• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      三峽水庫消落帶土壤膠體釋放與遷移特征

      2021-04-01 01:56:18孫虹蕾唐翔宇
      農(nóng)業(yè)工程學(xué)報 2021年1期
      關(guān)鍵詞:流液土柱膠體

      張 維,孫虹蕾,唐翔宇

      三峽水庫消落帶土壤膠體釋放與遷移特征

      張 維1,孫虹蕾2,3,唐翔宇4※

      (1. 重慶工商大學(xué)公共管理學(xué)院,重慶 400067;2. 云南合續(xù)環(huán)境科技有限公司,綿陽 621002;3. 西南交通大學(xué)地球科學(xué)與環(huán)境工程學(xué)院,成都 611756; 4. 中國科學(xué)院水利部成都山地災(zāi)害與環(huán)境研究所,山地表生過程與生態(tài)調(diào)控重點實驗室,成都 610041)

      三峽水庫消落帶是庫區(qū)陸源污染物進入水庫的最后屏障。高強度、周期性的干濕交替對消落帶土壤理化性質(zhì)、結(jié)構(gòu)和可蝕性產(chǎn)生潛在影響,進而影響膠體顆粒的釋放和遷移特征。探究消落帶土壤膠體的釋放與遷移行為是衡量膠體促進污染物遷移入庫的重要前提。該研究對比消落帶與非消落帶土壤,通過原狀土柱淋洗試驗,研究飽和流中土壤膠體釋放及遷移特征。結(jié)果表明,消落帶原狀土柱飽和淋洗液中膠體顆粒濃度先總體快速降低(184.58~28.04 mg/L)再緩慢增加(21.18~97.58 mg/L),存在較大的時間變化(變異系數(shù)為0.46)。膠體顆粒累計釋放量為714.43 mg,比非消落帶土柱高34.4%,而淋洗液的峰值粒徑(13.25~19.90m)和中值粒徑(14.98~22.90m)均遠遠小于非消落帶土柱的相應(yīng)值,表明反復(fù)淹水-排干作用導(dǎo)致消落帶土壤中膠體及細顆粒的釋放和遷移潛力增大。溶解性有機碳(DOC,Dissolved Organic Carbon)是影響消落帶飽和土壤中膠體釋放的關(guān)鍵因子,對膠體濃度動態(tài)變化的解釋率高達42.3%,而水化學(xué)因素(EC、Ca2+及Mg2+)對非消落帶土壤中膠體顆粒的釋放影響相對更大。在消落帶管理中,應(yīng)注意減控DOC的流失,以減少消落帶土壤膠體顆粒的釋放,同時建議加強消落帶土壤DOC來源及其與膠體偶合并促進污染物如農(nóng)化物質(zhì)遷移進入庫區(qū)水體的研究。

      膠體;遷移;徑流;土壤侵蝕;消落帶;三峽庫區(qū)

      0 引 言

      三峽水庫是因三峽大壩的修建而形成的河流型水庫。水庫季節(jié)性、功能性地調(diào)度導(dǎo)致庫區(qū)水位145~175 m間形成了長660 km,面積近349 km2的水庫消落帶(WLFZ,Water Level Fluctuation Zone)[1]。土壤侵蝕一直是三峽水庫消落帶重要的生態(tài)問題[2]。三峽水庫長江干流消落帶多年平均土壤侵蝕模數(shù)為54 050 t/(km2·a),支流消落帶多年平均土壤侵蝕模數(shù)為9 191 t/(km2·a),分別為庫區(qū)平均土壤侵蝕模數(shù)16倍和3倍[3]。高強度的土壤侵蝕過程中,土壤細顆粒(<10m),尤其是膠體顆粒(<2m)因其更強的遷移能力和污染物結(jié)合能力,成為農(nóng)化物質(zhì)如氮、磷、農(nóng)藥以及重金屬等污染物遷移進入水體的主要載體[4-6]。這也是近年來庫區(qū)水體農(nóng)業(yè)面源污染的重要原因[7]。

      多孔介質(zhì)中膠體顆粒遷移的研究表明,穩(wěn)態(tài)流條件下,流體的水化學(xué)條件變化是自然膠體顆粒原位釋放及遷移的重要影響因素[8]。同時,土壤膠體的釋放與遷移還與土壤的結(jié)構(gòu)異質(zhì)性有關(guān)。自然土壤中所含的大孔隙、縫隙、層理面等優(yōu)先流通道有助于膠體顆粒向深層介質(zhì)中遷移,但其遷移潛力與優(yōu)先流通道的發(fā)育程度和連通性密切相關(guān)[9]。目前,室內(nèi)尺度膠體遷移的研究以填裝土柱為主,難以反映高度異質(zhì)性土壤中膠體釋放特征及通量,而消落帶土壤膠體顆粒釋放與遷移的研究還鮮有報道。

      三峽水庫消落帶是連接庫區(qū)陸地生態(tài)系統(tǒng)和水庫水生態(tài)系統(tǒng)的生態(tài)屏障帶。其周期性、高強度的淹水-排干交替作用造成消落帶土壤理化性質(zhì)、結(jié)構(gòu)和孔隙性質(zhì)產(chǎn)生變化[10]。這些潛在變化將影響消落帶土壤膠體庫的容量、膠體遷移路徑和釋放通量,進而影響顆粒結(jié)合態(tài)污染物進入庫區(qū)水體的通量。本文通過非擾動土柱淋洗試驗,研究飽和流中消落帶土壤膠體釋放及遷移過程和通量。以期在當前長江大保護戰(zhàn)略背景下,為三峽庫區(qū)消落帶生態(tài)環(huán)境管理和庫區(qū)水體面源污染防治提供重要依據(jù)。

