• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      煙田秸稈腐解特性及其腐解液對煙草疫霉菌的影響

      2021-03-24 10:33陳麗鵑陳閨周冀衡閆晨兵柳立李強(qiáng)張毅
      中國煙草科學(xué) 2021年1期

      陳麗鵑 陳閨 周冀衡 閆晨兵 柳立 李強(qiáng) 張毅

      摘? 要:針對南方常見的烤煙輪作體系,研究3種作物(煙草、油菜和水稻)秸稈的腐解特性及其腐解液對煙草疫霉菌的影響,以期為煙田秸稈的綜合利用提供理論依據(jù)。采用尼龍網(wǎng)袋法研究了3種秸稈在2種土壤水分條件下的腐解率及養(yǎng)分釋放規(guī)律,并通過人工制備3種秸稈腐解液,研究了其不同濃度對煙草疫霉菌菌絲生長和孢子囊產(chǎn)生的影響。結(jié)果表明,前期煙草秸稈和油菜秸稈腐解較快,但腐解率總體表現(xiàn)為水稻秸稈>油菜秸稈>煙草秸稈,各處理秸稈180 d累積腐解率均在55%以上。3種秸稈的養(yǎng)分釋放速率均表現(xiàn)為鉀>磷>氮,經(jīng)過180 d的腐解,氮、磷、鉀的釋放率分別為60.65%~70.18%、75.33%~84.81%及93.96%~97.34%。干濕交替處理的秸稈腐解率及養(yǎng)分釋放率整體高于淹水處理,但差異均未達(dá)到顯著水平。3種秸稈腐解液對煙草疫霉菌菌絲生長和孢子囊產(chǎn)生均有抑制作用,抑制強(qiáng)度表現(xiàn)為水稻秸稈>煙草秸稈>油菜秸稈,且抑菌率隨著腐解液濃度的升高而增大,其EC50分別為0.82、1.40和2.08 g/L。因此,烤煙輪作體系中水稻秸稈較易腐解,且3種秸稈腐解液對煙草疫霉菌均存在化感作用,但不同水分條件對秸稈腐解及養(yǎng)分釋放效率的影響有待進(jìn)一步研究。

      關(guān)鍵詞:作物秸稈;腐解特性;養(yǎng)分釋放;煙草疫霉菌;抑制作用

      Abstract: In view of the common flue-cured tobacco rotation system in Southern China, the decomposition characteristics of three crop straws (tobacco, rape and rice) and the effects of the straw decomposed liquids on Phytophthora nicotianae were studied in order to provide theoretical basis for comprehensive utilization of tobacco field straws. Simulation experiment was adopted by using nylon net bags to study the decomposition rates and nutrient release patterns of three crop straws under two soil moisture conditions, and the effects of different concentrations of decomposed liquids on hypha growth and sporangium yield of Phytophthora nicotianae were analyzed by artificial preparation of three kinds of straw decomposed liquids. The results showed that tobacco straw and rape straw decomposed faster at the early stage, but the overall decomposition rate was shown as rice straw> rape straw > tobacco straw. The cumulative decomposition rate of straw in each treatment was above 55% in 180 days. The nutrient release rates of three crop straws were all shown as K>P>N, 60.65%-70.18% of nitrogen, 75.33%-84.81% of phosphorus and 93.96%-97.34% of potassium were released during decomposition. The decomposition rate and nutrient release rate of straw in dry-wet alternate treatment were higher than those in flooding treatment, but the differences were not significant. The results also showed that the three straw decomposed liquids had inhibition effects on hypha growth and sporangium yield of Phytophthora nicotianae, the inhibition rates were shown as rice straw > tobacco straw > rape straw. And the inhibition effect was enhanced with the increase of decomposed liquids concentration, with the median effective concentration (EC50) being 0.82, 1.40 and 2.08 g/L, respectively. Therefore, rice straw was easy to decompose in tobacco rotation system, and the three straw decomposition liquids had allelopathic effect on Phytophthora nicotianae. The effects of different water conditions on straw decomposition and nutrient release efficiency need to be further studied.

