曹椏文 翟飛 翟成凱 李榮凱 趙樂
【摘要】 白介素-33(IL-33)作為IL-1家族中的一種細(xì)胞因子,它可以在組織受到損傷時(shí),與特異性受體腫瘤發(fā)生抑制蛋白2(ST2)相結(jié)合,進(jìn)而在免疫反應(yīng)中發(fā)揮促炎及抗炎作用。近年來,IL-33的免疫功能已成為許多疾病的研究焦點(diǎn),尤其在慢性阻塞性肺疾病、哮喘、特發(fā)性肺纖維化、阻塞性睡眠呼吸暫停綜合征、肺癌等疾病中,均可發(fā)現(xiàn)IL-33水平顯著升高,但其具體作用機(jī)制卻不完全一致。因此,本研究通過總結(jié)IL-33對常見非感染性肺部疾病的相關(guān)影響,為IL-33在肺部疾病中的靶向治療提供臨床依據(jù)。
【關(guān)鍵詞】 白介素-33 腫瘤發(fā)生抑制蛋白2 慢性阻塞性肺疾病 哮喘 特發(fā)性肺纖維化 阻塞性睡眠呼吸暫停綜合征 肺癌
Research Progress of IL-33 in Non-infectious Lung Diseases/CAO Yawen, ZHAI Fei, ZHAI Chengkai, LI Rongkai, ZHAO Le. //Medical Innovation of China, 2021, 18(35): -188
[Abstract] Interleukin-33 (IL-33) as a cytokine in the IL-1 family, can bind to the suppression of tumorigenicity 2 (ST2) when the tissue is damaged, and then play a pro-inflammatory and anti-inflammatory role in the immune response. In recent years, the immune function of IL-33 has become the research focus of many diseases, especially in chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, obstructive sleep apnea syndrome, lung cancer and other diseases, it can be found that the level of IL-33 is significantly increased, but its specific mechanism is not completely consistent. Therefore, this study summarizes the effects of IL-33 on common non-infectious lung diseases in order to provide clinical basis for the targeted treatment of IL-33 in lung diseases.
[Key words] Interleukin-33 Suppression of tumorigenicity 2 Chronic obstructive pulmonary disease Asthma Idiopathic pulmonary fibrosis Obstructive sleep apnea syndrome Lung cancer
First-author’s address: Xinxiang Medical University, Xinxiang 453003, China
doi:10.3969/j.issn.1674-4985.2021.35.045
