李福建,徐東憶,吳 鵬,樂 韜,朱 敏,2,李春燕,2,朱新開,2,楊四軍,丁錦峰,2,郭文善,2
機(jī)械耕作和播種方式對(duì)稻茬小麥光合生產(chǎn)和產(chǎn)量的影響
李福建1,徐東憶1,吳 鵬1,樂 韜1,朱 敏1,2,李春燕1,2,朱新開1,2,楊四軍3,丁錦峰1,2,郭文善1,2※
(1. 揚(yáng)州大學(xué)小麥研究中心,揚(yáng)州 225009;2. 江蘇省作物遺傳生理重點(diǎn)實(shí)驗(yàn)室/江蘇省糧食作物現(xiàn)代產(chǎn)業(yè)技術(shù)協(xié)同創(chuàng)新中心,揚(yáng)州 225009;3. 江蘇省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所,南京 210014)
沿淮地區(qū)水稻種植后土壤質(zhì)地黏重加之秸稈還田量大制約了小麥生長,耕作和播種方式的合理搭配是解決這一問題的有效方法。于2017-2019年在泗洪設(shè)置了不同耕作方式(耕翻、免耕)和播種方式(中型帶播、中型條播、小型帶播、小型條播)的田間試驗(yàn),研究了不同處理對(duì)小麥穗數(shù)和穗質(zhì)量形成、光合物質(zhì)生產(chǎn)和產(chǎn)量的影響。結(jié)果表明:1)兩年度均以免耕產(chǎn)量最高,比耕翻分別增產(chǎn)25.4%和15.2%。2)兩年度采用中型機(jī)械播種方式能夠穩(wěn)定實(shí)現(xiàn)較高的籽粒產(chǎn)量,小型條播僅2017-2018年度免耕條件下產(chǎn)量與中型機(jī)械播種方式差異不顯著。帶播相比于條播能夠提高小麥個(gè)體生長空間,增大光合面積,增強(qiáng)了群體干物質(zhì)生產(chǎn)和轉(zhuǎn)運(yùn)能力??偟膩碚f,免耕下采用中型帶播方式播種是改善沿淮地區(qū)稻茬小麥生長發(fā)育和提高產(chǎn)量的一種有效農(nóng)田管理模式,這為當(dāng)?shù)貎?yōu)化選擇和推廣適宜的耕播方式組合提供了依據(jù)。
機(jī)械化;耕作;稻茬小麥;播種方式;產(chǎn)量;光合生產(chǎn)
小麥作為綜合機(jī)械化程度最高的糧食作物,耕種收已基本實(shí)現(xiàn)全程機(jī)械化[1]。耕作和播種環(huán)節(jié)作為小麥生產(chǎn)的最初步驟,對(duì)小麥生長發(fā)育十分重要,因此采用適宜的耕作和播種方式是實(shí)現(xiàn)小麥產(chǎn)量、品質(zhì)和效益提升的重要途徑。
耕作方式直接影響土壤質(zhì)地,改變土壤水、氣、熱和養(yǎng)分供應(yīng),進(jìn)而影響根系的生長、分布和功能,最終影響植株的生長發(fā)育和產(chǎn)量[2-3]。北方旱作生態(tài)區(qū),水分是限制作物產(chǎn)量提升的關(guān)鍵因子。深耕、深松或旋耕技術(shù)解決了秸稈入土的問題,改善了土壤緊實(shí)度和滲透強(qiáng)度,促進(jìn)了水分的滲透和儲(chǔ)存,為作物生長提供充足水分,促進(jìn)了養(yǎng)分吸收和地上部生物量的提高[4-6]。部分地區(qū)通過免耕秸稈覆蓋等措施提高了表層水分的利用效率,促進(jìn)了小麥產(chǎn)量形成[7-8]。南方稻茬小麥生產(chǎn)區(qū)降水豐沛,光溫資源充足,是中國小麥增產(chǎn)潛力最大的區(qū)域[9]。隨著水稻產(chǎn)量的提高,秸稈還田量增加,處理不當(dāng)便會(huì)影響小麥播種質(zhì)量;此外,稻麥兩熟的季節(jié)矛盾突出,水稻騰茬偏晚常造成了小麥播種時(shí)土壤含水量偏高,且水稻土質(zhì)地黏重、耕性差[10-12]。在此條件下,進(jìn)行高質(zhì)量的耕作已成為小麥產(chǎn)量進(jìn)一步提升的重要條件。
播種方式在形成作物合理的田間布局、調(diào)和作物單株和群體生長方面發(fā)揮重要作用。前人關(guān)于稻茬小麥生產(chǎn)區(qū)合理的播種方式已做了相關(guān)研究,李朝蘇等[13-14]研究認(rèn)為機(jī)條播較人工撒播提高了播種均勻度、中前期個(gè)體和群體質(zhì)量與產(chǎn)量。趙青松等[15]提出種肥一體智能化條播機(jī)可較人工撒播并旋耕方式提高出苗率、氮肥利用效率和產(chǎn)量。前人研究多側(cè)重于機(jī)械與人工播種的比較。隨著中國農(nóng)業(yè)機(jī)械綜合性、智能化的發(fā)展,不同類型農(nóng)機(jī)配套農(nóng)藝研究仍有待加強(qiáng)[16-17]。
針對(duì)水稻種植后土壤含水量偏高且質(zhì)地黏重條件下提高耕播質(zhì)量和高效生產(chǎn)的需求,本試驗(yàn)在水稻秸稈全量還田條件下,研究了耕翻和免耕2種耕作方式下4種播種方式對(duì)小麥產(chǎn)量、穗數(shù)和穗質(zhì)量形成、單株和群體光合物質(zhì)生產(chǎn)能力的影響,以期提出適宜沿淮地區(qū)稻茬小麥生產(chǎn)的機(jī)械化耕播組合方式,為稻茬小麥大面積機(jī)械化生產(chǎn)提供理論和實(shí)踐參考。