      1.4? 數(shù)據(jù)處理及分析

      應(yīng)用Excel 2010和SPSS 17.0軟件對數(shù)據(jù)進(jìn)行統(tǒng)計分析。

      2? 結(jié)? 果

      2.1? 3種作物秸稈的腐解及養(yǎng)分釋放特征

      2.1.1? 3種作物秸稈的腐解特征? 3種作物秸稈在2種土壤水分條件下的腐解率變化規(guī)律如圖1所示。總體來看,在180 d腐解期內(nèi),各處理秸稈的腐解率均隨時間的延長而增大,呈現(xiàn)前期增加迅速,后期相對穩(wěn)定的趨勢。其中,水稻秸稈(S3M1、S3M2)的快速腐解期為0~30 d,30 d時腐解率高于其他2種秸稈處理,分別為55.41%和53.52%;煙草秸稈(S1M1、S1M2)和油菜秸稈(S2M1、S2M2)0~15 d腐解較快,而15~30 d腐解相對變緩,30 d時腐解率達(dá)45%以上。30~180 d為各處理秸稈的緩慢腐解期,180 d時累積腐解率達(dá)55.69%~69.39%,表現(xiàn)為水稻秸稈>油菜秸稈>煙草秸稈且差異顯著(p<0.05)。不同土壤水分條件下秸稈的腐解特性差異不顯著,但同一秸稈腐解率表現(xiàn)為干濕交替處理>淹水處理。

      2.1.2? 3種作物秸稈的氮釋放特征? 從圖2可以看出,3種秸稈氮釋放特征總體上與腐解率規(guī)律類似,但也表現(xiàn)出差異。0~15 d時水稻秸稈的氮釋放速率低于煙草秸稈和油菜秸稈,從30 d開始,水稻秸稈和油菜秸稈的氮釋放率高于煙草秸稈,這種趨勢一直延續(xù)到腐解后期,3種秸稈之間表現(xiàn)為油菜秸稈>水稻秸稈>煙草秸稈。經(jīng)過180 d的腐解,各處理秸稈的氮累積釋放率分別為60.65%~70.18%,其中,同一秸稈淹水條件下的氮釋放率低于干濕交替處理。

      2.1.3? 3種作物秸稈的磷釋放特征? 3種作物秸稈的磷釋放特征如圖3所示,總體表現(xiàn)為煙草秸稈>水稻秸稈>油菜秸稈。在腐解初期,各處理秸稈磷釋放率就表現(xiàn)出明顯差異,煙草秸稈在腐解的第15天就有65%左右的磷釋放出來,顯著高于油菜秸稈和水稻秸稈(p<0.05)。秸稈磷釋放可分為3個時期: 快速釋放期、釋放減緩期和釋放停滯期。秸稈腐解的前15 d是快速釋放期,這期間各處理秸稈磷釋放量占180 d磷釋放總量的三分之二以上。同一作物秸稈干濕交替處理的磷釋放率略高于淹水處理,但差異不顯著,180 d時各處理秸稈的磷釋放率為75.33%~84.81%。

      2.1.4? 3種作物秸稈的鉀釋放特征? 秸稈中鉀含量較高,且多數(shù)以離子態(tài)存在[8,12]。從圖4可以看出,3種作物秸稈在2種土壤水分條件下的鉀釋放率均呈現(xiàn)前期快速釋放,后期相對穩(wěn)定的趨勢。在腐解第15天,各處理秸稈近80%的鉀已釋放,待腐解結(jié)束時,秸稈鉀釋放率達(dá)93.96%~97.34%。

      2.2? 3種作物秸稈腐解液對煙草疫霉菌的影響

      2.2.1? 秸稈腐解液對煙草疫霉菌菌絲生長的影響? 3種秸稈腐解液對煙草疫霉菌菌絲生長的影響如圖5所示。可以看出,3種秸稈腐解液對煙草疫霉菌菌絲生長均有不同程度的抑制作用,在低濃度時抑菌率達(dá)到極顯著差異(p<0.01);隨著濃度的升高,3種腐解液對煙草疫霉菌菌絲的抑制率均逐漸增大,總體表現(xiàn)為水稻秸稈>煙草秸稈>油菜秸稈。水稻秸稈腐解液在0.6 g/L時抑菌率即達(dá)44.02%,3 g/L時抑菌率高達(dá)84.19%;在2.4 g/L和3 g/L時煙草秸稈腐解液的抑菌率分別為72.65%、81.20%,與水稻秸稈無顯著差異,均高于油菜秸稈腐解液的65.35%、73.08%。

