廖嘉明 包鈺韜 陳媛 張登 李華強(qiáng) 歐陽昆唏 陳曉陽
摘?要:?為探究NcEXPA8基因的分子功能,該文以在黃梁木形成層區(qū)域中高表達(dá)的擴(kuò)展蛋白基因NcEXPA8為研究對象,研究其在黃梁木種子萌發(fā)過程中的表達(dá)及其過表達(dá)對擬南芥種子萌發(fā)的影響。該文以黃梁木和擬南芥野生型(WT)(Col-0)種子以及轉(zhuǎn)NcEXPA8基因的擬南芥T3代純合體種子為實(shí)驗(yàn)材料,利用實(shí)時(shí)熒光定量RT-qPCR分析NcEXPA8基因在黃梁木種子萌發(fā)不同階段的表達(dá)量,并分析NcEXPA8基因和擬南芥種子萌發(fā)內(nèi)源相關(guān)基因在擬南芥WT和轉(zhuǎn)基因不同株系萌發(fā)種子中的表達(dá)量,且對擬南芥WT種子和轉(zhuǎn)基因T3代純合體種子在不同處理和不同時(shí)間的萌發(fā)率進(jìn)行比較。結(jié)果表明:NcEXPA8基因在黃梁木種子萌發(fā)不同階段的表達(dá)量存在差異,在種殼破裂時(shí)表達(dá)量最高,隨后降低。與擬南芥WT相比,過表達(dá)NcEXPA8基因不僅顯著提高了種子的萌發(fā)速度,而且提高了對赤霉素的敏感性,降低了對脫落酸的敏感性,但未影響擬南芥內(nèi)源相關(guān)結(jié)構(gòu)基因的表達(dá)。該研究初步分析了黃梁木NcEXPA8基因在種子萌發(fā)中的功能,但其最終確定還需在黃梁木中進(jìn)行驗(yàn)證。
關(guān)鍵詞: 黃梁木, NcEXPA8基因, 種子萌發(fā), 擬南芥
中圖分類號:?S722
文獻(xiàn)標(biāo)識碼:?A
文章編號:?1000-3142(2021)04-0654-08
Abstract:?In order to explore the molecular function of NcEXPA8 gene, which is highly expressed in the cambium region of N. cadamba, NcEXPA8 gene expression during seed germination of N. cadamba and the effect of its overexpression on seed germination of Arabidopsis thaliana were studied. The seeds of Neolamarckia cadamba, Arabidopsis thaliana wild type (WT, Col-0) and T3 homozygote of A. thaliana overexpressing NcEXPA8 gene were selected as experimental materials. Quantitative real-time polymerase chain reaction (RT-qPCR) was used to analyze the expression of NcEXPA8 gene in different stages during seed germination of Neolamarckia cadamba, and also its expression level and that of endogenous related genes in the germinating seeds of A. thaliana WT and T3 transgenic homozygotes. Furthermore, the germination rates of WT and T3 homozygous seeds of Arabidopsis thaliana were compared at different treatments and different time. The results were as follows: The expression level of NcEXPA8 gene was different among different stages during seed germination of Neolamarckia cadamba, and its?expression level was the highest when the seed coat was broken, and then decreased. Compared to wild type of Arabidopsis thaliana, the?overexpression of NcEXPA8 gene not only significantly increased seed germination speed, but also increased the sensitivity to GA and reduced the sensitivity to ABA, but did not affect the expression of endogenous related structural genes in A. thaliana. This study preliminarily analyzes the function of NcEXPA8 gene in seed germination, but its final determination still need to be verified in Neolamarckia cadamba.
