區(qū)惠平,周柳強,黃金生,朱曉暉,曾艷,彭嘉宇,謝如林,譚宏偉,李忠寧,沈小微,劉昔輝
基于甘蔗產(chǎn)量與土壤磷素平衡的磷肥施用量研究
區(qū)惠平,周柳強,黃金生,朱曉暉,曾艷,彭嘉宇,謝如林,譚宏偉,李忠寧,沈小微,劉昔輝
廣西壯族自治區(qū)農(nóng)業(yè)科學院農(nóng)業(yè)資源與環(huán)境研究所/農(nóng)業(yè)農(nóng)村部華南植物營養(yǎng)與施肥技術(shù)科學觀測實驗站,南寧 530007
【】探討南方赤紅壤蔗區(qū)基于甘蔗產(chǎn)量與土壤磷素平衡的磷肥施用量,為該地區(qū)農(nóng)田磷素高效利用與科學施磷提供參考依據(jù)。于2014—2016年在廣西甘蔗主產(chǎn)區(qū)(南寧市武鳴區(qū))布置田間定位試驗,共設5個磷肥施用量水平,分別是0(P0)、75 kg P2O5·hm-2(P1)、150 kg P2O5·hm-2(P2)、300 kg P2O5·hm-2(P3)和 600 kg P2O5·hm-2(P4),連續(xù)3年測定甘蔗蔗莖、蔗葉產(chǎn)量和土壤Olsen-P含量,采用Mitscherlich模型擬合蔗莖產(chǎn)量對Olsen-P的響應曲線,計算土壤Olsen-P農(nóng)學閾值,并分析植株磷含量,計算甘蔗吸磷量,磷肥利用率和磷素表觀平衡狀況。與P1處理相比,P2處理蔗莖產(chǎn)量顯著提高8.3%(2014年)、18.0%(2015年)和15.5%(2016年)。蔗葉和地上部產(chǎn)量均以P2或P3處理最高,但不同施磷量間蔗莖、蔗葉和地上部產(chǎn)量整體無顯著差異。P2—P4處理蔗莖磷累積量、蔗葉磷累積量和地上部磷累積量也相當。土壤Olsen-P含量、磷素表觀平衡量和磷素盈余率均隨施磷量的增加而顯著增加,而磷素表觀回收率和磷素偏生產(chǎn)力隨施磷量的增加逐漸下降,以P1處理最高,顯著高于P3和P4處理。Mitscherlich方程擬合獲得Olsen-P農(nóng)學閾值為13.4 mg·kg-1。相關(guān)分析表明,施磷量與磷素盈余率、磷素盈余率與土壤Olsen-P含量呈極顯著的線性正相關(guān)關(guān)系(<0.01);磷素盈余率與甘蔗蔗莖產(chǎn)量呈極顯著二次相關(guān)(<0.01),與磷素表觀回收利用率、磷素偏生產(chǎn)力呈極顯著指數(shù)相關(guān)(<0.01)。當施磷量為40.9 kg·hm-2時,磷素盈余率為0,土壤Olsen-P含量為15.87 mg·kg-1,甘蔗蔗莖產(chǎn)量為 94.2 t·hm-2。線性加平臺擬合下的優(yōu)化施磷量,土壤磷素盈余率為216.2%—232.7%,土壤Olsen-P含量為24.7—25.4 mg·kg-1,甘蔗蔗莖產(chǎn)量為99.7—100 t·hm-2。在Olsen-P含量較高的蔗區(qū),40.9 kgP2O5·hm-2施用量能維持土壤磷素平衡,保持土壤適宜的Olsen-P含量,獲得較高的產(chǎn)量與磷肥利用率,可以作為推薦的適宜施磷量。
甘蔗;磷肥施用量;Olsen-P;磷素平衡
【研究意義】施用磷肥是保障作物產(chǎn)量的重要措施。但磷肥進入土壤后,易被土壤吸附、固持,形成難以被植物吸收利用的磷酸鹽累積在土壤中[1],造成磷肥利用率降低[2]。目前,磷肥過量施用造成土壤磷素累積的現(xiàn)象在全球十分普遍[3],尤以中國較為嚴重,土壤磷累積以年均11%的增長速率在遞增[4]。過量施磷對作物增產(chǎn)作用不明顯[5],還可能導致水體污染等環(huán)境問題[6]。因此,研究適宜的磷肥施用量對農(nóng)業(yè)生產(chǎn)具有重要的意義?!厩叭搜芯窟M展】有關(guān)磷肥適宜施用量的研究很多,有單一根據(jù)作物的農(nóng)藝性狀表現(xiàn)及產(chǎn)量效應確定的磷肥施用量[7-8],也有根據(jù)土壤速效磷含量或磷肥利用率調(diào)整的磷肥施用量[9-10]。