      1 材料與方法

      1.1 研究區(qū)概況

      研究區(qū)處于三峽水庫腹地重慶市開州區(qū)白鶴村(31°14'25.332"N,108°25'45.612"E),屬澎溪河流域消落帶,是庫區(qū)面積最大的消落帶(約占庫區(qū)消落帶總面積的13.2%)。該地區(qū)為亞熱帶濕潤性季風(fēng)氣候,多年平均氣溫和降水量分別為14.3 ?C和1 149.3 mm。澎溪河消落帶每年9月初水位逐漸上升,11月中下旬達到最高水位175 m,并維持到次年3月份,而后水位逐漸降低到145 m,5-8月間消落帶水位基本維持在145~150 m的低水位。澎溪河消落帶自然植被以草本植物為主,消落帶上部分布有少量灌木和喬木幼苗。目前白鶴村消落帶為典型的農(nóng)業(yè)消落帶,主要土地利用方式有旱地、水田、草地、林地等,土壤以紫色土為主。消落帶出露期(5-9月)正值區(qū)域內(nèi)降雨集中且暴雨頻率較高時期,土壤侵蝕發(fā)生的頻率最高且侵蝕強度最大。

      1.2 樣品采集與處理

      土壤樣品于2016年8月消落帶完全出露時采集。選擇消落帶中部160 m高程臺地,隨機選取5個采樣點,采樣點間至少間隔2 m,采集散土樣品和環(huán)刀樣品。散土樣品采集深度為0~10和10~20 cm,小環(huán)刀樣品(直徑5 cm,高度5 cm)采集深度為2.5~7.5和12.5~17.5 cm。另外,在中間采樣點附近用定制的不銹鋼大環(huán)刀(直徑15 cm,高度20 cm)采集原狀土柱。消落帶外部高程177 m(從未淹水)處的非消落帶與消落帶采樣點具有相同地形地貌和土地利用方式,選擇此處非消落帶并以相同采樣方法采集土壤樣品。

      散土樣品于實驗室自然風(fēng)干、剔除植物殘體和礫石、研磨過篩(2和0.15 mm)后用于土壤基本理化性質(zhì)的測定,方法同文獻[10]。小環(huán)刀樣品用烘干法測定土壤容重。土壤基本理化性質(zhì)如表1所示。基于非消落帶和消落帶淺層土壤(0~20 cm)的平均孔隙度(分別為43.87%和53.07%),計算得到非消落帶和消落帶土柱的孔隙體積(PV,Pore Volume)分別為1 164.7和1 404.7 cm3。

      表1 土壤樣本基本理化性質(zhì)

      注:砂粒、粉粒及黏粒均為質(zhì)量分數(shù)。WLFZ為消落帶。

      Note: Mass fractions of sand, silt and clay were presented in the table. WLFZ respresents water level fluctuation zone.

      1.3 土柱試驗

      1.3.1 土柱飽和及裝柱

      將原狀土柱底部用尼龍紗布包裹,垂直放入洗凈的塑料桶。向桶內(nèi)緩慢加去離子水至不銹鋼柱2/3高度,依靠毛細管作用使土柱逐漸飽和,期間不斷補充桶內(nèi)水分維持初始高度。靜置24 h后,土柱上表面土壤在光照下泛白光時視作土柱飽和。飽和土柱底部紗布取下后安裝不銹鋼濾網(wǎng),置于定制的三腳架形有機玻璃漏斗上。土柱上端蓋子內(nèi)部通過固定均勻開孔的軟管作為模擬降雨器,試驗前需不斷調(diào)整軟管布置模式以保證布水均勻。軟管另一端連接蠕動泵和背景液或進樣液。土柱下端有機玻璃漏斗通過出流軟管與部分收集器連接。

      1.3.2 淋洗試驗

      淋洗試驗分穩(wěn)定、進樣、沖洗3個階段。穩(wěn)定階段目的是輸入背景溶液穩(wěn)定土柱流場,背景溶液為pH=7的去離子水。穩(wěn)定階段同時確定最大進樣速率max和降雨強度max(保證土柱表面不積水),通過預(yù)試驗確定max=12 mL/min,max=39.7 mm/h。待土柱出流速率不變時,穩(wěn)定階段結(jié)束。進樣溶液為去離子水配制的KBr(Br-濃度為100 mg/L)溶液(pH值調(diào)整為7)。進樣階段以max=12 mL/min輸入進樣溶液持續(xù)淋洗土柱并立即通過部分收集器收集出流液,非消落帶和消落帶土柱進樣量分別為3494.2和4214.0 mL(均為3 PV,即3個孔隙體積)。進樣結(jié)束后立即切換至背景溶液,以相同流速持續(xù)沖洗Br-。沖洗階段背景溶液淋洗量與進樣階段一致并以相同方式收集出流液。