Key words: Neolamarckia cadamba, NcEXPA8 gene, seed germination, Arabidopsis thaliana
植物擴(kuò)展蛋白(expansin, 簡稱EXP)首次在黃瓜下胚軸中被發(fā)現(xiàn),是一類負(fù)責(zé)酸性誘導(dǎo)細(xì)胞壁伸展的細(xì)胞壁蛋白,但不具有細(xì)胞壁水解活性(Mcqueen-Mason et al., 1992)。對植物而言,細(xì)胞壁是一種極其重要的結(jié)構(gòu),提供植物所需的機(jī)械支持,同時(shí)為植物組織器官生長發(fā)育提供可塑性;植物的生長發(fā)育需要改變細(xì)胞的大小和形狀,這就需要對細(xì)胞壁的可塑性進(jìn)行調(diào)節(jié)(Marowa et al., 2016)。盡管對于擴(kuò)展蛋白生化作用機(jī)理的了解還不徹底,但大家普遍認(rèn)為擴(kuò)展蛋白參與了細(xì)胞壁可塑性的調(diào)節(jié),即通過打斷細(xì)胞壁微纖絲與基質(zhì)間的非共價(jià)鍵而使細(xì)胞壁軟化,允許細(xì)胞壁多聚物在細(xì)胞膨壓作用下“蠕動”導(dǎo)致細(xì)胞快速伸展(Cosgrove, 2000, 2015)。隨著研究的深入,認(rèn)為擴(kuò)展蛋白對植物各個(gè)組織生長發(fā)育都有重要作用,例如:根(Yu et al., 2011; Boron et al., 2015)、莖(Boron et al., 2015; Li et al., 2017)、葉(Devi et al., 2015; Zhou et al., 2015)和果實(shí)(Minoia et al., 2016)的生長發(fā)育。
黃梁木(Neolamarckia cadamba),又名團(tuán)花樹,隸屬茜草科(Rubiaceae)團(tuán)花屬(Neolamarckia),常綠大喬木,原產(chǎn)中國廣東、廣西和云南南部以及越南、緬甸、馬來西亞等地,由于其生長十分迅速,在1972年的第七屆世界林業(yè)大會上,被各國專家譽(yù)為“奇跡樹”,而且該樹種材質(zhì)好,是膠合板、纖維板和制漿造紙等的理想原料(鄧小梅等,2012)。克隆到黃梁木形成層中高表達(dá)的擴(kuò)展蛋白基因NcEXPA8,并構(gòu)建過表達(dá)載體Pbi121-NcEXPA8轉(zhuǎn)化擬南芥,發(fā)現(xiàn)NcEXPA8基因的過量表達(dá)促進(jìn)了擬南芥植株生長以及莖段纖維細(xì)胞的伸長(Li et al., 2017)。
種子萌發(fā)起始于干種子吸水,結(jié)束于胚根突破包裹胚的種皮(Nonogaki, 2019)。萌發(fā)過程分為2個(gè)連續(xù)的步驟:種皮沿著已經(jīng)裂開的縫破裂,然后僅留胚乳帽覆蓋胚根(Liu et al., 2005),只有在胚乳帽充分軟化后才能被胚根生長穿破,這也標(biāo)志著萌發(fā)過程的結(jié)束(Nonogaki, 2019)。前人研究表明,種子萌發(fā)過程中,編碼修飾細(xì)胞壁蛋白的木葡聚糖基轉(zhuǎn)移酶/水解酶(XTHs)、擴(kuò)展蛋白在擬南芥(Arabidopsis thaliana)、番茄(Lycopersicon esculentum)、芹菜(Lepidium sativum)的胚乳帽區(qū)域均為特異表達(dá)(Chen et al., 2002; Voegele et al., 2011; Sánchez-Montesino et al., 2019),且GA缺乏的突變體(gib-1)種子只有在外源GA存在時(shí)才能萌發(fā),在吸脹12 h內(nèi)GA誘導(dǎo)LeEXP4的表達(dá)(Chen et al., 2002),說明通過細(xì)胞壁修飾引起胚乳帽區(qū)域軟化對種子萌發(fā)起到的促進(jìn)機(jī)理具有較高的保守性。