而綜合考慮作物高產(chǎn)、肥料高效、土壤培肥和環(huán)境友好等因素的磷肥推薦方法更符合當前養(yǎng)分管理目標由單一增產(chǎn)向高產(chǎn)、環(huán)保、優(yōu)質(zhì)等多目標綜合的變化[11]。眾多研究表明,土壤速效磷含量與施磷量及土壤磷盈虧呈顯著正相關(guān)關(guān)系[12-14]。土壤每盈余磷100 kg·hm-2,土壤速效磷可提升1.44—5.74 mg·kg-1[15]。適當?shù)牧子嘤兄谕寥郎a(chǎn)力和作物生長,然而,過度的磷盈余增加磷流失風險。需要根據(jù)不同類型土壤磷素平衡關(guān)系、作物產(chǎn)量適當?shù)卣{(diào)整磷肥投入量。吳啟華等[16]在有效磷含量較高的黑土區(qū),綜合作物產(chǎn)量、磷素吸收、磷肥利用效率和土壤表觀磷平衡、有效磷含量,認為施用常規(guī)磷水平的80%作為黑土區(qū)玉米生產(chǎn)的推薦施磷水平?!颈狙芯壳腥朦c】甘蔗是我國最主要的糖料作物,其種植面積占我國常年糖料作物種植面積的85%以上,產(chǎn)糖量占食糖總產(chǎn)量的90%以上[17]。甘蔗產(chǎn)量的穩(wěn)定增長是保障我國食糖安全的根本。然而,當前甘蔗種植區(qū)的濫施、亂施磷肥問題仍較突出,多數(shù)蔗區(qū)磷肥施入量高達465—513 kg P2O5·hm-2[18],而每噸原料蔗的磷素吸收量僅為0.27—0.7 kg[19]。目前國內(nèi)外學者對甘蔗適宜施磷量的確定大多基于甘蔗的產(chǎn)量效應、生長農(nóng)藝性狀、土壤速效磷含量等某些單一指標[7-8,20-22],綜合蔗田磷素收支平衡、甘蔗產(chǎn)量、磷素吸收利用與土壤磷素含量的甘蔗適宜施用量鮮見報道?!緮M解決的關(guān)鍵問題】本研究通過3年定位試驗系統(tǒng)研究不同施磷量下赤紅壤蔗區(qū)甘蔗蔗莖產(chǎn)量、蔗葉產(chǎn)量、磷素吸收利用、土壤Olsen-P含量、農(nóng)學閾值和磷素表觀平衡狀況的綜合變化,旨在探討維持甘蔗高產(chǎn)的前提下,確定節(jié)約高效型施磷量,以期為赤紅壤蔗區(qū)磷肥科學施用提供科學依據(jù)。
本試驗于2014—2016年在農(nóng)業(yè)農(nóng)村部華南植物營養(yǎng)與施肥技術(shù)科學觀測實驗站內(nèi)(東經(jīng)108°2'50.2",北緯23°14'49.0",海拔高度115 m)進行。該地屬南亞熱帶濕潤季風氣候,年平均氣溫21.7℃,最高氣溫40.7℃,≥5℃積溫8 046 ℃,年均降雨量1 250 mm,年蒸發(fā)量892.6 mm,無霜期約為346 d,年均日照時數(shù)1 660 h,太陽輻射量為4529 MJ·m-2。溫、光、熱資源豐富。供試土壤為第四紀紅土發(fā)育的赤紅壤,試驗前0—20 cm土層土壤容重1.24 g·cm-3,pH (H2O) 5.32,有機質(zhì)16.5 g·kg-1,全氮0.9 g·kg-1,全磷 0.55 g·kg-1,全鉀4.5 g·kg-1,堿解氮70 mg·kg-1,Olsen-P 19 mg·kg-1,銨態(tài)氮4.67 mg·kg-1,硝態(tài)氮4.33 mg·kg-1。
設置5個磷水平:(1)不施磷肥(P0);(2)75 kg P2O5·hm-2(P1);(3)150 kg P2O5·hm-2(P2);(4)300 kg P2O5·hm-2(P3);(5)600 kg P2O5·hm-2(P4)。所有處理氮鉀肥施用量相同,分別為420 kg N·hm-2和300 kg K2O·hm-2。隨機區(qū)組設計,3次重復,小區(qū)面積30 m2(長10 m,寬3 m),共15個小區(qū)。試驗種植的甘蔗品種為新臺糖22,種植制度為1年新植蔗,2年宿根蔗,其中,2014年為新植年份,2015年為第一年宿根,2016為第二年宿根。甘蔗種植及施肥方法參見朱曉暉等[22]文獻。雜草與病蟲害防治與當?shù)馗收岱N植一致。