白介素-33(IL-33)是IL-1家族中的一員,它作為一種警報(bào)素和細(xì)胞因子定位于細(xì)胞核中。在肺部,IL-33主要由上皮細(xì)胞、肺泡Ⅱ型上皮細(xì)胞、內(nèi)皮細(xì)胞、肥大細(xì)胞和成纖維細(xì)胞分泌表達(dá)[1]。在過敏原、污染及香煙煙霧的刺激下,它與其受體腫瘤發(fā)生抑制蛋白2(ST2)結(jié)合,導(dǎo)致天然和適應(yīng)性免疫細(xì)胞(包括嗜酸性粒細(xì)胞、ILC2s、肥大細(xì)胞、T細(xì)胞、自然殺傷T細(xì)胞、巨噬細(xì)胞、樹突狀細(xì)胞和造血祖細(xì)胞)的活化、遷移和聚集,進(jìn)而主要以激活I(lǐng)L-4、IL-5和IL-13等2型輔助性T細(xì)胞(Th2)發(fā)生2型免疫反應(yīng)[2]。但近年來,已有研究證明IL-33在肺部疾病中還驅(qū)動(dòng)Th1細(xì)胞發(fā)生1型免疫反應(yīng),進(jìn)而發(fā)揮炎癥、組織動(dòng)態(tài)平衡和修復(fù)的作用[3-5]。本文就IL-33/ST2在慢性阻塞性肺疾病、哮喘、特發(fā)性肺纖維化、阻塞性睡眠呼吸暫停綜合征、肺癌等非感染性肺部疾病發(fā)病機(jī)制中的作用進(jìn)行綜述。
1 IL-33概述
1.1 IL-33的分子結(jié)構(gòu)及功能 IL-33于2003年首次被Baekkevold等[6]在人體組織中發(fā)現(xiàn),因其在高內(nèi)皮微靜脈中高度表達(dá),所以被命名為高內(nèi)皮微靜脈細(xì)胞核因子(nuclear factor from high endothelial venules,NF-HEV)。2005年Schmitz等[7]發(fā)現(xiàn)NF-HEV蛋白的羧基末端(112~270位氨基酸)與IL-1家族細(xì)胞因子具有同源性而被重新命名為IL-33并歸入IL-1家族。在人體中,IL-33的基因編碼含有8個(gè)外顯子,位于9號(hào)染色體(9p24)上,由干擾素刺激反應(yīng)元件(ISRE)和啟動(dòng)子區(qū)域的幾個(gè)γ干擾素激活位點(diǎn)(GAS)組成,通過轉(zhuǎn)錄翻譯形成相關(guān)蛋白[8]。IL-33蛋白含有270個(gè)氨基酸,它包含N端核結(jié)構(gòu)域、中央結(jié)構(gòu)域和C端IL-1樣細(xì)胞因子結(jié)構(gòu)域[9]。其中N端結(jié)構(gòu)域是一個(gè)高度保守的核定位序列(NLS),它包含染色質(zhì)結(jié)合區(qū)(CBM、AA40-56)和NLS的核心(AA61-78)。IL-33的NLS在維持免疫穩(wěn)態(tài)中起重要作用。IL-33的CBM與組蛋白H2A和H2B結(jié)合,進(jìn)而在細(xì)胞核內(nèi)聚集。當(dāng)細(xì)胞壞死時(shí),IL-33與組蛋白形成的復(fù)合體將被釋放并與細(xì)胞外ST2受體一起被激活。在沒有CBM的情況下,IL-33會(huì)迅速釋放到細(xì)胞外環(huán)境中,并導(dǎo)致機(jī)體內(nèi)環(huán)境的平衡紊亂[10]。IL-33的中央結(jié)構(gòu)域可以被肥大細(xì)胞及中性粒細(xì)胞所產(chǎn)生的酶直接加工為成熟的IL-33。IL-33的IL-1樣細(xì)胞因子結(jié)構(gòu)域?yàn)榈湫偷摩?三葉草折疊,與IL-18高度相似,它含有一個(gè)與ST2結(jié)合的重要位點(diǎn),可與靶細(xì)胞中ST2受體結(jié)合形成IL-33/ST2復(fù)合體,進(jìn)而激活其下游細(xì)胞因子[11]。
1.2 IL-33受體的結(jié)構(gòu)及信號(hào)傳導(dǎo) IL-33通過異源二聚體IL-33受體發(fā)揮作用,該受體由一個(gè)ST2和一個(gè)IL-1R輔助蛋白(IL-1RAcP)分子組成。其中ST2經(jīng)過選擇性啟動(dòng)子剪接和ST2 mRNA的轉(zhuǎn)錄,產(chǎn)生了四種ST2蛋白亞型,分別為:跨膜長型ST2(ST2L)、分泌型ST2(sST2)、ST2變異體(ST2V)和ST2配體變異體(ST2LV),而人體中主要包含前三種,且以ST2L和sST2為主[12-13]。