已有研究表明,在擬南芥擴(kuò)展蛋白家族基因中,AtEXPA2基因在擬南芥萌發(fā)的種子中特異高表達(dá),參與種子萌發(fā)(Yan et al., 2014; Sánchez-Montesino et al., 2019)。此外,還有其他結(jié)構(gòu)基因,如AtMAN7、AtTZF4等也參與了種子萌發(fā)的過程,其中AtTZF4對種子的萌發(fā)起到抑制作用;赤霉素誘導(dǎo)AtMAN7表達(dá)上調(diào),但下調(diào)AtTZF4的表達(dá);ABA誘導(dǎo)AtTZF4表達(dá)上調(diào),但對AtMAN7表達(dá)無調(diào)控作用( Iglesias-Fernandez et al., 2011; Iglesias-Fernandez et al., 2013; Bogamuwa et al., 2013)。因此,本研究分析了NcEXPA8基因在黃梁木種子萌發(fā)過程中不同時(shí)期的相對表達(dá)量,并分析了擬南芥WT和轉(zhuǎn)基因植株中NcEXPA8基因和參與擬南芥種子萌發(fā)的內(nèi)源相關(guān)基因AtEXPA2、AtMAN7和AtTZF4在空白處理和植物激素GA3和ABA處理下的相對表達(dá)量,以及探究了GA3和ABA對擬南芥WT和轉(zhuǎn)基因種子萌發(fā)的影響,試圖為后續(xù)研究NcEXPA8基因在黃梁木種子萌發(fā)中的功能奠定基礎(chǔ)。
1?材料與方法
1.1 材料
本研究以當(dāng)年收集的黃梁木的種子、擬南芥野生型WT(Col-0)以及已獲得的轉(zhuǎn)NcEXPA8基因的擬南芥T3代純合體種子(Li et al., 2017)為材料。
1.2 總RNA的提取與cDNA合成
利用植物RNA試劑盒(Omega)提取總RNA,用40 μL的DEPC水洗脫RNA,于-80 ℃保存?zhèn)溆?。PrimeScript TM RT Master Mix試劑盒(Takara,大連)說明書,將總RNA(0.5 μg)逆轉(zhuǎn)錄為第1鏈cDNA,于-20 ℃保存?zhèn)溆谩?/p>
1.3 熒光定量(RT-qPCR)分析
將合成的第1鏈cDNA稀釋15倍備用,RT-qPCR在羅氏(Roche)LC480定量PCR儀上進(jìn)行,每個(gè)點(diǎn)重復(fù)3次,取平均值分析,以ddH2O代替模板作為實(shí)驗(yàn)的空白對照。RT-qPCR 20 μL反應(yīng)體系如下:2×SYBR Premix Ex Taq II 10 μL,引物 F (10 μmol·L-1) 1 μL,引物R (10 μmol·L-1) 1 μL,cDNA 2 μL,ddH2O 6 μL。反應(yīng)程序如下:95 ℃ 30 s;40個(gè)循環(huán)(95 ℃ 5 s,58 ℃ 30 s,72 ℃ 30 s);72℃ 2 min;進(jìn)行58~95 ℃的熔解曲線分析;40 ℃冷卻30 s。黃梁木和擬南芥的內(nèi)參基因分別為NcCyclophilin和AtPP2AA3(Li et al., 2017),擬南芥AtEXPA2、AtMAN7和AtTZF4基因RT-qPCR引物參考已有的文獻(xiàn)(Iglesias-Fernandez et al., 2013; Bogamuwa et al., 2013; Yan et al., 2014),所用引物見表1。
1.4 材料處理及萌發(fā)試驗(yàn)
黃梁木種子泡于常溫的水中并置于37 ℃恒溫箱24 h;在培養(yǎng)皿中平鋪濾紙并吸足蒸餾水,將浸泡過的種子平鋪于濾紙上,蓋上蓋子,置于光照強(qiáng)度為1 500 lx、16 h光照/8 h黑暗光周期、25 ℃培養(yǎng)箱中培養(yǎng),分別于培養(yǎng)3、6、7、8 d收集種子。根據(jù)Yan et al.(2014)的方法,收集于25 ℃空白處理(水)、10 μmol·L-1 GA3和ABA中浸泡24 h的擬南芥WT和轉(zhuǎn)NcEXPA8基因T3代純合體種子。每個(gè)樣品設(shè)3個(gè)生物學(xué)重復(fù),樣品采集后放入液氮速凍,置于-80 ℃冰箱儲存?zhèn)溆谩?/p>