      由表2可知,3種秸稈腐解液對煙草疫霉菌的毒力回歸方程線性擬合較好。從EC50來看,油菜秸稈腐解液的抑菌中濃度為2.08 g/L,而水稻秸稈腐解液和煙草秸稈腐解液對煙草疫霉菌的抑菌活性較高,EC50分別為0.82和1.40 g/L。

      2.2.2? 秸稈腐解液對煙草疫霉菌孢子囊產(chǎn)生的影響? 從表3可以看出,3種秸稈腐解液對煙草疫霉菌孢子囊的產(chǎn)生有明顯的抑制作用,各處理孢子囊產(chǎn)量均與對照呈極顯著差異(p<0.01),且抑制率隨著處理濃度的升高而增大。3種秸稈腐解液對孢子囊產(chǎn)量的抑制強(qiáng)度表現(xiàn)為水稻秸稈>煙草秸稈>油菜秸稈,與其對菌絲生長的影響規(guī)律一致。水稻秸稈腐解液在低濃度時就表現(xiàn)出較強(qiáng)的抑制作用,當(dāng)濃度為3.0 g/L時,3種秸稈腐解液對孢子囊產(chǎn)量的抑制率高達(dá)83.81%~94.16%。

      3? 討? 論

      秸稈在土壤中的腐解是一個復(fù)雜的過程,腐解速率不僅與秸稈自身的性狀有關(guān),還取決于環(huán)境條件[24-25]。有研究表明[26-27],碳氮比是影響秸稈分解速率的一個重要因素,碳氮比較低的秸稈更容易腐解;另外,秸稈塊的大小能夠影響秸稈與土壤之間的水、氣和營養(yǎng)元素等的互換,致使土壤微生物種群和活性產(chǎn)生差異從而影響秸稈的腐解速率[28]。土壤水熱條件等環(huán)境因素對作物秸稈的腐解有顯著影響[29],有研究表明,干濕交替條件下微生物的活性受到影響,存在厭氧和好氧微生物群落的交替[30]。本研究中,煙草秸稈和油菜秸稈的碳氮比較低且中腔充滿易腐解的髓[13],因此二者在前期(0~15 d)較水稻秸稈腐解更快;3種秸稈在180 d時累積腐解率表現(xiàn)為水稻秸稈>油菜秸稈>煙草秸稈,這可能是因為煙草秸稈比重最大,同樣重量條件下所占的體積最小,影響了其與微生物和土壤中酶的充分接觸,另外煙稈外表面具有很厚的難腐解的角質(zhì)層[13]。本試驗中不同土壤水分條件下,同一秸稈腐解率表現(xiàn)為干濕交替處理>淹水處理,這與前人[14]的研究結(jié)果較為相似,土壤干濕交替處理更有利于作物秸稈的腐解。

      秸稈在土壤微生物的作用下進(jìn)行腐解并釋放養(yǎng)分,因此秸稈還田已被認(rèn)為是培肥土壤的有效措施,營養(yǎng)元素在秸稈中的存在形態(tài)是影響其釋放速率的關(guān)鍵[14]。秸稈中的鉀素含量較高且主要以K+形態(tài)存在,易溶于水;磷素60%以離子態(tài)存在,另一部分則以難分解的有機(jī)態(tài)存在;而氮素主要以有機(jī)態(tài)存在,不易分解,相對釋放較慢。本研究中,3種作物秸稈的養(yǎng)分釋放速率均表現(xiàn)為鉀>磷>氮,這與前人的研究結(jié)果一致[12],經(jīng)過180 d的腐解,60.65%~70.18%的氮、75.33%~84.81%的磷以及93.96%~97.34%的鉀被釋放出來。干濕交替處理秸稈的養(yǎng)分釋放率高于淹水處理,這可能是由于好氧微生物的作用加快了秸稈中氮、磷、鉀的釋放,但本文中二者未達(dá)到顯著差異,結(jié)果有待進(jìn)一步驗證。