試驗(yàn)于2017-2019年在江蘇省泗洪縣稻麥科技綜合示范基地(33°36′N,118°27′E)進(jìn)行。試驗(yàn)田前茬為水稻,采用半喂入式收割機(jī)收割,秸稈粉碎全量還田,還田量約為8 200 kg/hm2。試驗(yàn)期間的氣象數(shù)據(jù)由泗洪縣氣象局提供(圖1)。試驗(yàn)土壤為黏壤土,2017-2018季(2018)播種前0~20 cm土壤含全氮1.87 g/kg、堿解氮116.72 mg/kg、速效磷33.91 mg/kg、速效鉀78.35 mg/kg、有機(jī)質(zhì)27.91g/kg;2017年10-11月總降水量達(dá)146.3 mm(圖1a,多雨年份),造成播種前土壤偏濕(土壤相對(duì)含水量為84%);供試小麥品種為揚(yáng)麥23。2018-2019季(2019)播種前0~20 cm土壤含全氮1.89 g/kg、堿解氮127.12 mg/kg、速效磷33.53 mg/kg、速效鉀89.46 mg/kg、有機(jī)質(zhì)26.75 g/kg;2018年10-11月總降水量僅55.5 mm(圖1b,少雨年份),播種前土壤墑情適宜(土壤相對(duì)含水率為75.55%);供試小麥品種為遷麥088。
采用二因素裂區(qū)設(shè)計(jì),以不同耕作方式(T)為主區(qū),設(shè)耕翻(PR)、免耕(NT)2個(gè)水平;以機(jī)械播種方式(S)為裂區(qū),設(shè)中型帶播(S1)、中型條播(S2)、小型帶播(S3)、小型條播(S4)4種方式,共8個(gè)處理。耕翻(PR)處理作業(yè)流程:鏵式犁旋耕1次+旋耕機(jī)旋耕2次,作業(yè)深度18~20 cm;免耕(NT)處理在水稻收割后不進(jìn)行耕作。中型帶播(S1)作業(yè)流程:采用2BMQF-7/14型條帶免耕寬幅施肥播種機(jī)一次性完成旋耕-施肥-寬幅條播-蓋籽-鎮(zhèn)壓,行距35 cm,帶寬10 cm;中型條播(S2)作業(yè)流程:采用2BFG-10(8)230型旋耕智能施肥播種機(jī)一次性完成旋耕-施肥-條播-蓋籽-鎮(zhèn)壓-開溝,行距20 cm;小型帶播(S3)作業(yè)流程:采用2BG-6A型小麥帶狀條播機(jī)一次性完成前置排種-帶狀條播-淺旋蓋籽-鎮(zhèn)壓,行距28 cm,帶寬10 cm;小型條播(S4)作業(yè)流程:采用2BG-6A型條播機(jī)一次性完成旋耕滅茬-條播-蓋籽-鎮(zhèn)壓,行距20 cm。為保證試驗(yàn)條件一致,S1和S2方式均未使用機(jī)械自帶的施肥功能。鏵式犁、旋耕機(jī)、S1和S2方式播種機(jī)的牽引動(dòng)力為64 kW的LX954型東方紅拖拉機(jī),S3和S4方式播種機(jī)的牽引動(dòng)力為9 kW的8-25型常州手扶拖拉機(jī)。
播種量為292.5 kg/hm2,每個(gè)處理播種面積1 200 m2,于三葉期劃定3個(gè)3 m2,按基本苗270×104株/hm2定苗。各處理施純氮240 kg/hm2,基肥、壯蘗肥、拔節(jié)肥、孕穗肥施用比例為5:1:2:2,基肥于播種前施用,壯蘗肥于4~5葉期施用,拔節(jié)肥于倒三葉期施用,孕穗肥于倒一葉期施用。磷肥(P2O5)和鉀肥(K2O)施用量均為144 kg/hm2,基肥、拔節(jié)肥各施50%。于2017年11月6日播種,2018年5月29日收獲。2018年10月22日播種,2018年5月31日收獲。其他管理措施按當(dāng)?shù)馗弋a(chǎn)田進(jìn)行。
1.3.1 莖蘗數(shù)、葉面積和干物質(zhì)積累量
分別于越冬始期、拔節(jié)期、孕穗期、開花期、乳熟期和成熟期調(diào)查單株和田間莖蘗數(shù),各小區(qū)取樣20株,洗凈晾干,將全部綠葉用葉面積儀(LI-3000C,美國)測定葉面積,計(jì)算葉面積指數(shù)。葉面積測定后,按器官分開,105 ℃殺青1 h,80 ℃烘干至恒質(zhì)量,測定干物質(zhì)積累量。
1.3.2 凈光合速率
開花期標(biāo)記同一天開花的麥穗,于開花當(dāng)天(開花期)與開花后21 d(乳熟期),每個(gè)處理隨機(jī)選取長勢一致的旗葉,在晴天9:00-11:00或14:00-16:30用便攜式光合系統(tǒng)(LI-6 400,美國)測定凈光合速率,重復(fù)5次。
1.3.3 產(chǎn) 量
于成熟期每小區(qū)收獲1 m2,脫粒后自然晾干,稱質(zhì)量并測量含水率,換算為13%含水率籽粒產(chǎn)量。
采用Excel 2016建立數(shù)據(jù)庫,用DPS 7.0軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,使用Origin 2018進(jìn)行做圖。處理間差異顯著性采用方差分析(ANOVA),采用最小顯著差異法(Least Significance Difference, LSD)進(jìn)行多重比較。方差分析表明,耕作方式和播種方式與年度存在顯著的互作效應(yīng),因此對(duì)不同年度的耕作方式和播種方式影響分別分析。
由表1可知,不同年份耕作方式和播種方式均顯著影響籽粒產(chǎn)量。耕作方式間籽粒產(chǎn)量兩年度均以NT處理高于PR處理,NT處理比PR處理分別高25.4%和15.2%,說明NT在播種季節(jié)土壤含水量偏高(2018)的情況下增產(chǎn)幅度更為明顯。播種方式對(duì)籽粒產(chǎn)量的影響在年度間存在差異。多重比較表明,2018年以S1和S2顯著高于S3和S4(<0.05),S1與S2差異顯著(<0.05),S3與S4差異不顯著(>0.05);2019年以S1、S2、S3顯著高于S4(<0.05),S1、S2和S3間無顯著差異(>0.05)。另外,兩年度中型播種機(jī)械(S1、S2)播種較小型播種機(jī)械(S3、S4)分別增產(chǎn)0.14%~16.62%和2.16%~7.28%,帶播(S1、S3)相比條播(S2、S4)方式產(chǎn)量較高且兩年度產(chǎn)量較為穩(wěn)定。僅在2018年,耕作與播種互作顯著(<0.05)影響籽粒產(chǎn)量。PR處理下采用S1方式能獲得顯著高的籽粒產(chǎn)量,而NT處理下采用S1、S2和S4均能獲得較高的產(chǎn)量。兩年度均以NT和S1組合獲得最高公頃產(chǎn)量,分別為7 232.7和6 456.0 kg。