      1.3.3 樣品分析

      土柱出流液的pH值和電導(dǎo)率(EC,Electronic Conductivity)分別用pH計(Senslon+MM150,Hach,USA)和電導(dǎo)率儀(DDS-307,INESA,China)測定。膠體顆粒濃度用紫外-可見分光光度計(Tu-1810,PERSEE,China)測定,波長為400 nm[11]。出流液原液中顆粒的粒徑分布(PSD,Particle Size Distribution)特征通過激光粒度儀(LA950,Horiba,Japan)分析測定。為了解出流液中顆粒絮凝情況,原液經(jīng)水浴超聲(KQ-3000VDE,Huqin,China)振蕩處理(2 min,100 W),一定程度上破壞顆粒絮凝體結(jié)構(gòu)之后,再次通過激光粒度儀測定PSD。此外,出流液樣品經(jīng)過濾(0.45m)后分別測定Ca2+、Mg2+(電感耦合等離子體發(fā)射光譜儀,Optima 8300,PerkinElmer,USA)、溶解性有機碳(DOC,Dissolved Organic Carbon)和Br-(流動分析儀,Auto Analyzer 3,SEAL Analytical,Germany)。

      1.4 數(shù)據(jù)統(tǒng)計分析

      通過Pearson相關(guān)和多元線性回歸(變量進入方法為stepwise,SPSS 19.0)分析膠體顆粒濃度動態(tài)與水化學(xué)參數(shù)間的關(guān)聯(lián)。此外,在R語言中,通過“rdacca”包,利用層次分割理論定量分解每個水化學(xué)參數(shù)對膠體動態(tài)的解釋率[12]。

      2 結(jié)果與分析

      2.1 土柱產(chǎn)流及水化學(xué)特征

      進樣開始,非消落帶與消落帶土柱出流液中Br-相對濃度(實時濃度與背景液濃度0的比值)均維持在較低水平(/0<0.02)(圖1)。淋洗體積為860 mL時(0.74 PV),非消落帶土柱淋洗液中Br-相對濃度快速增長,累計淋洗體積為1 671 mL時(1.43 PV),Br-相對濃度達到峰值0.84(圖1a)。而對于消落帶土柱,淋洗體積為1 109 mL時(0.79 PV),非消落帶土柱淋洗液中Br-相對濃度快速增長,累計淋洗體積為1885 mL時(1.34 PV),Br-相對濃度達到峰值0.91(圖1b)。但2個土柱中Br-均并未完全穿透(/0<1)。沖洗階段,2個土柱中Br-濃度均呈現(xiàn)快速降低和長拖尾的特征。非消落帶與消落帶土柱出流液中Br-的回收率分別為67.9%和76.3%。消落帶土壤總孔隙度相對更高(表1)可能是其中Br-回收率更高的主要原因。

      非消落帶土柱出流液中性偏酸(圖1a),而消落帶土柱出流液中性偏堿(圖1b),與各自土壤自身酸堿性相符(表1),且兩者pH值均無明顯變化趨勢,變異相對最低(變異系數(shù)分別為0.02和0.01)。非消落帶土柱出流液EC均值為 (108.8±48.2)S/cm,在進樣階段緩慢增加后維持平穩(wěn),沖洗階段較快降低后緩慢降低。消落帶土柱出流液EC均值為 (138.4±55.1)S/cm,進樣階段平穩(wěn)增加而在沖洗階段快速降低。2個土柱出流液中Ca2+和Mg2+的變化規(guī)律幾乎一致且與EC的變化動態(tài)相似。但消落帶土柱出流液中二價陽離子濃度均顯著高于(<0.01)非消落帶土柱出流液。非消落帶出流液DOC濃度呈現(xiàn)先增加后逐漸降低再總體快速增加的變化趨勢。相比之下,消落帶土柱出流液中DOC濃度沒有明顯變化趨勢,但進樣階段DOC濃度稍稍高于沖洗階段DOC濃度,且2個階段DOC濃度均存在更頻繁的波動。

      2.2 飽和土壤中膠體顆粒釋放與遷移特征

      進樣階段,非消落帶土柱出流液中膠體顆粒初始濃度為88.0 mg/L。淋洗體積為152 mL(0.13 PV)時膠體顆粒濃度增加至峰值147.89 mg/L,此后膠體顆粒濃度迅速降低,淋洗體積達582 mL(0.5 PV)后膠體顆粒濃度呈現(xiàn)持續(xù)緩慢減少的變化趨勢(圖1a)。而在沖洗階段,淋洗體積達3 899 mL(3.4 PV)時,膠體顆粒濃度先較快增長至峰值83.9 mg/L,后呈現(xiàn)總體緩慢降低的變化趨勢。總的來說,非消落帶土柱出流液膠體顆粒濃度均值為72.86 mg/L且變異較小(變異系數(shù)為0.21)。相比之下,消落帶土柱出流液中膠體顆粒濃度在進樣階段總體降低(184.58~28.04 mg/L),而在沖洗階段,膠體顆粒濃度總體逐漸增加(21.18~97.58 mg/L),但不同階段膠體顆粒濃度均呈現(xiàn)較大波動(圖1b)。消落帶土柱出流液中膠體顆粒濃度均值為84.77 mg/L且變異較大(變異系數(shù)為0.46)。非消落帶土柱膠體累計釋放量為531.65 mg,且進樣階段和沖洗階段膠體釋放量接近(表2)。而消落帶土柱膠體累計釋放量為714.43 mg,比非消落帶土柱高34.4%,且進樣階段膠體釋放量占62.6%。

      表2 非消落帶和消落帶土柱膠體釋放量

      非消落帶土柱出流液中膠體顆粒濃度與EC、Ca2+和Mg2+濃度極顯著負相關(guān)(<0.01),同時與DOC濃度顯著正相關(guān)(<0.05)(表3)。多元線性回歸分析的結(jié)果同樣證實了EC和Ca2+對膠體顆粒釋放及遷移動態(tài)的重要性(表3)。不同的是,消落帶土柱出流液膠體顆粒濃度與EC、Ca2+和Mg2+相關(guān)性均不顯著,但與DOC濃度極顯著正相關(guān)(=0.677,<0.01),多元回歸分析也證實DOC是消落帶飽和土柱中膠體顆粒釋放及遷移的決定性因子。

      表3 膠體顆粒濃度與水化學(xué)性質(zhì)參數(shù)相關(guān)及多元回歸分析結(jié)果

      注:**和*分別表示在0.01和0.05顯著性水平上相關(guān)(雙尾檢驗)。

      Note: ** and * indicate the correlation is significant at the 0.01 and 0.05 level (2-tailed), respectively.