其中ST2L分子量為67 kDa,由三個(gè)連接的免疫球蛋白樣基序組成的胞外IgG樣結(jié)構(gòu)域、跨膜結(jié)構(gòu)域和細(xì)胞質(zhì)Toll/IL-1受體結(jié)構(gòu)域組成。它是一種典型Ⅰ型膜結(jié)合型受體,與靶細(xì)胞結(jié)合并在靶細(xì)胞內(nèi)傳遞IL-33信號(hào)。當(dāng)IL-33與ST2L結(jié)合,隨后與IL-1RAcP結(jié)合形成復(fù)合體。該復(fù)合體促進(jìn)相關(guān)下游通路,特別是核因子κB(NF-κB)的轉(zhuǎn)錄和絲裂原活化蛋白激酶(MAPK)的磷酸化,進(jìn)而發(fā)揮促炎作用[12,14]。相比之下,sST2是通過mRNA選擇性剪接產(chǎn)生的糖基化蛋白,作為IL-33的誘餌受體被分泌到細(xì)胞外環(huán)境中,與IL-33競爭性結(jié)合來抑制IL-33誘導(dǎo)的免疫反應(yīng)[12]。
2 IL-33在非感染性肺部疾病中的作用
2.1 IL-33與慢性阻塞性肺疾病 慢性阻塞性肺疾?。╟hronic obstructive pulmonary disease,COPD)是一種常見的、可預(yù)防和可治療的疾病,其特征是持續(xù)的呼吸道癥狀和氣流受限,這是由于氣道和/或肺泡異常造成的,通常是由于接觸大量有害顆?;驘熿F所致。香煙煙霧目前被認(rèn)為是COPD的關(guān)鍵誘因[15],通過香煙煙霧誘導(dǎo)的小鼠模型中,肺組織中IL-33和ST2均發(fā)現(xiàn)了升高[16]。XIA等[17]對COPD患者血清中IL-33與ST2水平進(jìn)行檢測,發(fā)現(xiàn)其水平均高于健康對照組,這些均表明IL-33在COPD發(fā)病機(jī)制中起到一定的作用。既往認(rèn)為COPD是一種以Th1為主的炎癥,但目前也存在以Th2為主的嗜酸性細(xì)胞炎癥,所以不同的COPD患者發(fā)病機(jī)制并不一定完全相同。在COPD嗜中性粒細(xì)胞表型中,當(dāng)遇到香煙煙霧的刺激,IL-33可以激活p38MAPK通路增加肺上皮和內(nèi)皮細(xì)胞IL-6和IL-8的釋放,接著誘導(dǎo)細(xì)胞因子風(fēng)暴。使中性粒細(xì)胞涌入肺部導(dǎo)致組織損傷[18]。但Kim等[19]在COPD患者中發(fā)現(xiàn),IL-33與血漿中嗜酸性細(xì)胞計(jì)數(shù)呈正相關(guān)。Tworek等[20]也發(fā)現(xiàn)患有COPD嗜酸性粒細(xì)胞炎癥患者的痰及血清中的IL-33均高于沒有嗜酸性粒細(xì)胞增多癥的患者,且患有COPD嗜酸性粒細(xì)胞炎癥患者的痰細(xì)胞中ST2 mRNA呈過度表達(dá)狀態(tài)。以上均表明IL-33可能直接參與了COPD嗜酸性粒細(xì)胞炎癥,但具體機(jī)制尚未得到明確的描述。
2.2 IL-33與支氣管哮喘 支氣管哮喘(簡稱哮喘)是一種以慢性炎癥和氣道重塑所引起肺功能受損及氣道高反應(yīng)性為特征的異質(zhì)性疾病[21]。在大多數(shù)哮喘患者中表現(xiàn)出以氣道和血嗜酸性粒細(xì)胞增多、IgE水平升高的2型免疫性氣道炎癥。IL-33作為2型免疫誘導(dǎo)劑,它與哮喘之間存在相關(guān)性。在氣道炎癥方面,當(dāng)氣道變應(yīng)原刺激機(jī)體時(shí),IL-33會(huì)與ST2充分結(jié)合,接著激活NF-κB和絲裂原活化蛋白激酶,進(jìn)而誘導(dǎo)Th2相關(guān)細(xì)胞因子維持慢性炎癥[22-23]。在另一方面,IL-33在體內(nèi)的增加可以促進(jìn)2型先天淋巴樣細(xì)胞(ILC2s)祖細(xì)胞從骨髓中遷移到肺中,進(jìn)而擴(kuò)大ILC2s細(xì)胞在肺部的數(shù)量。ILC2s細(xì)胞在IL-33刺激后,可激活大量產(chǎn)生Th2細(xì)胞因子的IL-5和IL-13,進(jìn)而發(fā)揮2型炎癥作用[24]。此外有研究表明,IL-33誘導(dǎo)的ILC2s具有先天免疫記憶,與正常肺相比,長期暴露于過敏原的肺組織中ILC2s可獲得記憶T細(xì)胞的基因特征,并且在IL-33刺激下可產(chǎn)生更多的Th2細(xì)胞因子,可能這也是導(dǎo)致哮喘患者氣道高反應(yīng)性的機(jī)制之一[25]。