由表2可知,耕作方式和播種方式顯著影響各生育時(shí)期莖蘗數(shù)。兩年度,NT處理各生育時(shí)期莖蘗數(shù)顯著高于PR處理(<0.05),分蘗成穗率比PR處理分別高6.5%和7.5%(<0.01),但PR處理越冬始期莖蘗數(shù)/成穗數(shù)的值較NT高(<0.05)。播種方式對(duì)莖蘗數(shù)的影響在年度間存在差異。多重比較表明,2018年各生育時(shí)期莖蘗數(shù)表現(xiàn)為S1和S2顯著高于S3和S4,S1與S2間差異顯著(<0.05)。2019年莖蘗數(shù)由多到少在越冬始期依次為S1、S2、S3、S4,拔節(jié)期和成熟期莖蘗數(shù)依次為S1、S3、S2、S4,各生育時(shí)期莖蘗數(shù)在S1與S2間以及S3與S4間差異均達(dá)顯著水平(<0.05)。相比S3和S4,兩年度S1和S2方式具有較高的分蘗成穗率和越冬始期莖蘗數(shù)/成穗數(shù)。耕作和播種方式互作顯著影響兩年度越冬始期莖蘗數(shù)和越冬始期莖蘗數(shù)/成穗數(shù),以及2018年拔節(jié)期和成熟期莖蘗數(shù)和分蘗成穗率(<0.05)。兩年度均以NT和S1組合下獲得最高穗數(shù),每公頃分別為558.8×104和583×104;同時(shí)分蘗成穗率也較高,分別達(dá)到15.0%和17.1%;2018年度NT下S2與S1無顯著差異。這說明通過提高生育前期(越冬始期)莖蘗數(shù),促進(jìn)分蘗成穗,有利于獲得較高的穗數(shù)。
表1 2018、2019年耕作與播種方式對(duì)籽粒產(chǎn)量的影響
注:數(shù)據(jù)后不同字母表示同一年度處理間在<0.05水平差異顯著;**、*和ns分別代表在<0.01、<0.05和>0.05水平上差異顯著和差異不顯著。T:耕作方式,PR:耕翻,NT:免耕;S:播種方式,S1:中型帶播,S2:中型條播,S3:小型帶播,S4:小型條播。下同。
Note: Different letters following values in the same column mean significant differences between treatments at<0.05 level in the same year; **, *, and ns: significant at<0.01 and<0.05 probability level, and not significant, respectively. T: tillage method, PR: plow tillage followed by rotary tillage, NT: no-tillage, S: sowing method, S1: medium-size strip seeding, S2: medium-size drill seeding, S3: small-size strip seeding, S4: small-size drill seeding.The same below.
表2 2018、2019年耕作和播種方式對(duì)穗數(shù)形成的影響
由表3可以看出,耕作方式和播種方式顯著影響開花期和乳熟期的單莖葉面積、旗葉凈光合速率和單穗質(zhì)量。兩年度,NT處理的單莖葉面積、旗葉凈光合速率均顯著高于PR處理(<0.05),單穗質(zhì)量相比PR處理提高了17.2%和15.5%(<0.05)。2018年單莖葉面積、旗葉凈光合速率和單穗質(zhì)量由大到小依次為S1、S2、S3、S4,多重比較表明,S1與S2間以及S3與S4間的乳熟期旗葉凈光合速率和單穗質(zhì)量差異顯著(<0.05)。2019年單莖葉面積和旗葉凈光合速率由大到小依次為S1、S3、S2、S4,S1與S2間以及S3與S4間在兩耕作方式平均下的單莖葉面積、旗葉凈光合速率和單穗質(zhì)量差異均達(dá)顯著水平(<0.05)。兩年S1比S2的旗葉凈光合速率分別提高了4.5%和24.2%。耕作和播種方式互作顯著影響兩年度開花期凈光合速率,2019年乳熟期的単莖葉面積,2018年乳熟期凈光合速率和單穗質(zhì)量。兩年度均以NT和S1組合下單穗質(zhì)量最高,均達(dá)到1.9 g以上;2018年度 NT下S2與S1無顯著差異。因此提高葉片光合面積,延緩花后凈光合速率的下降,較強(qiáng)的光合能力促進(jìn)了同化物向穗部轉(zhuǎn)運(yùn),有利于提高穗質(zhì)量。
由表4可知,除2018年越冬始期和拔節(jié)期不顯著(>0.05)外,兩年度其他各時(shí)期葉面積指數(shù)在耕作方式間均達(dá)顯著水平(<0.05);兩年度耕作方式間各生育時(shí)期葉面積指數(shù)均表現(xiàn)為NT處理下4種播種方式平均高于PR處理,其中NT處理孕穗期和開花期的葉面積指數(shù)相比PR處理提高了41.3%和29.25%(2018),12%和50.59%(2019)。播種方式顯著影響兩年度各生育時(shí)期葉面積指數(shù),且年度間存在差異。2018年除越冬始期外,其余各生育時(shí)期葉面積指數(shù)由大到小依次為 S1、S2、S3、S4;其中S1 和 S2方式間以及S3和S4方式間在整個(gè)生育期的葉面積指數(shù)差異均不顯著(>0.05),而S1和S2方式開花期和乳熟期葉面積指數(shù)顯著高于S3和S4方式(<0.05)。S3和S4拔節(jié)期和孕穗期差異顯著(<0.05)。2019年各生育時(shí)期葉面積指數(shù)由大到小依次為S1、S3、S2、S4;多重比較結(jié)果表明,S1和S2方式間以及S3和S4方式間差異均達(dá)顯著水平(<0.05)。耕作方式和播種方式互作顯著影響兩年度越冬始期、開花期和乳熟期葉面積指數(shù),以及2019年拔節(jié)期葉面積指數(shù)(<0.05)。兩年度均以NT處理下采用S1方式有利于保證生育前期較高的葉面積,同時(shí)降低后期葉面積指數(shù)的下降速率,2018年NT下S2與S1無顯著差異(>0.05)。