      此外,層次分割結(jié)果表明,EC對非消落帶土柱出流液中膠體顆粒動態(tài)變化的解釋率最高(16.0%,表4)且Ca2+和Mg2+也具有不可忽視的貢獻(分別為6.7%和5.7%)。而DOC對消落帶土柱出流液中膠體顆粒動態(tài)變化的解釋率高達42.3%,遠遠高于其他水化學(xué)參數(shù)的解釋度(<5%)(表4)。因此,對于非消落帶和消落帶土柱來說,層次分割定量分析的結(jié)果與相關(guān)及多元回歸定性分析的結(jié)果是一致的。

      表4 基于層次分割理論的水化學(xué)指標對膠體動態(tài)的解釋率

      2.3 顆粒粒徑分布特征

      懸浮顆粒粒徑分布是表征水體受顆粒結(jié)合態(tài)污染物潛在風(fēng)險的重要指標[7]。由圖2a可知,非消落帶土柱不同時刻出流液中PSD曲線以單峰型為主,峰值粒徑(頻率分布曲線峰值對應(yīng)的粒徑,d)和中值粒徑(累計頻率50%時對應(yīng)的粒徑,50)分別為26.11~34.25和22.48~27.71m。但沖洗階段累計淋洗體積為4 077 mL(3.5 PV)和5 241 mL(4.5 PV)時,PSD分別在344及517m處出現(xiàn)了較弱的次鋒。PSD曲線隨淋洗時間的變化沒有明顯變化趨勢,不同于文獻中非擾動沙壤土柱淋洗液PSD隨淋洗時間逐漸減小的報道[13],可能與本研究中土壤結(jié)構(gòu)異質(zhì)性更高導(dǎo)致的顆粒釋放及遷移的隨機性更強有關(guān)??偟膩碚f,淋洗液中膠體(<2m)體積占比<1%,懸浮泥沙(<10m)占比相對較高(7.28%~14.28%),表明非消落帶土壤淋洗液以粗顆粒為主,但泥沙顆粒結(jié)合態(tài)污染物有一定遷移潛力。經(jīng)超聲振蕩后,PSD曲線均變成單峰型且向細顆粒方向產(chǎn)生微弱偏移,50降低4.8%~27.6%。

      相比之下,消落帶出流液雙峰型PSD主要出現(xiàn)在進樣階段(圖2b)。d(13.25~19.90m)和50(14.98~22.90m)均遠遠小于非消落帶土柱出流液的相應(yīng)值,且膠體和懸浮泥沙PSD的平均占比分別比非消落帶土柱出流液膠體和懸浮泥沙的相應(yīng)值高39.5%和11.4%。因此,在降雨入滲過程中,消落帶土壤相對非消落帶土壤具有更大的顆粒結(jié)合態(tài)污染物釋放及遷移輸出潛力,這可能也是造成庫區(qū)水體面源污染的重要原因。圖2b可以看出,超聲振蕩后,PSD曲線均變成單峰型且向細顆粒方向有較大程度偏移,50降低20.0%~52.7%,表明消落帶土柱出流液中顆粒的絮凝作用顯著。

      3 討 論

      本研究中消落帶和非消落帶飽和土柱膠體釋放濃度均遠遠高于干濕交替作用下原狀飽和土柱膠體釋放濃度(<40 mg/L)[14]以及地塊尺度近飽和條件下紫色土壤中流和裂隙潛流中膠體顆粒原位釋放濃度[15],與填裝土柱(農(nóng)田土壤和黃土)中膠體釋放濃度與釋放量具有可比性[16]。這個結(jié)果表明,三峽庫區(qū)紫色土具有較大的水分散性和可侵蝕性以及較高的膠體結(jié)合態(tài)污染物遷移潛力。