甘蔗產(chǎn)量:各小區(qū)單獨測產(chǎn),在甘蔗收獲期將各小區(qū)的甘蔗全部平地收獲,脫葉,砍去尾稍,按實收甘蔗莖數(shù)測產(chǎn)蔗莖產(chǎn)量與蔗葉鮮產(chǎn)量。
植株樣品:在甘蔗收獲前取小區(qū)生長勢一致的代表性植株6株,平地收獲,分為甘蔗莖和蔗葉兩部分。105℃殺青30 min后,70℃烘干至恒重,測定干重,粉碎后用H2SO4-H2O2消化,鉬銻抗比色法測磷[23]。
土壤樣品:每年甘蔗收獲后使用直徑2 cm的土鉆,按X方式采集0—20 cm土層土壤20個點混合樣,室內(nèi)風干,磨細過0.25 mm篩,碳酸氫鈉浸提-鉬銻抗比色法測定Olsen-P含量[23]。
甘蔗產(chǎn)量采用線性加平臺模型進行擬合,公式如下:
=+(<) (1)
=(≥) (2)
式中,為甘蔗產(chǎn)量(t·hm-2),為施磷量(kg P2O5·hm-2),為截距,為回歸系數(shù),為直線與平臺的交點,為平臺最高產(chǎn)量(t·hm-2)。
甘蔗吸磷量(kg·hm-2)=蔗莖產(chǎn)量(kg·hm-2)×蔗莖含磷量(%)+蔗葉產(chǎn)量(kg·hm-2)×蔗葉含磷量(%) (3)
磷素表觀回收率(%)=[施磷區(qū)甘蔗地上部吸磷量(kg·hm-2)-不施磷區(qū)甘蔗地上部吸磷量(kg·hm-2)]/施磷量(kg·hm-2)×100 (4)
磷素偏生產(chǎn)力(kg·kg-1)=施磷區(qū)產(chǎn)量(kg·hm-2)/施磷量(kg·hm-2) (5)
磷素表觀平衡(kg·hm-2)=施磷量(kg·hm-2)-甘蔗地上部(蔗莖+蔗葉)吸磷量(kg·hm-2) (6)
磷素盈余率(%)=磷素表觀平衡(kg·hm-2)/甘蔗地上部吸磷量(kg·hm-2)×100 (7)
甘蔗相對產(chǎn)量r(t·hm-2)=Y/m×100 (8)
作物相對產(chǎn)量對土壤Olsen-P的響應關(guān)系通過Mitscherlich方程模擬,公式如下:
=×(1-e–bx) (9)
由方程模擬出的相對產(chǎn)量為最大值的90%時,土壤Olsen-P的含量為農(nóng)學閾值。式中,Y為每年各處理蔗莖產(chǎn)量(t·hm-2);m為每年各處理的最大蔗莖產(chǎn)量(t·hm-2);是預測的相對產(chǎn)量;是最大的相對產(chǎn)量;是產(chǎn)量對土壤Olsen-P的響應系數(shù)。
數(shù)據(jù)采用Excel 2007進行整理,DPS 7.5 軟件和SAS軟件分析,Sigmaplot軟件和Excel作圖。不同處理間多重比較采用Duncan新復極差法(=0.05)。
表1表明,與P0處理相比,P1處理的蔗莖、蔗葉與地上部產(chǎn)量均無顯著變化。當施磷量等于150 kg P2O5·hm-2(P2處理)時,蔗莖產(chǎn)量顯著提高8.3%(2014年)、18.0%(2015年)和15.5%(2016年)。但P2—P4處理間無顯著差異。蔗葉和地上部產(chǎn)量均以P2或P3處理最高,并于2015年和2016年顯著高于P0處理。采用線性加平臺模型擬合施磷量與蔗莖、蔗葉、地上部產(chǎn)量的關(guān)系得出,3年平均優(yōu)化施磷量分別為140.2、147.8和142.3 kg P2O5·hm-2,獲得最高蔗莖、蔗葉和地上部產(chǎn)量分別為102.6、22.9和125.5 t·hm-2。