由表5可知,耕作方式和播種方式顯著影響兩年度小麥總干物質(zhì)積累量、拔節(jié)期后各生育時(shí)期的干物質(zhì)積累量和花后干物質(zhì)積累量,但未顯著影響收獲指數(shù)。耕作方式間各生育時(shí)期干物質(zhì)積累量均表現(xiàn)為NT處理高于PR處理(<0.05);NT處理的總干物質(zhì)積累量和花后干物質(zhì)積累量分別比PR處理高34.2%和42%(2018),23.3%和75.3%(2019)。播種方式對(duì)干物質(zhì)積累的影響在年度間存在差異。2018年總干物質(zhì)積累量、各生育時(shí)期和花后干物質(zhì)積累量由大到小依次為S1、S2、S4、S3;多重比較結(jié)果表明,S1和S2方式間差異顯著(<0.05),且均顯著高于S3和S4方式(<0.05),S3和S4方式間開花期前差異顯著(<0.05),開花后差異不顯著(>0.05)。2019 年除開花期PR處理下S2略高于S3(>0.05)外,其余耕作方式下各生育期干物質(zhì)積累量和花后干物質(zhì)積累量由大到小依次為S1、S3、S2、S4;多重比較結(jié)果表明,S1和S2方式間以及S3和S4方式間總的和花后干物質(zhì)積累量差異均達(dá)顯著水平(<0.05)。S1相比S2兩年的花后干物質(zhì)積累量分別提高了12.8%和20.4%。耕作方式和播種方式互作顯著影響2018年越冬始期至孕穗期、成熟期和花后干物質(zhì)積累量,以及2019年拔節(jié)期和孕穗期干物質(zhì)積累量。兩年度均在NT和S1組合下促進(jìn)了開花后干物質(zhì)快速積累和轉(zhuǎn)運(yùn);每公頃總生物量也最高,兩年度分別達(dá)15 330.0和18 219.8 kg,2018年NT下S2與S1無顯著差異,2019年NT下S3與S1無顯著差異。
表4 2018、2019年耕作和播種方式對(duì)主要生育時(shí)期葉面積指數(shù)的影響
表5 2018、2019年耕作和播種方式對(duì)主要生育期干物質(zhì)積累量、花后干物質(zhì)積累量和收獲指數(shù)的影響
穗數(shù)是構(gòu)成產(chǎn)量的三因素之一,在基本苗一致的條件下,分蘗能力就是影響穗數(shù)的主要因素,而分蘗能力與苗期降雨量、種子在土壤中的深度直接相關(guān)[18-20]。本研究結(jié)果表明,相比PR處理,NT處理促進(jìn)小麥分蘗較早發(fā)生,且相對(duì)健壯,生育前期顯著高的莖蘗數(shù)奠定了穗數(shù)的數(shù)量基礎(chǔ),這與前人在稻茬小麥生產(chǎn)區(qū)的研究結(jié)果基本一致[21]。稻茬麥區(qū)土壤濕黏,免耕處理適當(dāng)降低了播種深度,種子表層僅有少量的泥土和秸稈,分蘗節(jié)處于地表,分蘗發(fā)生阻力小,低位和有效分蘗多,分蘗成穗數(shù)也相對(duì)較高[12,22]。而耕翻處理會(huì)加大土壤團(tuán)粒結(jié)構(gòu)的孔隙度,透墑漏風(fēng),不利于保溫保墑,加之種子垂直分布、總體播深偏深,不利于種子吸收更多養(yǎng)分,限制了分蘗的發(fā)生和后期發(fā)育[23-24]。
本試驗(yàn)結(jié)果表明,相比小型機(jī)械播種方式,中型機(jī)械播種方式在全生育期都具有較高的莖蘗數(shù)。段劍釗等[25]研究表明,寬幅條播減弱了群體環(huán)境對(duì)分蘗生長發(fā)育的抑制,單株分蘗能力強(qiáng),利于穩(wěn)穗增穗,這與本研究中S1方式莖蘗數(shù)起點(diǎn)高,分蘗成穗率高,利于提高最終穗數(shù)的結(jié)果一致。
研究認(rèn)為,免耕延長了灌漿期旗葉的光合時(shí)間,提高了凈光合速率,有效緩解了小麥光合午休現(xiàn)象和葉綠素的降解,改善了單株的光合性能[26-27]。本試驗(yàn)結(jié)果表明,與PR處理相比,NT開花后單莖葉面積大,凈光合速率高,這有利于光合產(chǎn)物的積累并向穗部轉(zhuǎn)運(yùn)以提高單穗質(zhì)量。免耕處理根系分布較淺,而施用的肥料更多的富集于表層,淺根系更利于吸收淺層更多的養(yǎng)分以促進(jìn)單株生產(chǎn)能力和后期抗衰老能力的提高[12]。
研究表明,機(jī)械勻播、機(jī)械條播和人工撒播的小麥花后的葉面積、旗葉SPAD值和凈光合速率等存在明顯差異,但結(jié)果不盡相同[13,28-29]。造成不同研究結(jié)論的原因可能是田間播種密度和生態(tài)區(qū)的差異。本試驗(yàn)結(jié)果表明,與小型機(jī)械播種方式相比,中型機(jī)械播種方式由于機(jī)械穩(wěn)定性能好,播種均勻性高,因此通風(fēng)透光條件好,利于充分利用光資源,表現(xiàn)為開花后單莖光合面積大,旗葉光合能力高,葉面積和光合速率下降緩慢,小麥單株的生產(chǎn)能力提高。研究表明,與常規(guī)條播相比,寬幅條播通過增加播種幅寬,籽粒分散均勻,單株生長空間較大,改善了個(gè)體的光合性能,花后旗葉葉綠素降解緩慢[25,30-31]。S1由于小麥單株?duì)I養(yǎng)面積大,生長更為健壯,提高了生育后期的光資源利用和抗衰老特性,光合能力最優(yōu),單穗質(zhì)量也最高。