      膠體顆粒的釋放及遷移動態(tài)受水力學(xué)和水化學(xué)性質(zhì)的雙重影響。本研究中飽和條件流速穩(wěn)定,水力剪切及裹挾作用對膠體顆粒遷移動態(tài)的影響是相對不變的,而水化學(xué)性質(zhì)指標較多且變化較大。膠體顆粒濃度與水化學(xué)因素的相關(guān)分析、多元回歸分析以及層次分割結(jié)果從定性和定量角度揭示了EC、Ca2+和Mg2+對非消落帶土壤中膠體顆粒釋放及遷移動態(tài)負向影響以及DOC對消落帶和非消落帶土壤中膠體顆粒釋放及遷移動態(tài)的正向影響。非消落帶土柱淋洗液的EC低于坡耕地紫色土地下徑流的EC,交換性陽離子尤其是Ca2+的平均濃度為(13.45±6.06)mg/L,遠低于紫色土膠體顆粒的臨界絮凝濃度(CCC,Critical Coagulation Concentration,CCC=24 mg/L Ca2+)[15]。根據(jù)DLVO理論[17],這種水化學(xué)條件有利于膠體顆粒的擴散雙電層向外擴張,從而導(dǎo)致膠體與土壤基質(zhì)界面間的負電荷排斥能阻增強,層間距增大,土壤表面對膠體顆粒的吸持作用減弱,進而促進膠體顆粒的釋放。其他柱試驗研究也報道了類似的結(jié)果[18-19]。而地塊尺度原位觀測結(jié)果也證實,土壤孔隙水與雨水混合后EC的降低能促進多孔介質(zhì)中膠體顆粒的釋放與遷移[11]。因此,非消落帶土壤在降雨入滲時,可能因雨水對土壤溶液的稀釋作用大大降低EC或Ca2+和Mg2+濃度,從而促進土壤膠體的釋放。上述水化學(xué)條件在促進膠體顆粒分散的同時,也能有效減少膠體顆粒的絮凝,這也是非消落帶土柱淋洗液超聲振蕩后PSD幾乎無明顯變化的主要原因。

      與非消落帶土柱相反,消落帶土柱淋洗液的EC更高,Ca2+濃度平均值為(43.69±11.93)mg/L,是紫色土膠體顆粒CCC的1.8倍[15]。因而,消落帶土柱中膠體顆粒的擴散雙電層被壓縮,從而減小膠體顆粒與土壤基質(zhì)間的負電荷能阻,不利于膠體顆粒從土壤基質(zhì)表面釋放及遷移輸出。但消落帶土柱中膠體顆粒釋放量比非消落帶土柱高34.4%(表2),造成這個差異的原因主要與消落帶土壤DOC特性有關(guān)(表4)。本研究中消落帶為農(nóng)田生態(tài)系統(tǒng)消落帶,土壤微生物群落豐富,消落帶長期淹水-落干交替作用造成微生物和植物(包括根系)殘體來源的溶解性有機質(zhì)(DOM,Dissolved Organic Matter)的緩慢分解和消落帶土壤中有機質(zhì)的相對富集(表1)。研究證實,消落帶土壤DOM腐殖化程度較低[20],因而具有較高的DOC溶出潛力。溶液中DOC濃度增加,DOC分子容易吸附于土壤或膠體顆粒表面。一方面,膠體顆粒表面吸附的有機質(zhì)分子對膠體表面基團的電荷修飾導(dǎo)致負電性增強[21],從而增加膠體與土壤表面的排斥性能阻,促進膠體顆粒釋放進入溶液中。另一方面,土壤表面吸附點位的減少可以減少土壤對已釋放膠體顆粒的再吸附[22]。此外,紫色土中有機質(zhì)-無機礦物復(fù)合度較高,在高DOM含量的土壤中極易形成有機-無機復(fù)合膠體[11]。文獻中也報道了環(huán)境介質(zhì)中DOM能提高膠體顆粒的穩(wěn)定性(減少膠體與膠體的絮凝或被固相介質(zhì)吸附的可能)和長距離遷移性能[23-24]。因此,消落帶土壤中DOC的溶出可能促進有機-無機復(fù)合膠體的釋放。今后在三峽庫區(qū)消落帶土壤管理過程中,應(yīng)該注重消落帶土壤DOC的來源及其與土壤膠體偶合并輔助污染物遷移的可能性,同時通過減控土壤DOC的流失,可能有助于減少消落帶土壤中膠體顆粒的釋放和遷移通量。已有研究表明,三峽庫區(qū)非消落帶紫色土坡耕地是消落帶土壤DOC的重要陸源來源,而優(yōu)化施肥配施秸稈能顯著減少紫色土坡耕地DOC的徑流損失[25],地埂植物籬的設(shè)置也能有效就地吸納、截留坡地養(yǎng)分,減少進入消落帶的DOC通量[26]。此外,在消落帶生態(tài)恢復(fù)過程中,強化人工恢復(fù),170 m以下消落帶以多年生草本植被恢復(fù)為主,170~175 m消落帶合理配置喬灌木,也可能提高消落帶植被對土壤碳的固持能力[27-28]。

      除DOC的影響外,消落帶經(jīng)歷周期性的干濕交替后,土壤孔隙結(jié)構(gòu)的變化也可能影響土壤膠體的遷移通量。消落帶土壤總孔隙度更高,土柱淋洗液中Br-出峰時間更早且回收率更高,表明相對于非消落帶土壤,周期性淹水-排干作用導(dǎo)致消落帶土壤中非排水性微孔比例有所減少。相應(yīng)地,土壤有效孔隙如大孔隙(Macropore)、介孔(Mesopore)、排水性微孔(Drainable Micropores)等比例有所增加,或孔隙的連通性增強,從而可能提供產(chǎn)流或物質(zhì)如膠體及膠體結(jié)合態(tài)污染物優(yōu)先遷移的通道。其他原狀土柱研究結(jié)果也證實了優(yōu)先流發(fā)育程度對膠體顆粒釋放的促進作用[29-30]。本研究中消落帶土壤細顆粒(粉粒+黏粒)平均質(zhì)量分數(shù)>75%,在空間異質(zhì)性更強的原位尺度上,細顆粒在降雨淋溶過程中可能堵塞部分土壤大孔隙或減小孔隙的連通性,從而減小膠體顆粒或膠體結(jié)合態(tài)污染物遷移的潛力。因此,關(guān)于消落帶土壤大孔隙優(yōu)先流對產(chǎn)流及膠體遷移的貢獻還需進一步開展定量研究或拓展研究尺度。