圖1表明,施磷顯著增加耕層土壤Olsen-P含量,且隨施磷量的增加呈線性顯著增加(<0.01,2=0.960(2014),2=0.996(2015),2=0.998(2016)),土壤Olsen-P增加速率隨年份的增加而增加,在2014、2015和2016年依次為0.048、0.082和0.131 mg·kg-1。
表1 不同施磷量對甘蔗產(chǎn)量的影響
同年份同列數(shù)據(jù)后不同小寫字母表示處理間差異顯著(<0.05)
Different small letters in the same column and the same year meant significant difference between treatments at 5% level
同一年份中不同的小寫字母表示處理間差異顯著(P<0.05)。下同
磷農(nóng)學閾值是指當土壤中的Olsen-P含量達到某個值后,繼續(xù)施用磷肥,對提高作物的產(chǎn)量作用很小[28]。圖2顯示,以Mitscherlich方程擬合甘蔗蔗莖相對產(chǎn)量和土壤Olsen-P的關(guān)系獲得的赤紅壤蔗地土壤Olsen-P農(nóng)學閾值為13.4 mg·kg-1。
圖2 甘蔗相對產(chǎn)量對土壤有效磷的響應關(guān)系
表2顯示,與P0處理相比,P1處理對蔗莖磷累積量無顯著影響,當施磷量大于150 kg P2O5·hm-2(P2處理)時,蔗莖磷累積量和地上部磷累積量增幅均達顯著水平(<0.05),而P2—P4處理間蔗莖磷累積量、蔗葉磷累積量和地上部磷累積量均差異不顯著。
圖3顯示,不施磷肥,蔗地磷素表觀平衡處于虧缺狀態(tài),3年平均虧缺14.4 kg·hm-2。施入磷肥,蔗地磷素表觀平衡均處于盈余狀態(tài),且隨施磷量的增加,磷素表觀平衡量和磷素盈余率顯著增加。3年平均,施磷處理磷素表觀平衡量盈余15.1—241.4 kg·hm-2,盈余率高達88.4%—1218.6%,不同的施磷量間差異顯著。
磷素表觀回收率和磷素偏生產(chǎn)力是衡量和評價磷肥施用經(jīng)濟效益和環(huán)境效益的重要指標[29]。圖4顯示,P1處理下,磷素表觀回收率最高,3年平均為9.9%,除了2015年,P1處理與P2處理磷素表觀回收率均差異不顯著,但均顯著高于P3和P4處理。磷素偏生產(chǎn)力隨施磷量的增加而顯著下降。3年平均,P1處理比P2、P3和P4處理顯著提高88.6%、274.3%和656.9%。
表2 不同施磷量對甘蔗吸磷量的影響
圖3 不同施磷量對磷素表觀平衡的影響
圖4 不同施磷量對磷素表觀回收率和磷素偏生產(chǎn)力的影響
磷素盈余率與施磷量、土壤Olsen-P、甘蔗蔗莖產(chǎn)量、磷素吸收利用的回歸分析(圖5)表明,施磷量與磷素盈余率、磷素盈余率與土壤Olsen-P呈極顯著的線性正相關(guān)關(guān)系(<0.01);磷素盈余率與甘蔗蔗莖產(chǎn)量呈極顯著二次相關(guān)(<0.01);磷素盈余率與磷素表觀回收率、磷素偏生產(chǎn)力呈極顯著指數(shù)相關(guān)(<0.01)。將回歸方程聯(lián)立并通過內(nèi)插法計算,當磷肥用量為40.9 kg·hm-2,磷素盈余率為0,土壤Olsen-P含量為15.9 mg·kg-1,甘蔗蔗莖產(chǎn)量為94.2 t·hm-2,與P1處理3年平均產(chǎn)量(96.3 t·hm-2)相近。線性加平臺擬合下的優(yōu)化施磷量,磷素盈余率為216.2%—232.7%,土壤Olsen-P含量為24.7—25.4 mg·kg-1,甘蔗蔗莖產(chǎn)量為99.7—100 t·hm-2。