在氣道重塑方面,IL-33可以直接激活細(xì)胞產(chǎn)生促纖維化因子和誘導(dǎo)炎癥因子參與纖維化的進(jìn)程。在細(xì)胞損傷后可分泌出IL-33,激活Th2細(xì)胞產(chǎn)生促炎細(xì)胞因子(IL-4、IL-5、IL-13)和先天淋巴樣細(xì)胞(ILCs),其中Th2細(xì)胞產(chǎn)生促炎細(xì)胞因子負(fù)責(zé)聚集嗜堿性粒細(xì)胞和嗜酸性粒細(xì)胞,導(dǎo)致成纖維細(xì)胞分化為肌成纖維細(xì)胞和膠原沉積,進(jìn)而可進(jìn)一步促進(jìn)氣道重塑[26]。而Zaiss等[27]發(fā)現(xiàn)在哮喘患中ILCSs可以激活雙調(diào)節(jié)蛋白大量表達(dá),它不僅可以促進(jìn)成纖維細(xì)胞中膠原的產(chǎn)生,還可以誘導(dǎo)上皮細(xì)胞的增殖和分化。因此,雙調(diào)蛋白既能促進(jìn)感染或損傷后的組織修復(fù),又能增加組織重塑和纖維化。
IL-33在哮喘發(fā)病機(jī)制中扮演著不可或缺的角色。Hansbro等[21]發(fā)現(xiàn)活檢樣本中IL-33及其受體ST2的表達(dá)水平高于健康人,且與疾病嚴(yán)重程度呈正相關(guān)。Mitchell等[28]發(fā)現(xiàn)過敏性和嗜酸性哮喘表型患者的血清IL-33水平高于非過敏性和非嗜酸性哮喘表型患者,并且在過敏性哮喘患者吸入性過敏原激發(fā)后,血液和痰中嗜酸性粒細(xì)胞上ST2的表達(dá)顯著上調(diào)。這些臨床試驗(yàn)更加驗(yàn)證了IL-33在哮喘中的作用,且為今后生物制劑的精準(zhǔn)提供了相關(guān)理論支持。
2.3 IL-33與特發(fā)性肺纖維化 特發(fā)性肺纖維化(IPF)是一種病因不明、預(yù)后不佳的進(jìn)展性纖維性肺部疾病[29]。有研究表明,IL-33在特發(fā)性肺纖維化中起著重要的作用[30]。在IPF患者支氣管肺泡灌洗液(BAL)及呼出氣冷凝物中IL-33 mRNA和蛋白水平較正常人群顯著升高[31-32]。在IPF的發(fā)病機(jī)制中,IL-4、IL-5、IL-13等Th2型細(xì)胞扮演著一定的角色。其中,IL-13對IPF成纖維細(xì)胞存在高反應(yīng)性,它通過誘導(dǎo)肌成纖維細(xì)胞分化和刺激如膠原等細(xì)胞外基質(zhì)成分的產(chǎn)生[4]。而IL-33可通過ST2軸誘導(dǎo)IL-13在內(nèi)的Th2型細(xì)胞因子的激活。另一方面,在博萊霉素(BLM)誘導(dǎo)的小鼠肺損傷和纖維化模型中,可發(fā)現(xiàn)IL-33大量聚集,而減少ST2L或使用IL-33抗體可減緩肺纖維化進(jìn)展。并且進(jìn)一步的研究證明,BML可促進(jìn)巨噬細(xì)胞產(chǎn)生IL-33,進(jìn)而激活Th2細(xì)胞中IL-13的產(chǎn)生,間接誘導(dǎo)M2巨噬細(xì)胞的極化,加速肺纖維化的進(jìn)程[4,33-34]。
因此,IL-33被認(rèn)為是一種新的細(xì)胞因子,通過ST2和巨噬細(xì)胞依賴的方式招募和引導(dǎo)炎癥細(xì)胞功能,促進(jìn)促纖維化細(xì)胞因子的產(chǎn)生,從而在肺纖維化的發(fā)生和發(fā)展中起到一定作用。