      秸稈等作物殘體導(dǎo)致的化感作用在自然界中廣泛存在[15-18],本試驗中3種秸稈腐解液對煙草疫霉菌菌絲生長和孢子囊產(chǎn)生均有不同程度的抑制作用。抑菌率與腐解液濃度正相關(guān),這與前人的研究結(jié)果相似[18]。隨著濃度的下降3種腐解液的抑制作用差異變大,抑制程度總體表現(xiàn)為水稻秸稈>煙草秸稈>油菜秸稈,這可能與3種秸稈腐解過程中產(chǎn)生的抑菌活性物質(zhì)含量有關(guān),今后可結(jié)合儀器分析等手段進(jìn)一步探明腐解液中的具體抑菌成分,從而分析其作用機(jī)理。

      4? 結(jié)? 論

      本試驗中,3種作物秸稈在2種土壤水分條件下180 d累積腐解率達(dá)55.69%~69.39%,表現(xiàn)為水稻秸稈>油菜秸稈>煙草秸稈,且秸稈類型之間差異顯著(p<0.05)。3種秸稈的養(yǎng)分釋放速率均表現(xiàn)為鉀>磷>氮,經(jīng)過180 d的腐解,氮、磷、鉀的釋放率分別為60.65%~70.18%、75.33%~84.81%及93.96%~97.34%。不同土壤水分條件下秸稈的腐解率及養(yǎng)分釋放速率整體表現(xiàn)為干濕交替處理>淹水處理,但差異不顯著。3種秸稈腐解液對煙草疫霉菌菌絲生長和孢子囊產(chǎn)生均有不同程度的抑制作用,表現(xiàn)為水稻秸稈>煙草秸稈>油菜秸稈,抑菌率隨著腐解液濃度的升高而增大,其EC50分別為0.82、1.40和2.08 g/L,因此秸稈腐解液對煙草疫霉菌存在化感效應(yīng)??緹熭喿黧w系中可以通過合理的秸稈還田來提高植煙土壤肥力,其中水稻秸稈較易腐解。不同水分條件對秸稈腐解及養(yǎng)分釋放的影響有待進(jìn)一步研究。

      參考文獻(xiàn)

      [1]黃新杰,屠乃美,李艷芳,等. 湖南省煙稻輪作區(qū)土壤養(yǎng)分的空間變異特征[J]. 中國煙草科學(xué),2012,33(3):13-16.

      HUANG X J, TU N M, LI Y F, et al. Spatial variability of nutrient contents of tobacco and paddy soil in Hunan province[J]. Chinese Tobacco Science, 2012, 33(3): 13-16.

      [2]劉曉永,李書田. 中國秸稈養(yǎng)分資源及還田的時空分布特征[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(21):1-19.

      LIU X Y, LI S T. Temporal and spatial distribution characteristics of crop straw nutrient resources and returning to farmland in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 1-19.

      [3]LI L J, WANG Y, ZHANG Q, et al. Wheat straw burning and its associated impacts on Beijing air quality[J]. Science in China Series D: Earth Sciences, 2008, 51(3): 403-414.

      [4]薄國棟,申國明,陳旭,等. 秸稈還田對植煙土壤酶活性及細(xì)菌群落多樣性的影響[J]. 中國煙草科學(xué),2017,38(1):53-58.

      BO G D, SHEN G M, CHEN X, et al. Effect of straw returning on soil enzyme activities and diversity of bacterial communities in tobacco planting fields[J]. Chinese Tobacco Science, 2017, 38(1): 53-58.

      [5]ZHANG J, BO G, ZHANG Z, et al. Effects of straw in-corporation on soil nutrients, enzymes, and aggregate stability in tobacco fields of China[J]. Sustainability, 2016, 8: 710.

      [6]ARCAND M M, KNIGHT J D, RICHARD E F. Differentiating between the supply of N to wheat from above and belowground residues of preceding crops of pea and canola[J]. Biology and Fertility of Soils, 2014, 50(4): 563-570.

      [7]LATIFMANESH H, DENG A, LI L, et al. How incorporation depth of corn straw affects straw decomposition rate and C&N release in the wheat-corn cropping system[J]. Agriculture, Ecosystems & Environment, 2020, 300: 107000.