根據(jù)Wang et al.(2016)的方法,在培養(yǎng)皿中平鋪濾紙并各自吸足蒸餾水、10 μmol·L-1 GA3和ABA,將擬南芥WT和轉(zhuǎn)NcEXPA8基因T3代純合體種子置于濾紙上,每個(gè)培養(yǎng)皿80~100粒種子,蓋上蓋子,4 ℃黑暗中處理3 d,再置于連續(xù)光照強(qiáng)度為1 500 lx、溫度為25 ℃的培養(yǎng)箱中培養(yǎng)。以胚根出現(xiàn)衡量種子已萌發(fā),分別于12、18、24、48 h統(tǒng)計(jì)種子萌發(fā)率,每個(gè)基因型設(shè)4個(gè)生物學(xué)重復(fù)。采用SPSS 19統(tǒng)計(jì)軟件的t檢驗(yàn)進(jìn)行顯著性分析,并計(jì)算在18 h時(shí),GA3和ABA對各基因型種子萌發(fā)的促進(jìn)率和抑制率。
2?結(jié)果與分析
2.1 NcEXPA8基因在黃梁木種子萌發(fā)過程中的表達(dá)分析
黃梁木種子在培養(yǎng)6 d后,胚根才出現(xiàn)(圖1:B),在黃梁木種子萌發(fā)過程的不同階段,NcEXPA8基因的表達(dá)變化大。種子在培養(yǎng)3 d后,表達(dá)量較低;在培養(yǎng)6 d后,其表達(dá)量達(dá)到最高,此時(shí)胚根剛露白。隨后,胚根不斷生長,但NcEXPA8基因的表達(dá)卻顯著降低,并維持在較低水平(圖1:A)。
2.2 NcEXPA8、AtEXPA2、AtMAN7和AtTZF4基因在轉(zhuǎn)基因擬南芥中的表達(dá)
利用實(shí)時(shí)熒光定量RT-qPCR技術(shù)檢測了NcEXPA8、AtEXPA2、AtMAN7和AtTZF4基因在空白處理(水)、10 μmol·L-1 GA3和ABA處理下擬南芥WT和轉(zhuǎn)基因NcEXPA8株系萌發(fā)的種子(胚根剛露白階段)中的表達(dá)。由圖2可知,在轉(zhuǎn)基因T3代純合體萌發(fā)的種子中,各株系NcEXPA8基因的表達(dá)量都很高(圖2:B, C, D),而在擬南芥WT中沒有表達(dá)(圖2:A)。在相同處理下,AtEXPA2、AtMAN7和AtTZF4基因在擬南芥WT和各轉(zhuǎn)基因株系間相對表達(dá)量無差異。AtEXPA2和AtMAN7基因在擬南芥萌發(fā)的種子中特異表達(dá),參與種子萌發(fā)(Yan et al., 2014;Sánchez-Montesino et al., 2019)。與空白處理(水)相比,在ABA處理下,AtEXPA2和AtMAN7基因在擬南芥WT和各轉(zhuǎn)基因株系的萌發(fā)種子中的表達(dá)無明顯差異,而AtTZF4則顯著提高;但在GA3處理下,AtEXPA2和AtMAN7基因在各基因型萌發(fā)種子的表達(dá)量顯著提高,而AtTZF4則表達(dá)量極低。
2.3 擬南芥種子萌發(fā)率分析
按照Wang et al.(2016)的方法,進(jìn)行種子萌發(fā)率比較,由表2可知,4 ℃黑暗處理3 d后(0 h),擬南芥WT和3個(gè)轉(zhuǎn)NcEXPA8基因T3代純合體的種子,都未萌發(fā)。在25 ℃培養(yǎng)箱中培養(yǎng)12 h后,10 μmol·L-1 ABA處理的WT種子仍未萌發(fā),轉(zhuǎn)基因種子有個(gè)別開始萌發(fā),但數(shù)量極少,一個(gè)培養(yǎng)皿中最多只有4粒,其余處理的種子都有部分開始萌發(fā),且轉(zhuǎn)基因種子的萌發(fā)率顯著高于WT。