2.4 IL-33與阻塞性睡眠呼吸暫停綜合征 阻塞性睡眠呼吸暫停綜合征(obstructive sleep apnea syndrome,OSAS)是一種以在睡眠期間出現(xiàn)周期性的上呼吸道完全阻塞(呼吸暫停)或部分阻塞(低通氣)超過10 s為特征的慢性肺部疾病[35]。最新的研究發(fā)現(xiàn),OSAS與機(jī)體炎癥狀態(tài)具有一定的相關(guān)性,其患者存在最突出的炎癥介質(zhì)包括IL-2、IL-4和IL-6[36]。而IL-33與ST2結(jié)合后可以促進(jìn)IL-4等2型輔助性T細(xì)胞的產(chǎn)生[2]。且Sozer等[37]發(fā)現(xiàn)在OSAS的患者中IL-33與sST2的含量均高于對照組。這證明了IL-33在炎癥機(jī)制方面對OSAS存在一定的促進(jìn)作用。在另一方面,OSAS患病率與肥胖程度具有一定相關(guān)性[38]。因?yàn)橹炯?xì)胞可以促進(jìn)IL-33的產(chǎn)生,并且IL-33也可以影響機(jī)體葡萄糖攝取、糖酵解和細(xì)胞胰島素敏感性的調(diào)節(jié)[39]。雖然當(dāng)前的研究已證實(shí)IL-33對OSAS具有一定的影響,但其具體信號(hào)通路尚不清楚。
2.5 IL-33與肺癌 肺癌是癌癥死亡的主要原因,它分為不同的組織學(xué)亞型,包括腺癌、鱗狀癌、大細(xì)胞癌(通常稱為非小細(xì)胞肺癌,NSCLC)和小細(xì)胞肺癌[40]。目前有研究表明,IL-33被認(rèn)為是一種致癌細(xì)胞因子,通過IL-33/ST2激活相關(guān)途徑促進(jìn)結(jié)直腸癌和卵巢癌等癌細(xì)胞的轉(zhuǎn)移[41-42]。也有研究發(fā)現(xiàn)IL-33在促進(jìn)Th2免疫的同時(shí),也可以促進(jìn)Th1/Th17及Treg細(xì)胞的生成[3-5]。而Th17和Treg細(xì)胞被認(rèn)為是肺癌的新型免疫調(diào)節(jié)劑,其中Th17細(xì)胞可通過直接或間接激活促炎細(xì)胞因子來調(diào)節(jié)抗腫瘤免疫反應(yīng),另一方面,Treg細(xì)胞也可以在調(diào)節(jié)腫瘤細(xì)胞的整體免疫反應(yīng)中發(fā)揮重要作用[43]。因此IL-33在肺癌中可能有著促癌和抗癌的雙重作用。在臨床試驗(yàn)中,WANG等[44]發(fā)現(xiàn)患者癌組織中IL-33和ST2的表達(dá)均高于癌旁正常組織,且表達(dá)水平與臨床分期有關(guān)。然而,Akimoto等[45]發(fā)現(xiàn)與正常肺組織和細(xì)胞相比,IL-33和ST2在人肺癌組織和細(xì)胞中明顯下調(diào),且IL-33表達(dá)也與肺癌的分期呈負(fù)相關(guān)。因此IL-33/ST2在肺癌中的潛在作用仍存在爭議,需要進(jìn)一步研究IL-33與ST2對肺癌發(fā)生發(fā)展的影響。
綜上所述,IL-33作為一種警報(bào)蛋白,在慢性阻塞性肺疾病、哮喘、特發(fā)性肺纖維化、阻塞性睡眠呼吸暫停綜合征、肺癌等常見非感染性肺部疾病的發(fā)生發(fā)展中起到一定的影響,但其對不同疾病的作用機(jī)制卻不完全相同。此外,在特發(fā)性肺纖維化、呼吸暫停綜合征及肺癌的發(fā)病機(jī)制中,IL-33的作用機(jī)制仍存在一定的爭議,今后應(yīng)進(jìn)一步去明確它在不同疾病中的信號(hào)通路,進(jìn)而為靶向IL-33/ST2通路治療非感染性肺部疾病提供一定理論基礎(chǔ)。
參考文獻(xiàn)
[1] LI Q,HU Y,CHEN Y,et al.IL-33 induces production of autoantibody against autologous respiratory epithelial cells: a potential mechanism for the pathogenesis of COPD[J].Immunology,2019,157(2):137-150.
[2] Donovan C,Bourke J E,Vlahos R.Targeting the IL-33/IL-13 Axis for Respiratory Viral Infections[J].Trends Pharmacol Sci,2016,37(4):252-261.