      4 結(jié) 論

      1)消落帶原狀飽和土柱中膠體顆粒呈現(xiàn)先快速釋放,再緩慢平穩(wěn)釋放的特征,淋洗液中膠體顆粒濃度范圍為21.18~184.58 mg/L,且存在較大的時間變化(變異系數(shù)為0.46)。膠體顆粒累計釋放量為714.43 mg,比非消落帶土柱高34.4%。

      2)消落帶土柱淋洗液中峰值粒徑為13.25~19.90m,膠體和懸浮泥沙的平均占比分別比非消落帶土柱淋洗液高39.5%和11.4%。消落帶土柱淋洗液中顆粒絮凝程度高,經(jīng)超聲振蕩后,淋洗液PSD曲線向細顆粒方向產(chǎn)生較大偏移。

      3)EC、Ca2+和Mg2+濃度是影響非消落帶土柱飽和出流液中膠體顆粒釋放的主要水化學(xué)因素,而DOC濃度是消落帶飽和土柱中膠體顆粒釋放的主要影響因素(=0.677,<0.01),對膠體顆粒動態(tài)變化的解釋度高達42.3%。建議加強減控消落帶土壤DOC流失,進而有效降低消落帶土壤膠體顆粒促進面源污染物如農(nóng)化物質(zhì)遷移進入庫區(qū)水體的通量。

      [1] Bao Y, Gao P, He X. The water-level fluctuation zone of Three Gorges Reservoir-A unique geomorphological unit[J]. Earth-Science Reviews, 2015, 150: 14-24.

      [2] 鐘榮華,賀秀斌,鮑玉海,等. 狗牙根和牛鞭草的消浪減蝕作用[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(2):133-140.

      Zhong Ronghua, He Xiubin, Bao Yuhai, et al. Role ofLandin wave attenuation and erosion control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(2): 133-140. (in Chinese with English abstract)

      [3] 賀秀斌,鮑玉海. 三峽水庫消落帶土壤侵蝕與生態(tài)重建研究進展[J]. 中國水土保持科學(xué),2019,17(4):160-168.

      He Xiubin, Bao Yuhai. Research advances on soil erosion and ecological restoration in the riparian zone of the Three Gorges Reservoir[J]. Science of Soil and Water Conservation, 2019, 17(4): 160-168. (in Chinese with English abstract)

      [4] Missong A, Holzmann S, Bol R, et al. Leaching of natural colloids from forest topsoils and their relevance for phosphorus mobility[J]. Science of the Total Environment, 2018, 634: 305-315.

      [5] Srilert C, Niruch K. Facilitated transport of cadmium with montmorillonite KSF colloids under different pH conditions in water-saturated sand columns: Experiment and transport modeling[J]. Water Research, 2018, 146: 216-231.

      [6] Zhang Q, Yu G, Zhou Q, et al. Eco-friendly interpenetrating network hydrogels integrated with natural soil colloid as a green and sustainable modifier for slow release of agrochemicals[J/OL]. Journal of Cleaner Production, [2020-07-15]. https://doi.org/10.1016/j.jclepro.2020.122060

      [7] 陳太麗,史忠林,王永艷,等. 三峽水庫典型支流消落帶泥沙顆粒態(tài)磷復(fù)合指紋示蹤研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(20):118-124.

      Chen Taili, Shi Zhonglin, Wang Yongyan, et al. Fingerprinting particulate phosphorus absorbed by sediments for riparian zone deposits in tributary of Three Gorges Reservoir[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 118-124. (in Chinese with English abstract)

      [8] Jahan S, Alias Y, Bin A B, et al. Transport and retention behavior of carbonaceous colloids in natural aqueous medium: Impact of water chemistry[J]. Chemosphere, 2018, 217: 213-222.

      [9] 鮮青松,唐翔宇. 薄層紫色土坡耕地膠體顆粒隨地表徑流及裂隙潛流遷移規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(13):143-150.

      Xian Qingsong, Tang Xiangyu. Transportation regularity of colloid particle with surface runoff andfracture flow from sloping farmland in thin purple soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(13): 143-150. (in Chinese with English abstract)

      [10] Cui J, Tang X, Zhang W, et al. The effects of timing of inundation on soil physical quality in the water-level fluctuation zone of the Three Gorges Reservoir Region, China[J]/OL. Vadose Zone Journal, [2020-07-15]. https://doi.org/10.2136/vzj2018.03.0043

      [11] Zhang W, Chen J, Xian Q, et al. Dynamics and sources of colloids in shallow groundwater in lowland wells and fracture flow in sloping farmland[J]. Water Research, 2019, 156: 252-263.

      [12] Chevan A, Sutherland M. Hierarchical partitioning[J]. American Statian, 1991, 45(2): 90-96.

      [13] Jacobsen O, Moldrup P, Larsen C, et al. Particle transport in macropores of undisturbed soil columns[J]. Journal of Hydrology, 1997, 196(1-4): 185-203.

      [14] Mohanty S, Saiers J, Ryan J. Colloid mobilization in a fractured soil during dry-wet cycles: Role of drying duration and flow path permeability[J]. Environmental Science & Technology, 2015, 49: 9100-9106.

      [15] Zhang W, Tang X, Xian Q, et al. A field study of colloid transport in surface and subsurface flows[J]. Journal of Hydrology, 2016, 542: 101-114.