在培養(yǎng)箱中培養(yǎng)18 h后,除ABA處理外,其余處理的擬南芥WT和轉(zhuǎn)基因種子大部分都已萌發(fā);此時(shí)空白處理(水)的轉(zhuǎn)基因3個(gè)株系種子萌發(fā)率都極顯著地高于擬南芥WT;與空白處理相比,10 μmol·L-1 ABA處理的各基因型種子萌發(fā)率低,其中擬南芥WT僅有20.17%,而10 μmol·L-1 GA3處理的各基因型種子萌發(fā)率顯著提高,且各轉(zhuǎn)基因種子分別在一半的培養(yǎng)皿中已全部萌發(fā)。培養(yǎng)24 h后,除了ABA處理,其余處理的各基因型種子全已萌發(fā)。培養(yǎng)48 h后,各處理的各基因型種子全都萌發(fā)。因此,過量表達(dá)NcEXPA8基因只是加速種子萌發(fā)。
GA3和ABA對擬南芥WT和轉(zhuǎn)基因種子萌發(fā)的影響結(jié)果見表2。經(jīng)10 μmol·L-1 GA3處理的WT和3個(gè)轉(zhuǎn)基因株系的種子萌發(fā)都顯著提高,且3個(gè)轉(zhuǎn)基因株系的種子萌發(fā)促進(jìn)率為31.47%~32.09%,大于擬南芥WT的萌發(fā)促進(jìn)率20.92%;而經(jīng)10 μmol·L-1 ABA處理的各基因型種子萌發(fā)率顯著降低,但轉(zhuǎn)基因種子的萌發(fā)抑制率(47.6%~48.73%)小于擬南芥WT的萌發(fā)抑制率70.8%,說明過量表達(dá)NcEXPA8基因提高了GA3對種子萌發(fā)的促進(jìn)率,降低了ABA對種子的萌發(fā)抑制率。
3?討論與結(jié)論
模式植物基因組含有許多EXP基因(https://homes.bio.psu.edu/expansins/genes.htm),但在不同的組織器官以及不同生長發(fā)育階段,這些基因的表達(dá)水平存在差異,因此它們的具體功能也各有差異。如擬南芥中的AtEXPA10基因在幼嫩的葉片中高表達(dá),它的過表達(dá)和反義植株在很大程度上增加和降低了葉片的大?。–ho & Cosgrove, 2000);AtEXPA7、AtEXPA18與AtEXPA17以高豐度表達(dá)在根毛的起始和根的生長中起著決定性的作用(Cho & Cosgrove, 2002; Lee & Kim, 2013);在葉片保衛(wèi)細(xì)胞特異表達(dá)的AtEXPA1,通過改變保衛(wèi)細(xì)胞壁的結(jié)構(gòu)調(diào)控氣孔開關(guān)(Wei et al., 2011; Zhang et al., 2011);在萌發(fā)種子中高表達(dá)的AtEXPA2,參與種子的萌發(fā)(Yan et al., 2014; Sánchez-Montesino et al., 2019)。此外,在其他植物不同的組織器官以及不同生長發(fā)育階段中高表達(dá)的EXP基因,都參與相應(yīng)組織器官的生長發(fā)育,如番茄(Rose et al., 2000; Chen et al., 2001)、水稻(Cho & Kende, 1997; Choi et al., 2003; Ma et al., 2013)等。
對于種子萌發(fā)和休眠以及相關(guān)分子網(wǎng)絡(luò)已經(jīng)被廣泛地研究,種子萌發(fā)分別受植物激素GA和ABA的誘導(dǎo)和打破休眠的調(diào)控;種子萌發(fā)起始于水分的吸取,導(dǎo)致種殼的破裂,最后胚根伸出(Finch-Savage & Leubner-Metzger, 2006; Holdsworth et al., 2008)。盡管EXP對種子萌發(fā)作用的細(xì)節(jié)尚不清楚,但已有研究證實(shí),在種子萌發(fā)中需要細(xì)胞壁的軟化以及EXP參與珠孔胚乳的軟化和胚根生長(Morris et al., 2011; Voegele et al., 2011);而EXP具有軟化細(xì)胞壁導(dǎo)致細(xì)胞快速伸展的功能(Cosgrove, 2000, 2015)。因此,可以推斷EXP在種子的萌發(fā)中起著重要的作用。在黃梁木種子萌發(fā)的過程中,NcEXPA8基因的表達(dá)量在種子剛萌發(fā)時(shí)最高,而后在胚根的生長中極顯著降低,并維持在較低水平。這些結(jié)果表明,NcEXPA8基因可能參與了黃梁木種子的萌發(fā),尤其是胚乳帽區(qū)域的軟化。