前人研究表明,免耕提高了小麥生育后期的葉面積指數(shù)和整個(gè)生育期的干物質(zhì)積累量以及花后干物質(zhì)轉(zhuǎn)運(yùn)效率[27,32]。本研究結(jié)果表明,相比PR處理,NT處理下整個(gè)生育期葉面積指數(shù)均顯著較高,具有較強(qiáng)的物質(zhì)生產(chǎn)能力,這與前人在稻茬小麥生產(chǎn)區(qū)的研究結(jié)果基本一致。與耕翻相比,免耕處理的小麥具有較強(qiáng)的生長開端優(yōu)勢,后期葉面積指數(shù)和生物量高,表現(xiàn)出較強(qiáng)的光合生產(chǎn)能力[22,33]。
播種方式可合理分布田間作物,充分利用地力和光能,形成良好的通風(fēng)透光條件,對(duì)個(gè)體與群體的協(xié)調(diào)發(fā)展起著至關(guān)重要的作用。研究表明,與人工撒播相比,機(jī)械播種能夠提高小麥中前期的個(gè)體和群體質(zhì)量[13]。本試驗(yàn)結(jié)果表明,相比小型機(jī)械播種方式,中型機(jī)械播種方式在整個(gè)生育期葉面積指數(shù)和干物質(zhì)積累量顯著較高,說明中型機(jī)械播種所構(gòu)建的小麥群體更能夠充分利用全生育期的養(yǎng)分和溫光資源,積累更多的營養(yǎng)物質(zhì)。前人研究表明,與條播相比,寬幅播種方式小麥生育后期冠層結(jié)構(gòu)更為合理,微環(huán)境適宜,光截獲量高,增強(qiáng)了群體干物質(zhì)生產(chǎn)和轉(zhuǎn)運(yùn)能力,利于開花后光合物質(zhì)的生產(chǎn)積累[30-31],本研究結(jié)果與之一致。
耕作和播種方式對(duì)小麥產(chǎn)量的影響因播期、前茬作物、土壤墑情、秸稈還田與否和還田質(zhì)量等表現(xiàn)出明顯的差異[3-4,13]。張向前等[26]在華北地區(qū)的研究表明秸稈不還田條件下,免耕產(chǎn)量顯著高于翻耕;而秸稈還田條件下,顯著低于翻耕。稻茬麥區(qū)的研究表明,在播種期土壤偏爛和水分正常條件下免耕處理的產(chǎn)量表現(xiàn)不一致[21,34]。本試驗(yàn)在土壤黏重和稻秸稈全量還田條件下,NT處理前期分蘗能力強(qiáng),分蘗成穗率高,成熟期獲得了較高的穗數(shù);生育后期具有較大的光合葉面積和凈光合速率,利于提高單穗重、生物量和產(chǎn)量。
前人研究發(fā)現(xiàn),水稻秸稈還田條件下與人工播種小麥相比,機(jī)械播種更利于穩(wěn)定和提高產(chǎn)量[11,15]。本試驗(yàn)研究結(jié)果表明,中型機(jī)械播種方式的籽粒產(chǎn)量穩(wěn)定高于小型播種機(jī)械方式。鄭飛娜等[35]研究認(rèn)為寬幅條播下穗粒數(shù)和千粒質(zhì)量的穩(wěn)定性高,且具有較高的容穗量,產(chǎn)量高于常規(guī)條播。本研究結(jié)果也表明,相比條播(S2、S4)方式,帶播(S1、S3)產(chǎn)量高且穩(wěn)產(chǎn);其中S1方式通過協(xié)同提高穗數(shù)和單穗質(zhì)量,增加了產(chǎn)量。綜合而言,在NT處理下采用S1方式奠定了增產(chǎn)的群體數(shù)量和個(gè)體生產(chǎn)力基礎(chǔ),可在較高穗數(shù)的基礎(chǔ)上提高單穗質(zhì)量,從而實(shí)現(xiàn)高產(chǎn)。
1)水稻秸稈全量還田的黏壤土條件下,兩年度免耕處理小麥籽粒產(chǎn)量較耕翻分別提高了25.4%和15.2%,主要是由于在相同基本苗基礎(chǔ)上提高了單位面積穗數(shù)和單穗質(zhì)量。
2)兩年度中型播種機(jī)械播種較小型播種機(jī)械分別增產(chǎn)0.14%~16.62%和2.16%~7.28%,且產(chǎn)量在年際間和耕作方式間較穩(wěn)定。中型帶播方式較中型條播方式個(gè)體的光合性能得以改善,兩年度開花期凈光合速率分別提高了4.5%和24.2%,促進(jìn)了小麥光合產(chǎn)物的積累,花后干物質(zhì)積累量提高了12.8%和20.4%。
3)免耕直接采用中型帶播方式播種,兩年度均能夠?qū)崿F(xiàn)分蘗早發(fā)和健壯生長,分蘗成穗率分別達(dá)到15.0%和17.1%,且生育中后期植株個(gè)體和群體光合生產(chǎn)能力強(qiáng),促進(jìn)了花后干物質(zhì)積累量的提高,總生物量分別達(dá)15 330和18 219.8 kg/hm2,單穗質(zhì)量均為1.93g,公頃產(chǎn)量分別達(dá)到7 232.7和6 456.0 kg,可作為沿淮地區(qū)稻茬小麥生產(chǎn)可選用的耕播組合方式。本研究是在黏壤土條件下得出的結(jié)果,對(duì)于稻茬麥區(qū)其他土質(zhì)和水分條件下的結(jié)果有待進(jìn)一步驗(yàn)證。
[1] 潘彪,田志宏. 中國農(nóng)業(yè)機(jī)械化高速發(fā)展階段的要素替代機(jī)制研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(9):1-10.
