品夜夜夜夜夜久久蜜豆| 十八禁国产超污无遮挡网站| 久久精品综合一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 性色avwww在线观看| 成人毛片60女人毛片免费| 建设人人有责人人尽责人人享有的 | 青青草视频在线视频观看| 久久久久久久久久久免费av| 久久久国产成人免费| 中文欧美无线码| 久久久久久久久久久丰满| АⅤ资源中文在线天堂| 一个人看视频在线观看www免费| 欧美成人一区二区免费高清观看| 男女啪啪激烈高潮av片| 老司机福利观看| 99久久中文字幕三级久久日本| 麻豆一二三区av精品| 亚洲欧美日韩卡通动漫| 寂寞人妻少妇视频99o| 韩国高清视频一区二区三区| 国产精品久久久久久精品电影| 啦啦啦观看免费观看视频高清| 欧美一区二区亚洲| 美女脱内裤让男人舔精品视频| 国产麻豆成人av免费视频| 欧美日韩精品成人综合77777| 日本一本二区三区精品| 欧美性感艳星| 美女脱内裤让男人舔精品视频| 午夜激情欧美在线| 亚洲美女视频黄频| 成人午夜精彩视频在线观看| 一二三四中文在线观看免费高清| 亚洲av日韩在线播放| 久久精品久久久久久久性| 亚洲av.av天堂| 中文字幕av在线有码专区| 国产成人a∨麻豆精品| 1000部很黄的大片| 久久精品夜色国产| 国产亚洲5aaaaa淫片| 极品教师在线视频| 亚洲国产精品sss在线观看| 九九久久精品国产亚洲av麻豆| 精品人妻一区二区三区麻豆| 看非洲黑人一级黄片| 久久99热6这里只有精品| 欧美日本亚洲视频在线播放| 国产人妻一区二区三区在| 寂寞人妻少妇视频99o| 亚洲最大成人手机在线| 午夜福利在线观看免费完整高清在| 一区二区三区免费毛片| 欧美区成人在线视频| videossex国产| 国产精品久久久久久久电影| 国产精华一区二区三区| 午夜福利在线观看免费完整高清在| 国产精华一区二区三区| av在线蜜桃| 人妻少妇偷人精品九色| 国产精品综合久久久久久久免费| 亚洲成人久久爱视频| 久久久午夜欧美精品| 国产69精品久久久久777片| 久久精品国产鲁丝片午夜精品| 日韩人妻高清精品专区| 精品无人区乱码1区二区| 麻豆久久精品国产亚洲av| 日韩 亚洲 欧美在线| 汤姆久久久久久久影院中文字幕 | 两个人的视频大全免费| 午夜激情欧美在线| 欧美日本视频| 国产亚洲最大av| 免费看光身美女| 久久韩国三级中文字幕| 久久久久久久久久久免费av| 亚洲五月天丁香| 亚洲国产高清在线一区二区三| 老司机影院成人| 男的添女的下面高潮视频| 午夜激情福利司机影院| 国产一区二区三区av在线| 欧美另类亚洲清纯唯美| 久久久久久伊人网av| 国产免费又黄又爽又色| 麻豆国产97在线/欧美| 18+在线观看网站| 日本免费a在线| 一个人看的www免费观看视频| 18禁裸乳无遮挡免费网站照片| 成人毛片60女人毛片免费| 午夜激情福利司机影院| 亚洲国产精品sss在线观看| 亚洲国产精品久久男人天堂| 亚洲一级一片aⅴ在线观看| 天堂网av新在线| or卡值多少钱| 成人高潮视频无遮挡免费网站| 色播亚洲综合网| 亚洲中文字幕日韩| 51国产日韩欧美| 亚洲国产精品sss在线观看| 亚洲精品乱码久久久v下载方式| 久久久久久久久大av| 久久精品熟女亚洲av麻豆精品 | 五月伊人婷婷丁香| 欧美成人午夜免费资源| 黑人高潮一二区| 亚洲精华国产精华液的使用体验| 一夜夜www| 成人亚洲欧美一区二区av| 1024手机看黄色片| 国产av在哪里看| 欧美另类亚洲清纯唯美| 日韩大片免费观看网站 | 亚洲自拍偷在线| 嘟嘟电影网在线观看| 久久这里只有精品中国| av在线老鸭窝| 97在线视频观看| 中国美白少妇内射xxxbb| 日韩强制内射视频| 国产乱来视频区| 国产午夜精品久久久久久一区二区三区| 99热这里只有精品一区| 97超视频在线观看视频| 精品99又大又爽又粗少妇毛片| 成人国产麻豆网| 国产日韩欧美在线精品| 亚洲最大成人av| 久久鲁丝午夜福利片| 最近手机中文字幕大全| 国产爱豆传媒在线观看| 欧美成人精品欧美一级黄|