為了鑒定基因功能,轉(zhuǎn)基因技術(shù)是常用的有效手段之一,尤其是對擬南芥模式植物的轉(zhuǎn)化。由于其轉(zhuǎn)化技術(shù)成熟、基因組小、生長周期短、植株小等優(yōu)點(diǎn),對其容易進(jìn)行表型觀測、生理生化指標(biāo)測定以及基因表達(dá)檢測,已被廣泛應(yīng)用于基因功能的檢測(Zhang et al., 2011; Lu et al., 2013; Bae et al., 2014; Boron et al., 2015)。在我們的前期研究中,已獲得了過表達(dá)黃梁木NcEXPA8基因的擬南芥T3代純合體種子(Li et al., 2017)。
在本研究中,NcEXPA8基因在3個(gè)轉(zhuǎn)基因株系萌發(fā)的種子中都存在很高的表達(dá),其表達(dá)水平顯著高于在種子萌發(fā)中特異表達(dá)的AtEXPA2、AtMAN7和AtTZF4基因,但與擬南芥WT相比,轉(zhuǎn)基因并未改變這些內(nèi)源基因的表達(dá)。參與種子萌發(fā)的內(nèi)源基因AtEXPA2、AtMAN7和AtTZF4,其中AtTZF4對種子的萌發(fā)起到抑制作用(Bogamuwa et al., 2013),在GA3處理下,萌發(fā)種子中AtEXPA2和AtMAN7的相對表達(dá)量提高,AtTZF4的表達(dá)被抑制;在ABA處理下,AtTZF4的表達(dá)量提高,但對AtEXPA2和AtMAN7的表達(dá)無明顯影響。此外,在GA3處理下,轉(zhuǎn)基因種子的萌發(fā)促進(jìn)率明顯高于擬南芥WT; 而在ABA處理下,轉(zhuǎn)基因種子的萌發(fā)抑制率明顯低于擬南芥WT。這些結(jié)果表明,種子萌發(fā)速度的改變,是NcEXPA8基因過表達(dá)的直接結(jié)果,內(nèi)源相關(guān)基因的表達(dá)并未受到轉(zhuǎn)基因的影響;過表達(dá)NcEXPA8基因不僅促進(jìn)了擬南芥種子的萌發(fā),而且提高了其對GA的敏感性,降低了對ABA的敏感性。因此,這些信息進(jìn)一步加深了NcEXPA8基因參與黃梁木種子萌發(fā)的推斷。為了進(jìn)一步了解NcEXPA8基因的功能,對轉(zhuǎn)基因的純合體植株表型和細(xì)胞形態(tài)進(jìn)行觀察分析發(fā)現(xiàn),過表達(dá)NcEXPA8基因還促進(jìn)了擬南芥莖葉的生長、纖維細(xì)胞的伸長等多效的表型(Li et al., 2017)。這些發(fā)現(xiàn),暗示著NcEXPA8具有促進(jìn)多類細(xì)胞軟化伸展,從而促進(jìn)植物的生長功能。
但要了解NcEXPA8基因在黃梁木中的真正功能,還需在黃梁木自身個(gè)體中進(jìn)行功能驗(yàn)證,利用包括基因過表達(dá)以及CRISPR/Cas9基因敲除(Hsu et al., 2014)等技術(shù)創(chuàng)造黃梁木NcEXPA8基因的突變體。目前,我們已建立了黃梁木的遺傳轉(zhuǎn)化體系(Li et al., 2019),為在黃梁木中開展基因功能驗(yàn)證奠定基礎(chǔ)。因此,先前對NcEXPA8基因的研究(Li et al., 2017)以及本研究將為在黃梁木中開展NcEXPA8基因的研究奠定基礎(chǔ)。
參考文獻(xiàn):
BAE JM, KWAK MS, NOH SA, et al., 2014. Overexpression of sweetpotato expansin cDNA (IbEXP1) increases seed yield in Arabidopsis[J]. Transgenic Res, 23(4):657-667.