      [16] 商書波. 降雨對土壤膠體釋放與遷移的影響研究[J]. 水土保持學(xué)報,2009,23(6):199-202.

      Shang Shubo. Study on the release and migration of soil colloids with rainfall[J]. Journal of Soil and Water Conservation, 2009, 23(6):199-202. (in Chinese with English abstract)

      [17] Sun Y, Pan D, Wei X, et al. Insight into the stability and correlated transport of kaolinite colloid: Effect of pH, electrolytes and humic substances[J]/OL. Environmental Pollution, [2020-07-15]. https://doi.org/10.1016/j.envpol.2020.115189

      [18] Masciopinto C, Visino F. Strong release of viruses in fracture flow in response to a perturbation in ionic strength: Filtration/retention tests and modeling[J]. Water Research, 2017, 126: 240-251.

      [19] Albarran N, Degueldre C, Missana T, et al. Size distribution analysis of colloid generated from compacted bentonite in low ionic strength aqueous solutions[J]. Applied Clay Science, 2014, 95: 284-293.

      [20] 高潔,江韜,李璐璐,等. 三峽庫區(qū)消落帶土壤中溶解性有機質(zhì)(DOM)吸收及熒光光譜特征[J]. 環(huán)境科學(xué),2015,36(1):151-162.

      Gao Jie, Jiang Tao, Li Lulu, et al. Ultraviolet-Visible (UV-Vis) and fluorescence spectral characteristics of dissolved organic matter (DOM) in soils of water-level fluctuation zones of the Three Gorges Reservoir region[J]. Environmental Science, 2015, 36(1): 151-162. (in Chinese with English abstract)

      [21] Xu H, Xu M, Li Y, et al. Characterization, origin and aggregation behavior of colloids in eutrophic shallow lake[J]. Water Research, 2018, 142: 176-186.

      [22] Yang X, Zhang Y, Chen F, et al. Interplay of natural organic matter with flow rate and particle size on colloid transport: Experimentation, visualization, and modeling[J]. Environmental Science & Technology, 2015, 49(22): 13385-13393.

      [23] Kida M, Myangan O, Oyuntsetseg B, et al. Dissolved organic matter distribution and its association with colloidal aluminum and iron in the Selenga River Basin from Ulaanbaatar to Lake Baikal[J]. Environmental Science and Pollution Research, 2018, 25(12): 11948-11957.

      [24] Zhou Y, Cheng T. Influence of natural organic matter in porous media on fine particle transport[J]. Science of the Total Environment, 2018, 627: 176-188.

      [25] 熊子怡,鄭杰炳,王丹,等. 不同施肥條件下紫色土旱坡地可溶性有機碳流失特征[J/OL]. 環(huán)境科學(xué),[2020-07-15]. https://doi.org/10.13227/j.hjkx.202007139

      Xiong Ziyi, Zheng Jiebing, Wang Dan, et al. Characteristics of dissolved organic carbon loss in purple soil sloping field with different fertilization treatment[J/OL]. Environmental Science, [2020-07-15]. https://doi.org/10.13227/j.hjkx.202007139 (in Chinese with English abstract)

      [26] 呂文星. 三峽庫區(qū)坡耕地“地埂+植物籬”結(jié)構(gòu)及營建模式[D]. 北京:北京林業(yè)大學(xué),2011.

      Lv Wenxing. Structure and Construct Mode of Terrace and Hedgerow in Sloping Farmland in the Three Gorges Reservoir Area[D]. Beijing: Beijing Forestry University, 2011. (in Chinese with English abstract)

      [27] Hussain M, Robertson G, Basso B, et al. Leaching losses of dissolved organic carbon and nitrogen from agricultural soils in the upper US Midwest[J/OL]. Science of the Total Environment, 2020-07-15. https://doi.org/10.1016/j.scitotenv.2020.139379

      [28] 王婭儆,陳芳清,張淼,等. 不同植被恢復(fù)模式下三峽庫區(qū)萬州段消落帶土壤養(yǎng)分及其空間分布特征[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報,2016,33(2):127-133.

      Wang Yajing, Chen Fangqing, Zhang Miao, et al. Characteristics of soil nurtrient and spatial distribution on riparian zone restored by different vegatation restoration methods at Wanzhou section in the Three Gorges Reservoir area, China[J]. Journal of Agricultural Resources and Environment, 2016, 33(2): 127-133. (in Chinese with English abstract)

      [29] Norgaard T, Paradelo M, Moldrup P, et al. Particle leaching rates from a loamy soil are controlled by the mineral fines content and the degree of preferential flow[J]. Journal of Environmental Quality, 2018, 47(6): 1538-1545.

      [30] Mohanty S, Saiers J, Ryan J. Colloid mobilization in a fractured soil: Effect of pore-water exchange between preferential flow paths and soil matrix[J]. Environmental Science & Technology, 2016, 50(5):2310-2317.