      [8]姜超強(qiáng),沈嘉,王火焰,等. 煙稈還田對水稻產(chǎn)量和養(yǎng)分吸收的影響及其替代鉀肥的效果[J]. 應(yīng)用生態(tài)學(xué)報,2016,27(12):3969-3976.

      JIANG C Q, SHEN J, WANG H Y, et al. Effect of tobacco straw incorporation on rice yield and nutrient absorption and its substitute for potassium fertilizer[J]. Chinese Journal of Applied Ecology, 2016, 27(12): 3969-3976.

      [9]張丹,付斌,胡萬里,等. 秸稈還田提高水稻-油菜輪作土壤固氮能力及作物產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(9):133-140.

      ZHANG D, FU B, HU W L, et al. Increasing soil nitrogen fixation capacity and crop yield of rice-rape rotation by straw returning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 133-140.

      [10]陳麗鵑,周冀衡,柳立,等. 不同秸稈對植煙土壤有機(jī)碳礦化和腐殖質(zhì)組成的影響[J]. 中國煙草科學(xué),2019,40(5):8-14.

      CHEN L J, ZHOU J H, LIU L, et al. Effects of different crop straws on organic carbon mineralization and humus composition of tobacco-growing soil[J]. Chinese Tobacco Science, 2019, 40(5): 8-14.

      [11]曹瑩菲,張紅,劉克,等. 不同處理方式的作物秸稈田間腐解特性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(9):212-219.

      CAO F Y, ZHANG H, LIU K, et al. Decomposition characteristics of crop residues among different agricultural treatments[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 212-219.

      [12]代文才,高明,蘭木羚,等. 不同作物秸稈在旱地和水田中的腐解特性及養(yǎng)分釋放規(guī)律[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2017,25(2):188-199.

      DAI W C, GAO M, LAN M L, et al. Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2): 188-199.

      [13]劉炎紅,姜超強(qiáng),沈嘉,等. 煙桿腐解速率及養(yǎng)分釋放規(guī)律研究[J]. 土壤,2017,49(3):543-549.

      LIU Y H, JIANG C Q, SHEN J, et al. Decomposition rates and nutrient release patterns of tobacco straw[J]. Soils, 2017, 49(3): 543-549.

      [14]武際,郭熙盛,王允青,等. 不同水稻栽培模式和秸稈還田方式下的油菜、小麥秸稈腐解特征[J]. 中國農(nóng)業(yè)科學(xué),2011,44(16):3351-3360.

      WU J, GUO X S, WANG Y Q, et al. Decomposition characteristics of rapeseed and wheat straws under different rice cultivations and straw mulching models[J]. Scientia Agricultura Sinica, 2011, 44(16): 3351-3360.

      [15]于建光,顧元,常志州,等. 小麥秸稈浸提液和腐解液對水稻的化感效應(yīng)[J]. 土壤學(xué)報,2013,50(2):349-356.

      YU J G, GU Y, CHANG Z Z, et al. Allelopathic effects of wheat straw extract and decomposition liquid on rice[J]. Acta Pedologica Sinica, 2013, 50(2): 349-356.

      [16]李晶,趙先龍,喬天長,等. 秸稈腐解液對玉米幼苗的生理效應(yīng)及酚酸類化感成分的檢測[J]. 核農(nóng)學(xué)報,2015,29(9):1799-1805.

      LI J, ZHAO X L, QIAO T C, et al. Physiological effects of maize stalk decomposition liquid on seedlings and detection of phenolic allelochemical ingredients[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(9): 1799-1805.

      [17]郭曉源,景殿璽,周如軍,等. 玉米秸稈腐解液酚酸物質(zhì)含量檢測及對玉米大斑病菌的影響[J]. 玉米科學(xué),2016,24(4):166-172.

      GUO X Y, JING D X, ZHOU R J, et al. Detection of phenolic acids in crop straw decomposed liquid and their effect on pathogen of northern leaf blight of corn[J]. Journal of Maize Sciences, 2016, 24(4): 166-172.

      [18]張琴,李艷賓,滕立平,等. 不同腐解方式下棉稈腐解液對棉花枯、黃萎病菌的化感效應(yīng)[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2012,31(9):1696-1701.