BOGAMUWA S, JANG JC, 2013. The Arabidopsis tandem CCCH zinc finger proteins AtTZF4, 5 and 6 are involved in light-, abscisic acid-?and gibberellic acid-mediated regulation of seed germination[J]. Plant Cell Environ, 36(8): 1507-1519.
BORON AK, VAN LOOCK B, SUSLOV D, et al., 2015. Over-expression of AtEXLA2 alters etiolated Arabidopsis hypocotyl growth[J]. Ann Bot, 115(1):67-80.
CHEN F, DAHAL P, BRADFORD KJ, 2001. Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination[J]. Plant Physiol, 127(3):928-936.
CHEN F, NONOGAKI H, BRADFORD KJ, 2002, A gibberellin-regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination[J]. J Exp Bot, 53(367): 215-223.
CHO HT, COSGROVE DJ, 2000. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 97(17):9783-9788.
CHO HT, COSGROVE DJ, 2002. Regulation of root hair initiation and expansin gene expression in Arabidopsis[J]. Plant Cell, 14(12):3237-3253.
CHO HT, KENDE H, 1997. Expression of expansin genes is correlated with growth in deep water rice[J]. Plant Cell, 9(9):1661-1671.
CHOI D, LEE Y, CHO HT, et al., 2003. Regulation of expansin gene expression affects growth and development in transgenic rice plants[J]. Plant Cell, 15(6):1386-1398.
COSGROVE DJ, 2000. Loosening of plant cell walls by expansins[J]. Nature, 407(6802):321-326.
COSGROVE DJ, 2015. Plant expansins: Diversity and interactions with plant cell walls[J]. Curr Opin Plant Biol, 25:162-172.
DENG XM, ZHAN YL, ZHANG Q, et al., 2012. Study on tissue culture of Neolamarckia cadamba[J]. J S Chin Agric Univ, 33(2):216-219.[鄧小梅,詹艷玲,張倩,等,2012. 黃梁木組培快繁技術(shù)研究[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào),33(2):216-219.]
DEVI MJ, TALIERCIO EW, SINCLAIR TR, 2015. Leaf expansion of soybean subjected to high and low atmospheric vapour pressure deficits[J]. J Exp Bot, 66(7):1845-1850.
FINCH-SAVAGE WE, LEUBNER-METZGER G, 2006. Seed dormancy and the control of germination[J]. New Phytol, 171(3):501-523.
HOLDSWORTH MJ, BENTSINK L, SOPPE WJ, 2008. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination[J]. New Phytol, 179(1):33-54.
HSU PD, LANDER ES, ZHANG F, 2014. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 157(6):1262-1278.
IGLESIAS-FERNANDEZ R, BARRERO-SICILIA C, CARRILLO-BARRAL N, et al., 2013. Arabidopsis thaliana bZIP44: A transcription factor affecting seed germination and expression of the mannanase-encoding gene AtMAN7[J]. Plant J, 74(5): 767-780.