      Soil colloid release and transport in the water level fluctuation zone of the Three Gorges Reservoir

      Zhang Wei1, Sun Honglei2,3, Tang Xiangyu4※

      (1.,,400067,; 2..,.,621002,; 3.,,611756,; 4.,,,610041,)

      Soil colloids are generally defined as fine particleswith diameters ranging between the nanoscale (down to 10 nm) and microscale (2m). As colloids are characterized by large surface areas and active functional groups, they exhibit strong affinities to hydrophobic contaminants such as phosphors, heavy metals and pharmaceuticals. In addition, natural colloids in the vadose zone are negatively charged, which potentially decreases the possibilities of colloid straining and/or retention by soil matrix. As such, a great potential of environmental risk from natural colloids is posed to the shallow groundwater. In the Three Gorges Reservoir (TGR), the Water-Level Fluctuation Zone (WLFZ) actsas the final barrier before the entrance of terrestrial contaminants into the reservoir water. High intensity and periodic wet-dry cycles in the WLFZ potentially affect soil physicochemical properties, internal structure and erodibility, which further influences the release and transport of soil colloids. However, the systematic investigation is still lacking regarding the release dynamics and transport potentials of soil colloids from the WLFZ or the riparian soil subject to periodic wet-dry cycles. The investigation of colloid release and transport is also highly demanding for the evaluation of colloid-facilitated contaminant transport into the reservoir water. In this study, the release and transport dynamics of soil colloids were explored in the intact soil columns from the WLFZ at an altitude of 160 m and the non-WLFZ at an altitude of 177 m within the TGR. Column-scale leaching experiments were carried out in the saturated flows, where the conservative tracer (Br-) was used as an indicator of the degree of preferential flow in the columns. Correlation and regression analysis, as well as hierarchical partitioning were applied to identify the effects of critical factors of water chemistries on the release and transport dynamics of soil colloids. The results showed that colloid concentration of the leachate from the WLFZ generally showed a rapid decrease from 184.58 to 28.04 mg/L within 0-3 pore volumes of injection, followed by a slow increase from 21.18 to 97.58 mg/L within 3-6 pore volumes. A large temporal variation of colloid release from the WLFZ was observed with a variation coefficient of 0.46. The accumulated amount of colloid release from the WLFZ column was 714.43 mg within 6 pore volumes of leaching, which was 34.4% higher than the released colloid from the non-WLFZ column. The peak and median size of the leached particles from the WLFZ column were 13.25-19.90m and 14.98-22.90m, respectively, both of which were much smaller than those from the non-WLFZ column. These results indicated that the periodic alternations of impoundment and exposure could contribute to the release and transport potential of colloid and fine particles from the soil in the WLFZ. Dissolved Organic Carbon (DOC) was identified to be the critical influential factor for the release of soil colloid from the WLFZ, showing a high explanation rate of 42.3% to the dynamic of colloid concentration. In contrast, water chemistries including EC, Ca2+and Mg2+, showed a stronger effect on colloid release and transport in the soil of the non-WLFZ. The reduction of DOC loss from the WLFZ soil can be prioritized to alleviate the released and transport potential of soil colloid from the WLFZ. A strong suggestion was proposed to explore the potential sources of DOC in the soil of the WLFZ, as well as the potential transport of various contaminants such as agricultural wastes facilitated by DOC-colloid associates into the reservoir water in the future.

      colloid; transport; runoff; soil erosion; water level fluctuation zone; Three Gorges Reservoir

      張維,孫虹蕾,唐翔宇. 三峽水庫消落帶土壤膠體釋放與遷移特征[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(1):188-194.doi:10.11975/j.issn.1002-6819.2021.01.023 http://www.tcsae.org

      Zhang Wei, Sun Honglei, Tang Xiangyu. Soil colloid release and transport in the water level fluctuation zone of the Three Gorges Reservoir[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 188-194. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.023 http://www.tcsae.org

      2020-09-24

      2020-12-30

      國家自然科學(xué)基金項目(41601539);重慶市教委科學(xué)技術(shù)研究項目(KJ1600615)

      張維,博士,副教授,主要從事農(nóng)業(yè)資源環(huán)境的研究。Email:weizhang@ctbu.edu.cn

      唐翔宇,博士,研究員,主要從事農(nóng)業(yè)資源環(huán)境的研究。Email:xytang@imde.ac.cn

      10.11975/j.issn.1002-6819.2021.01.023

      S15

      A

      1002-6819(2021)-01-0188-07

      猜你喜歡
      流液土柱膠體
      降雨條件下植物修復(fù)分層尾礦土壤重金屬遷移的模擬分析
      微納橡膠瀝青的膠體結(jié)構(gòu)分析
      石油瀝青(2022年2期)2022-05-23 13:02:36
      光學(xué)玻璃電熔窯流液洞的數(shù)值模擬分析
      硅酸鹽通報(2021年1期)2021-02-23 01:49:54
      黃河水是膠體嗎
      分層土壤的持水性能研究
      母豬子宮內(nèi)膜炎和產(chǎn)道惡露綜合征診治
      羅布麻莖傷流液成分研究
      不同化學(xué)浸取劑對土壤鎘淋溶過程影響
      化工管理(2017年1期)2017-03-05 23:32:20
      不同灌水量對2種鹽堿土的洗鹽效果比較
      康惠爾水膠體敷料固定靜脈留置針對靜脈炎的預(yù)防效果
      酒泉市| 都江堰市| 开化县| 博客| 法库县| 金沙县| 南宫市| 从江县| 宣威市| 邹城市| 莒南县| 威海市| 东丰县| 纳雍县| 西安市| 塔河县| 萨迦县| 永嘉县| 汕头市| 甘南县| 彰武县| 仁寿县| 清水县| 宁津县| 林芝县| 瓮安县| 温泉县| 罗源县| 三门县| 上虞市| 台南市| 洪洞县| 正镶白旗| 普洱| 加查县| 聊城市| 水城县| 项城市| 新密市| 来安县| 商城县|