[3] Andreone S,Gambardella A R,Mancini J,et al.Anti-Tumorigenic Activities of IL-33: A Mechanistic Insight[J].Front Immunol,2020,11:571593.
[4] Cayrol C,Girard J P.Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family[J].Immunol Rev,2018,281(1):154-168.
[5] Schmitt P,Girard J P,Cayrol C.Interleukin-33: from biology to potential treatments[J].Med Sci (Paris),2019,35(5):440-451.
[6] Baekkevold E S,Roussigné M,Yamanaka T,et al.Molecular Characterization of NF-HEV, a Nuclear Factor Preferentially Expressed in Human High Endothelial Venules[J].The American Journal of Pathology,2003,163(1):69-79.
[7] Schmitz J,Owyang A,Oldham E,et al.IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines[J].Immunity,2005,23(5):479-490.
[8] Tsuda H,Komine M,Tominaga S I,et al.Identification of the promoter region of human IL-33 responsive to induction by IFNγ[J].J Dermatol Sci,2017,85(2):137-140.
[9] Drake L Y,Kita H.IL-33: biological properties, functions, and roles in airway disease[J].Immunol Rev,2017,278(1):173-184.
[10] Travers J,Rochman M,Miracle C E,et al.Chromatin regulates IL-33 release and extracellular cytokine activity[J].Nat Commun,2018,9(1):3244.
[11] Gunther S,Deredge D,Bowers A L,et al.IL-1 Family Cytokines Use Distinct Molecular Mechanisms to Signal through Their Shared Co-receptor[J].Immunity,2017,47(3):510-523.
[12] Pascual-Figal D A,Januzzi J L.The Biology of ST2: The International ST2 Consensus Panel[J].Am J Cardiol,2015,115(7):3B-7B.
[13] Zhao Y,De Los Santos F G,Wu Z,et al.An ST2-dependent role of bone marrow derived group 2 innate lymphoid cells in pulmonary fibrosis[J].J Pathol,2018,245(4):399-409.
[14] Ernst O,Vayttaden S J,F(xiàn)raser I D C.Measurement of NF-κB Activation in TLR-Activated Macrophages[J].Methods Mol Biol,2018,1714:67-78.
[15] Singh D,Agusti A,Anzueto A,et al.Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: the GOLD science committee report 2019[J].Eur Respir J,2019,53(5):1900164.
[16] Jones B,Donovan C,Liu G,et al.Animal models of COPD: What do they tell us?[J].Respirology,2017,22(1):21-32.
[17] XIA J,ZHAO J,SHANG J,et al.Increased IL-33 expression in chronic obstructive pulmonary disease[J].Am J Physiol Lung Cell Mol Physiol,2015,308(7):L619-L627.
[18] SHANG J,ZHAO J,WU X,et al.Interleukin-33 promotes inflammatory cytokine production in chronic airway inflammation[J].Biochem Cell Biol,2015,93(4):359-366.
[19] Kim S W,Rhee C K,Kim K U,et al.Factors associated with plasma IL-33 levels in patients with chronic obstructive pulmonary disease[J].Int J Chron Obstruct Pulmon Dis,2017,12:395-402.
[20] Tworek D,Majewski S,Szewczyk K,et al.The association between airway eosinophilic inflammation and IL-33 in stable non-atopic COPD[J].Respir Res,2018,19(1):108.
[21] Hansbro P M,Kim R Y,Starkey M R,et al.Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma[J].Immunol Rev,2017,278(1):41-62.
[22] Johansson K,McSorley H J.Interleukin-33 in the developing lung-Roles in asthma and infection[J].Pediatr Allergy Immunol,2019,30(5):503-510.
[23] Magat J M,Thomas J L,Dumouchel J P,et al.Endogenous IL-33 and Its Autoamplification of IL-33/ST2 Pathway Play an Important Role in Asthma[J].J Immunol,2020,204(6):1592-1597.
[24] Stier M T,Zhang J,Goleniewska K,et al.IL-33 promotes the egress of group 2 innate lymphoid cells from the bone marrow[J].
J Exp Med,2018,215(1):263-281.
[25] Ordovas-Montanes J,Dwyer D F,Nyquist S K,et al.Allergic inflammatory memory in human respiratory epithelial progenitor cells[J].Nature,2018,560(7720):649-654.