Pan Biao, Tian Zhihong. Mechanism of factor substitution during rapid development of China’s agricultural mechanization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CASE), 2018, 34(9): 1-10. (in Chinese with English abstract)
[2] 胡鈞銘,陳勝男,韋翔華,等. 耕作對(duì)健康耕層結(jié)構(gòu)的影響及發(fā)展趨勢[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2018,35(2):95-103.
Hu Junming, Chen Shengnan, Wei Xianghua, et al. Effects of tillage model on healthy plough layer structure and its development trends[J]. Journal of Agricultural Resources and Environment, 2018, 35(2): 95-103. (in Chinese with English abstract)
[3] Liao Y, Wu W L, Meng F Q, et al. Increase in soil organic carbon by agricultural intensification in northern China[J]. Biogeosciences, 2015, 12(5): 1403-1413.
[4] Chen J, Pang D W, Jin M, et al. Improved soil characteristics in the deeper plough layer can increase grain yield of winter wheat [J]. Journal of Integrative Agriculture, 2020, 19(5): 1215-1226.
[5] 李一,王秋兵. 我國秸稈資源養(yǎng)分還田利用潛力及技術(shù)分析[J]. 中國土壤與肥料,2020,(1):119-126.
Li Yi, Wang Qiubing. Study on potential of straw resource nutrient return to field and application technology in China[J]. Soil and Fertilizer Sciences in China, 2020, (1): 119-126. (in Chinese with English abstract)
[6] 朱長偉,龍潛,董士剛,等. 小麥-玉米輪作體系不同旋耕和深耕管理對(duì)潮土微生物量碳氮與酶活性的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2020,26(1):51-63.
Zhu Changwei, Long Qian, Dong Shigang, et al. Effects of rotary and deep tillage modes on soil microbial biomass carbon and nitrogen and enzyme activities in fluvo-aquic soil under wheat–maize rotation system[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(1): 51-63. (in Chinese with English abstract)
[7] Shao Y H, Xie Y X, Wang C Y, et al. Effects of different soil conservation tillage approaches on soil nutrients water use and wheat-maize yield in rainfed dry-land regions of North China[J]. European Journal of Agronomy, 2016, 81: 37-45.
[8] Yang H K, Wu G, Mo P, et al. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (L.)[J]. Soil and Tillage Research, 2020, 197: 1-14.
[9] 盧布,丁斌,呂修濤,等. 中國小麥優(yōu)勢區(qū)域布局規(guī)劃研究[J]. 中國農(nóng)業(yè)資源與區(qū)劃,2010,31(2):6-12,61.
Lu Bu, Ding Bin, Lü Xiutao, et al. Arrangement planning of Chinese wheat ascendant regions[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2010, 31(2): 6-12, 61. (in Chinese with English abstract)
[10] 胡紅,李洪文,李傳友,等. 稻茬田小麥寬幅精量少耕播種機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(4):24-32.
Hu Hong, Li Hongwen, Li Chuanyou, et al. Design and experiment of broad width and precision minimal tillage wheat planter in rice stubble field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CASE), 2016, 32(4): 24-32. (in Chinese with English abstract)
[11] Zhang S M, Gu K J, Fan P S, et al. Field experiment for the effects of rice straw returning and seeding pattern on wheat seedling emergence and grain yield[J]. Agricultural Science & Technology, 2017, 18(12): 2357-2361, 2382.
[12] 李明,李朝蘇,劉淼,等. 耕作播種方式對(duì)稻茬小麥根系發(fā)育、土壤水分和硝態(tài)氮含量的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2020,31(5):1425-1434.
Li Ming, Li Chaosu, Liu Miao, et al. Effects of different tillage and sowing practices on root growth, soil moisture, and soil nitrate nitrogen content of wheat after rice[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1425-1434. (in Chinese with English abstract)
[13] 李朝蘇,湯永祿,吳春,等. 播種方式對(duì)稻茬小麥生長發(fā)育及產(chǎn)量建成的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(18):36-43.
Li Chaosu, Tang Yonglu, Wu Chun, et al. Effect of sowing patterns on growth, development and yield formation of wheat in rice stubble land [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CASE), 2012, 28(18): 36-43. (in Chinese with English abstract)
[14] 吳新勝,賈昕遠(yuǎn),王熾,等. 稻茬冬小麥不同播種方式和播種量試驗(yàn)研究[J]. 氣象科學(xué),2011,31(S1):67-73.
Wu Xinsheng, Jia Xinyuan, Wang Chi, et al. The influence of sowing style and seeding rate on winter wheat growth in rice stubble land[J]. Journal of the Meteorological Sciences, 2011, 31(S1): 67-73. (in Chinese with English abstract)
[15] 趙青松,朱友理,鐘志仁,等. 稻茬小麥機(jī)械化播種與人工撒播對(duì)比試驗(yàn)研究[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2019,40(6):31-34.
Zhao Qingsong, Zhu Youli, Zhong Zhiren, et al. Comparative experimental research on wheat sowed by machinery versus broadcast in stubble field[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(6): 31-34. (in Chinese with English abstract)
[16] 羅錫文,廖娟,胡煉,等. 提高農(nóng)業(yè)機(jī)械化水平促進(jìn)農(nóng)業(yè)可持續(xù)發(fā)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(1):1-11.
Luo Xiwen, Liao Juan, Hu Lian, et al. Improving agricultural mechanization level to promote agricultural sustainable development[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CASE), 2016, 32(1): 1-11. (in Chinese with English abstract)
[17] 趙閏,石研研,金雪婷,等. 江蘇農(nóng)業(yè)機(jī)械化轉(zhuǎn)型升級(jí)對(duì)策研究[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2020,41(8):217-222.
Zhao Run, Shi Yanyan, Jin Xueting, et al. Study on transformation and upgrading of agricultural mechanization in Jiangsu province[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(8): 217-222. (in Chinese with English abstract)
[18] 李娜娜,田奇卓,王樹亮,等. 兩種類型小麥品種分蘗成穗對(duì)群體環(huán)境的響應(yīng)與調(diào)控[J]. 植物生態(tài)學(xué)報(bào),2010,34(3):289-297.