IGLESIAS-FERNANDEZ R, RODRIGUEZ-GACIO MC, BARRERO-SICILIA C, et al., 2011. Three endo-β-mannanase genes expressed in the micropylar endosperm and in the radicle influence germination of Arabidopsis thaliana seeds[J]. Planta, 233(1): 25-36.
LEE HW, KIM J, 2013. EXPANSINA17 up-regulated by LBD18/ASL20 promotes lateral root formation during the auxin response[J]. Plant Cell Physiol, 54(10):1600-1611.
LI JC, HU XS, HUANG XL, et al., 2017. Functional identification of an EXPA gene (NcEXPA8) isolated from the tree Neolamarckia cadamba[J]. Biotechnol Biotechnol Equip, 31(6):1116.
LI JJ, ZHANG D, QUE QM, et al., 2019. Plant regeneration and agrobacterium-mediated transformation of the miracle tree Neolamarckia cadamba[J]. Ind Crops Products, 130:443-449.
LIU P, KOIZUKA N, HOMRICHHAUSEN TM, et al., 2005. Large-scale screening of Arabidopsis enhancer-trap lines for seed germination-associated genes[J]. Plant J, 41(6):936-944.
LU P, KANG M, JIANG X, et al., 2013. RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis[J]. Planta, 237(6):1547-1559.
MA N, WANG Y, QIU S, et al., 2013. Overexpression of OsEXPA8, a root-specific gene, improves rice growth and root system architecture by facilitating cell extension[J]. PLoS ONE, 8(10): e75997.
MAROWA P, DING A, KONG Y, 2016. Expansins: Roles in plant growth and potential applications in crop improvement[J]. Plant Cell Rep, 35(5):949-965.
MCQUEEN-MASON S, DURACHKO DM, COSGROVE DJ, 1992. Two endogenous proteins that induce cell wall extension in plants[J]. Plant Cell, 4:1425-1433.
MINOIA S, BOUALEM A, MARCEL F, et al., 2016. Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening[J]. Plant Sci, 242:195-202.
MORRIS K, LINKIES A, MULLER K, et al., 2011. Regulation of seed germination in the close Arabidopsis relative Lepidium sativum: A global tissue-specific transcript analysis[J]. Plant Physiol, 155(4):1851-1870.
NONOGAKI H, 2019. Seed germination and dormancy: The classic story, new puzzles, and evolution[J]. J Integr Plant Biol, 61(5):541-563.
ROSE JK, COSGROVE DJ, ALBERSHEIM P, et al., 2000. Detection of expansin proteins and activity during tomato fruit ontogeny[J]. Plant Physiol, 123(4):1583-1592.
SNCHEZ-MONTESINO R, BOUZA-MORCILLO L, MARQUEZ J, et al., 2019. A regulatory module controlling GA-mediated endosperm cell expansion is critical for seed germination in Arabidopsis[J]. Mol Plant, 12(1):71-85.
VOEGELE A, LINKIES A, MULLER K, et al., 2011. Members of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination[J]. J Exp Bot, 62(14):5131-5147.
WANG Z, CHEN F, LI X, et al., 2016. Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1[J]. Nature Comm, 7(1):13412.
WEI PC, ZHANG XQ, ZHAO P, et al., 2011. Regulation of stomatal opening by the guard cell expansin AtEXPA1[J]. Plant Signal Behav, 6(5):740-742.
YAN A, WU M, YAN L, et al., 2014. AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis[J]. PLoS ONE, 9(1): e85208.
YUZM, KANG B, HE XW, et al., 2011. Root hair-specific expansins modulate root hair elongation in rice[J]. Plant J, 66(5):725-734.
ZHANG XQ, WEI PC, XIONG YM, et al., 2011. Overexpression of the Arabidopsis alpha-expansin gene AtEXPA1 accelerates stomatal opening by decreasing the volumetric elastic modulus[J]. Plant Cell Rep, 30(1):27-36.
ZHOU S, HAN YY, CHEN Y, et al., 2015. The involvement of expansins in response to water stress during leaf development in wheat[J]. J Plant Physiol, 183:64-74.
(責(zé)任編輯?李?莉)