      ZHANG Q, LI Y B, TENG L P, et al. Allelopathy of different decomposed liquids of cotton stalk on Fusarium oxysporum and Verticillium dahliae[J]. Journal of Agro-Environment Science, 2012, 31(9): 1696-1701.

      [19]戴美玲,李強(qiáng),解燕,等 . 紫莖澤蘭提取物對煙草疫霉菌的抑制作用研究 [J]. 中國煙草學(xué)報,2018,24(6):126-133.

      DAI M L, LI Q, XIE Y, et al. Study on the inhibitory effect of Eupatorium adenophorum extracts on Phytophthora parasitica var. nicotianae[J]. Acta Tabacaria Sinica, 2018, 24(6): 126-133.

      [20]譚軍,周冀衡,李強(qiáng),等. 氮素形態(tài)對煙草黑脛病發(fā)生的影響[J]. 中國煙草科學(xué),2017,38(4):80-85.

      TAN J, ZHOU J H, LI Q, et al. Effects of nitrogen forms on the occurrence of tobacco black shank[J]. Chinese Tobacco Science, 2017, 38(4): 80-85.

      [21]鮑士旦. 土壤農(nóng)化分析[M]. 3版. 北京:中國農(nóng)業(yè)出版社,2011.

      BAO S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agricultural Press, 2011.

      [22]方中達(dá). 植病研究方法[M]. 北京:中國農(nóng)業(yè)出版社,1998.

      FANG Z D. Plant disease research method[M]. Beijing: China Agriculture Press, 1998.

      [23]鄭小波. 疫霉菌及其研究技術(shù)[M]. 北京:中國農(nóng)業(yè)出版社,1995.

      ZHENG X B. Phytophthora and its research techniques[M]. Beijing: China Agriculture Press, 1995.

      [24]BAUMANN K, MARSCHNER P, SMERNIK R J, et al. Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues[J]. Soil Biology & Biochemistry, 2009, 41(9): 1966-1975.

      [25]張紅,呂家瓏,曹瑩菲,等. 不同植物秸稈腐解特性與土壤微生物功能多樣性研究[J]. 土壤學(xué)報,2014,51(4):743-752.

      ZHANG H, LYU J L, CAO F Y, et al. Decomposition characteristics of different plant straws and soil microbial functional diversity[J]. Acta Pedologica Sinica, 2014, 51(4):743-752.

      [26]王曉玥,孫波. 植物殘體分解過程中微生物群落變化影響因素研究進(jìn)展[J]. 土壤,2012,44(3):353-359.

      WANG X Y, SUN B. Factors affecting change of microbial community during plant residue decomposition: a review[J]. Soils, 2012, 44(3): 353-359.

      [27]STUBBS T L, KENNEDY A C, REISENAUER P E, et al. Chemical composition of residue from cereal crops and cultivars in dryland ecosystems[J]. Agronomy Journal, 2009, 101(3): 538-545.

      [28]BENDING G D, TURNER M K. Interaction of biochemical quality and particle size of crop residues and its effect on the microbial biomass and nitrogen dynamics following incorporation into soil[J]. Biology and Fertility of Soils, 1999, 29(3): 319-327.

      [29]IBRAHIM M,CAO C G,ZHAN M,et al. Changes of CO2 emission and labile organic carbon as influenced by rice straw and different water regimes[J]. International Journal of Environmental Science and Technology, 2015, 12(1): 263-274.

      [30]COPPENS F, GARNIER P, DE GRYZE S, et al. Soil moisture, carbon and nitrogen dynamics following incorporation and surface application of labelled crop residues in soil columns[J]. European Journal of Soil Science, 2006, 57(6): 894-905.

      昌吉市| 泸州市| 镶黄旗| 宜州市| 固原市| 临颍县| 神木县| 右玉县| 张家港市| 托克托县| 广汉市| 老河口市| 安龙县| 麻栗坡县| 闻喜县| 襄樊市| 鹤庆县| 福海县| 黄大仙区| 邢台市| 鹤山市| 湘潭市| 英山县| 同德县| 日喀则市| 光山县| 华阴市| 宝兴县| 宁武县| 印江| 大关县| 郯城县| 抚宁县| 渑池县| 永靖县| 宜春市| 镇康县| 防城港市| 山西省| 青冈县| 白山市|