Li Na’na, Tian Qizhuo, Wang Shuliang, et al. Responses and regulation of canopy microclimate on formation spike from tillers of two types of wheat[J]. Chinese Journal of Plant Ecology, 2010, 34(3): 289-297. (in Chinese with English abstract)
[19] 鄭亭,樊高瓊,王秀芳,等. 耕作方式、播深及覆土對(duì)機(jī)播套作小麥麥苗素質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(5):164-168.
Zheng Ting, Fan Gaoqiong, Wang Xiufang, et al. Effect of tillage management, sowing depth and soil-covering on the seedlings quality of mechanical sowing wheat under intercropping condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CASE), 2011, 27(5): 164-168. (in Chinese with English abstract)
[20] Tao Z Q, Ma S K, Chang X H, et al. Effects of tridimensional uniform sowing on water consumption, nitrogen use, and yield in winter wheat[J]. The Crop Journal, 2019, 7(4): 480-493.
[21] 丁錦峰,樂韜,李福建,等. 耕作方式和施氮量對(duì)稻茬小麥產(chǎn)量構(gòu)成和群體質(zhì)量的影響[J]. 中國農(nóng)學(xué)通報(bào),2019,35(5):93-99.
Ding Jinfeng, Le Tao, Li Fujian, et al. Tillage modes and nitrogen fertilization rates affect yield component and population quality in wheat following rice[J]. Chinese Agricultural Science Bulletin, 2019, 35(5): 93-99. (in Chinese with English abstract)
[22] 袁禮勛,黃鋼,余遙,等. 四川盆地稻茬麥免耕栽培增產(chǎn)機(jī)理研究[J]. 西南農(nóng)業(yè)學(xué)報(bào),1991,4(4):49-56.
Yuan Lixun, Huang Gang, Yu Yao, et al. Yield increasing mechanism of non-tillage culture for wheat following rice in Sichuan Basin[J]. Southwest China Journal of Agricultural Sciences, 1991, 4(4): 49-56. (in Chinese with English abstract)
[23] 黃尚書,鐘義軍,黃欠如,等. 耕作深度及培肥方式對(duì)紅壤坡耕地土壤理化性質(zhì)及作物產(chǎn)量的影響[J]. 中國土壤與肥料,2020,(4):72-83.
Huang Shangshu, Zhong Yijun, Huang Qianru, et al. Effects of tillage depths and fertilizing patterns on soil physical-chemical properties and crop yield in red soil slop field[J]. Soil and Fertilizer Sciences in China, 2020, (4): 72-83. (in Chinese with English abstract)
[24] 顧克軍,張斯梅,顧東祥,等. 稻秸還田與播后鎮(zhèn)壓對(duì)稻茬小麥產(chǎn)量與品質(zhì)的影響[J]. 核農(nóng)學(xué)報(bào),2015,29(11):2192-2197.
Gu Kejun, Zhang Simei, Gu Dongxiang, et al. Effects of rice Straw returning and compaction on grain yield and quality of wheat [J]. Journal of Nuclear Agricultural Sciences, 2015, 29(11): 2192-2197. (in Chinese with English abstract)
[25] 段劍釗,李世瑩,郭彬彬,等. 寬幅播種對(duì)冬小麥群體質(zhì)量及產(chǎn)量的影響[J]. 核農(nóng)學(xué)報(bào),2015,29(10):2013-2019.
Duan Jianzhao, Li Shiying, Guo Binbin, et al. Effects of wide belt planting on population quality and yield in winter wheat[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(10): 2013-2019. (in Chinese with English abstract)
[26] 張向前,趙秀玲,王鈺喬,等. 耕作方式對(duì)冬小麥灌漿期光合性能日變化和籽粒產(chǎn)量的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2017,28(3):885-893.
Zhang Xiangqian, Zhao Xiuling, Wang Yuqiao, et al. Effects of tillage practices on photosynthetic performance diurnal variation during filling stage and grain yield of winter wheat[J]. Chinese Journal of Applied Ecology, 2017, 28(3): 885-893. (in Chinese with English abstract)
[27] 吳金芝,黃明,李友軍,等. 不同耕作方式對(duì)冬小麥光合作用產(chǎn)量和水分利用效率的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2008,26(5):17-21.
Wu Jinzhi, Huang Ming, Li Youjun, et al. Effects of different tillage systems on the photosynthesis functions, grain yield and WUE in winter wheat[J]. Agricultural Research in the Arid Areas, 2008, 26(5): 17-21. (in Chinese with English abstract)
[28] 劉沖,賈永紅,張金汕,等. 播種方式和施磷對(duì)冬小麥群體結(jié)構(gòu)、光合特性和產(chǎn)量的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2020,31(3):919-928.
Liu Chong, Jia Yonghong, Zhang Jinshan, et al. Effects of seeding pattern and phosphorus application on population structure, photosynthetic characteristics and yield of winter wheat[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 919-928. (in Chinese with English abstract)
[29] 鄒兵. 耕播方式及秸稈還田對(duì)皖麥68群體質(zhì)量及產(chǎn)量的影響[D]. 合肥:安徽農(nóng)業(yè)大學(xué),2011.
Zhou Bing. Population Quality and Yield of Wanmai68 under Different Tillage Pattern, Different Sowing Method and Straw Return Field[D]. Hefei: Anhui Agricultural University, 2011. (in Chinese with English abstract)
[30] 趙剛,樊廷錄,李興茂,等. 寬幅播種旱作冬小麥幅間距與基因型對(duì)產(chǎn)量和水分利用效率的影響[J]. 中國農(nóng)業(yè)科學(xué),2020,53(11):2171-2181.
Zhao Gang, Fan Tinglu, Li Xingmao, et al. Effects of wide-range distance and genotype on yield and water use efficiency of winter wheat[J]. Scientia Agricultura Sinica, 2020, 53(11): 2171-2181. (in Chinese with English abstract)
[31] 李世瑩,馮偉,王永華,等. 寬幅播種帶間距對(duì)冬小麥冠層特征及產(chǎn)量的影響[J]. 植物生態(tài)學(xué)報(bào),2013,37(8):758-767.
Li Shiying, Feng Wei, Wang Yonghua, et al. Effects of spacing interval of wide bed planting on canopy characteristics and yield in winter wheat[J]. Chinese Journal of Plant Ecology, 2013, 37(8): 758-767. (in Chinese with English abstract)
[32] 王紅光,于振文,張永麗,等. 耕作方式對(duì)旱地小麥耗水特性和干物質(zhì)積累的影響[J]. 作物學(xué)報(bào),2012,38(04):675-682.