[26] Sj?berg L C,Nilsson A Z,Lei Y,et al.Interleukin 33 exacerbates antigen driven airway hyperresponsiveness, inflammation and remodeling in a mouse model of asthma[J].Sci Rep,2017,7(1):4219.
[27] Zaiss D M W,Gause W C,Osborne L C,et al.Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair[J].Immunity,2015,42(2):216-226.
[28] Mitchell P D, Salter B M,Oliveria J P,et al.IL-33 and Its Receptor ST2 after Inhaled Allergen Challenge in Allergic Asthmatics[J].Int Arch Allergy Immunol,2018,176(2):133-142.
[29] Yenibertiz D,Ozyurek B A.Idiopathic Pulmonary Fibrosis[M].2021.
[30] Kotsiou O S,Gourgoulianis K I,Zarogiannis S G.IL-33/ST2 Axis in Organ Fibrosis[J].Front Immunol,2018,9:2432.
[31] Lee J U,Chang H S,Lee H J,et al.Upregulation of interleukin-33 and thymic stromal lymphopoietin levels in the lungs of idiopathic pulmonary fibrosis[J].BMC Pulm Med,2017,17(1):39.
[32] Majewski S,Tworek D,Szewczyk K,et al.Epithelial alarmin levels in exhaled breath condensate in patients with idiopathic pulmonary fibrosis: A pilot study[J].Clin Respir J,2019,13(10):652-656.
[33] Li D,Guabiraba R,Besnard A G,et al.IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice[J].J Allergy Clin Immunol,2014,134(6):1422-1432.
[34] Shieh J M,Tseng H Y,Jung F,et al.Elevation of IL-6 and IL-33
Levels in Serum Associated with Lung Fibrosis and Skeletal Muscle Wasting in a Bleomycin-Induced Lung Injury Mouse Model[J].Mediators Inflamm,2019,2019:7947596.
[35] Kapur V K,Auckley D H,Chowdhuri S,et al.Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline[J].J Clin Sleep Med,2017,13(3):479-504.
[36] Maniaci A,Iannella G,Cocuzza S,et al.Oxidative Stress and Inflammation Biomarker Expression in Obstructive Sleep Apnea Patients[J].J Clin Med,2021,10(2):277.
[37] Sozer V,Kutnu M,Atahan E,et al.Changes in inflammatory mediators as a result of intermittent hypoxia in obstructive sleep apnea syndrome[J].Clin Respir J,2018,12(4):1615-1622.
[38] Gottlieb D J,Punjabi N M.Diagnosis and Management of Obstructive Sleep Apnea: A Review[J].JAMA,2020,323(14):1389-1400.
[39] LI W,LI Y,JIN J.The essential function of IL-33 in metabolic regulation[J].Acta Biochim Biophys Sin (Shanghai),2020,52(7):768-775.
[40] Ruiz-Cordero R,Devine W P.Targeted Therapy and Checkpoint Immunotherapy in Lung Cancer[J].Surg Pathol Clin,2020,13(1):17-33.
[41] Cui G,Qi H,Gundersen M D,et al.Dynamics of the IL-33/ST2 network in the progression of human colorectal adenoma to sporadic colorectal cancer[J].Cancer Immunol Immunother,2015,64(2):181-190.
[42] Tong X,Barbour M,Hou K,et al.Interleukin-33 predicts poor prognosis and promotes ovarian cancer cell growth and metastasis through regulating ERK and JNK signaling pathways[J].Molecular Oncology,2016,10(1):113-125.
[43] Casciaro M,Cardia R,Di Salvo E,et al.Interleukin-33 Involvement in Nonsmall Cell Lung Carcinomas: An Update[J].Biomolecules,2019,9(5):203.
[44] WANG C,CHEN Z,BU X,et al.IL-33 signaling fuels outgrowth and metastasis of human lung cancer[J].Biochem Biophys Res Commun,2016,479(3):461-468.
[45] Akimoto M,Hayashi J I,Nakae S,et al.Interleukin-33 enhances programmed oncosis of ST2L-positive low-metastatic cells in the tumour microenvironment of lung cancer[J/OL].Cell Death Dis,2016,7(1):e2057.
(收稿日期:2021-03-29) (本文編輯:張爽)
1292501186372