Wang Hongguang, Yu Zhenwen, Zhang Yongli, et al. Effects of tillage regimes on water consumption and dry matter accumulation in dryland wheat [J]. Acta Agronomica Sinica, 2012, 38(4): 675-682. (in Chinese with English abstract)
[33] 湯永祿,李朝蘇,吳春,等. 成都平原周年耕作模式對(duì)稻茬小麥產(chǎn)量與品質(zhì)性狀的持續(xù)效應(yīng)[J]. 中國農(nóng)業(yè)科學(xué),2012,45(18):3721-3732.
Tang Yonglu, Li Chaosu, Wu Chun, et al. Long-lasting effect of year-round tillage patterns on yield and grain quality of wheat in Chengdu plain of China[J]. Scientia Agricultura Sinica, 2012, 45(18): 3721-3732 (in Chinese with English abstract)
[34] Ding J F, Li F J, Le T, et al. Nitrogen management strategies of tillage and no-tillage wheat following rice in the Yangtze River basin, China: Grain yield, grain protein, nitrogen efficiency, and economics[J]. Agronomy, 2020, 10(2), 155: 1-15.
[35] 鄭飛娜,初金鵬,張秀,等. 播種方式與種植密度互作對(duì)大穗型小麥品種產(chǎn)量和氮素利用率的調(diào)控效應(yīng)[J]. 作物學(xué)報(bào),2020,46(3):423-431.
Zheng Feina, Chu Jinpeng, Zhang Xiu, et al. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar[J]. Acta Agronomica Sinica, 2020, 46(3): 423-431. (in Chinese with English abstract)
Effects of mechanical tillage and sowing methods on photosynthetic production and yield of wheat in rice stubble
Li Fujian1, Xu Dongyi1, Wu Peng1, Le Tao1, Zhu Min1,2, Li Chunyan1,2,Zhu Xinkai1,2, Yang Sijun3, Ding Jinfeng1,2, Guo Wenshan1,2※
(1.,,225009,; 2./,225009,;3.,,210014,)
The heavy and sticky soil after rice planting and the increasing rice straws returned into field have restricted subsequent wheat growth in the region along the Huai River. An effective way is to combine the tillage and seeding operation. This study aims to propose the optimal combination of mechanical tillage and seeding for wheat following rice. A field experiment was conducted from 2017 to 2019 in Sihong County, Jiangsu Province, China, in order to investigate the effects of tillage and seeding mode on the formation of spike number and single spike weight, photosynthetic production, and yield of wheat. The tillage included the plow tillage followed by rotary tillage (PR) and the no-tillage (NT). The seeding included medium-size strip seeding, medium-size drill seeding, small-size strip seeding, and small-size drill seeding. The measurement indexes were the number of stem and tiller, leaf area and dry matter accumulation at the main stages, the net photosynthetic rate at the anthesis and milk-ripe stage, tiller fertility, and grain yield. The results showed that: 1) The number of stem and tiller, as well as leaf area index during the whole growth stages, and the leaf area of single stem and net photosynthetic rate of flag leaf at the anthesis and milk-ripe stages were higher under the NT treatment than those under the PR treatment. The weight of a single spike increased by 17.2% and 15.5% in the two seasons under the NT, compared with the PR. 2) The tillage significantly (<0.01) affected tiller fertility. Compared with the PR, the accumulation of dry matter during maturity and post-anthesis stages under the NT treatment were higher by 34.2%, and 42% in 2018, while 23.3%, and 75.3% in 2019, respectively. The grain yield under NT was higher than that under PR by 25.4% in 2018, and 15.2% in 2019. 3) In medium-sized mechanical seeding, the crop was facilitated to well use the nutrient and solar-thermal resources during the whole reproductive period, indicating a high photosynthetic capacity of flag leaf and strong material production. The application of medium-size seeders achieved a much higher grain yield in 2018 and 2019, compared with small-size seeders, without significant difference (>0.05) under the NT treatment in 2018. Compared with the drill seeding, strip seeding improved the individual growth space of wheat, the leaf area, as well as the capacity production and transformation of dry matter. Moreover, the increase of spike number and total biomass was attributed to the strong vigor seedlings before the overwintering stage, early emergence with the rapid growth of tillers, and tiller fertility. A large photosynthetic area of individual leaf and canopy leaves with slowly decreasing leaf area index and improved photosynthetic capacity after the anthesis promoted the rapid accumulation of post-anthesis dry matter, the single spike weight, and grain yield. In the NT condition, the medium-size strip seeding was expected as a sustainable and effective practice to improve the growth and grain yield of wheat following rice in the Huai River plain. The findings can provide a further theoretical basis for the optimal selection of combined tillage and seeding in wheat production following rice.
mechanization; tillage; wheat in rice stubble; seeding method; yield; photosynthetic production
李福建,徐東憶,吳鵬,等. 機(jī)械耕作和播種方式對(duì)稻茬小麥光合生產(chǎn)和產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(5):41-49.doi:10.11975/j.issn.1002-6819.2021.05.005 http://www.tcsae.org
Li Fujian, Xu Dongyi, Wu Peng, et al. Effects of mechanical tillage and sowing methods on photosynthetic production and yield of wheat in rice stubble[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(5): 41-49. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.05.005 http://www.tcsae.org
2020-09-17
2020-11-18
國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0300405、2018YFD0300802);國家自然科學(xué)基金(31771711);江蘇高校優(yōu)勢學(xué)科建設(shè)工程項(xiàng)目;江蘇現(xiàn)代農(nóng)業(yè)(小麥)產(chǎn)業(yè)技術(shù)體系資助
李福建,博士,主要從事小麥機(jī)械化高產(chǎn)栽培與生理技術(shù)研究。Email:fjli_agriculture@163.com
郭文善,教授,主要從事麥類作物栽培與生理研究。Email:wheat@yzu.edu.cn
10.11975/j.issn.1002-6819.2021.05.005
S512.1; S352
A
1002-6819(2021)-05-0041-09