作為植物體內(nèi)ADP、ATP、DNA和細胞壁的主要成分,缺磷會引起作物生長障礙[30],對于甘蔗而言,施磷通過提高甘蔗分蘗和有效莖數(shù)[31-32],促進甘蔗增產(chǎn)[32-35],但過低或過高的施磷量均對作物增產(chǎn)效應不明顯[36]。有關(guān)甘蔗適宜施磷量的研究,Jimmy等[37]在巴西的試驗表明,施磷量為60 kg P2O5·hm-2,蔗莖產(chǎn)量最高(136.5 Mg·hm-2),增幅28.9%。GUSTAVO等[38]研究顯示,不同的磷肥種類均在268 kg P2O5·hm-2的施用量下獲得最大的甘蔗有效莖數(shù)。OMOLLO等[35]的研究結(jié)果表明,80 kg P2O5·hm-2下,蔗莖產(chǎn)量最高。而AMIN等[39]研究認為,對于砂壤和黏壤,施入90和180 kg P2O5·hm-2的磷酸鹽或過磷酸鈣均對甘蔗產(chǎn)量無顯著影響。可見,適宜的施磷量因不同生態(tài)區(qū)域的氣候、栽培、肥料種類和土壤條件而異[11]。本研究結(jié)果表明,施入150 kg P2O5·hm-2磷肥顯著提高甘蔗蔗莖產(chǎn)量,這與雷崇華[21]和朱曉暉等[22]的研究結(jié)果一致,當繼續(xù)增施磷肥,甘蔗蔗莖產(chǎn)量無顯著變化,說明本試驗地力條件下,150 kg P2O5·hm-2的施磷量即可獲得甘蔗最高產(chǎn)。
圖5 磷素盈余率與施磷量、產(chǎn)量、土壤有效磷含量和磷肥利用效率的關(guān)系
植物生長發(fā)育吸收的磷素主要來自土壤,而農(nóng)田生態(tài)系統(tǒng)中磷素盈虧是土壤磷消長的根本原因[40]。因此,除了產(chǎn)量、經(jīng)濟效益、肥料利用效率等指標外,探究農(nóng)田磷素平衡狀況及土壤磷素變化對合理施磷量的確定有重要意義[24,41]。多數(shù)長期定位研究結(jié)果表明,不施磷肥,土壤磷素虧缺進而引起土壤全磷和Olsen-P含量下降[41-43]。但也有學者[44]認為降雨及灌水中的磷素補充可以維持連續(xù)32年不施任何肥料紅壤性水稻土的全磷基本持平,Olsen-P略有增加。外源磷的長期過量投入導致土壤磷發(fā)生盈余,土壤磷積累[33,45]。本試驗與上述結(jié)果相似,不施磷肥,蔗田磷素處于虧缺狀態(tài),施磷下,土壤磷素處于盈余狀態(tài),并隨著施磷量的增加而增加。這主要是作物的吸收攜出是土壤磷素最主要的支出項[46],在150—600 kg·hm-2的遞增施磷下,甘蔗磷素吸收量相當(表2),因此,土壤磷素盈余量隨施磷量的增加而大幅度增加,土壤Olsen-P含量也相應增加,這一點從磷的盈余率與施磷量、Olsen-P含量的關(guān)系也得到了很好的說明(圖5)。然而,土壤Olsen-P含量與作物產(chǎn)量并不是正比關(guān)系[47]。Mitscherlich方程擬合甘蔗蔗莖相對產(chǎn)量和土壤Olsen-P的關(guān)系表明,當土壤Olsen-P含量超過13.4 mg·kg-1,甘蔗蔗莖產(chǎn)量不再隨施磷含量的增加而增加,這與謝如林等[47]研究得出的蔗田土壤Olsen-P豐缺值為14.5 mg·kg-1相近。本研究的試驗地,Olsen-P初始含量為19 mg·kg-1,已經(jīng)超過該地區(qū)的Olsen-P農(nóng)學閾值,施磷處理磷投入足以維持土壤磷素肥力,因此,不同施磷處理間蔗莖產(chǎn)量無顯著差異。
大多數(shù)研究表明,磷素表觀回收率和磷素偏生產(chǎn)力隨磷肥施用量的增加而減少[24],作物獲得最高產(chǎn)量的施磷量,其肥料利用率并不一定是最高的[48]。本研究結(jié)果表明,雖然P1處理磷素表觀回收率和偏生產(chǎn)力最高,但蔗莖產(chǎn)量低于P2處理,因此,如何在維持高產(chǎn)的同時,保障較高的磷肥利用效率,仍是合理施磷的關(guān)鍵。
目前,關(guān)于甘蔗磷肥適宜用量的確定大多基于產(chǎn)量與施磷量的關(guān)系模型[20-21],確定的甘蔗推薦施磷量雖然能獲得最高產(chǎn)量或最佳經(jīng)濟效應,卻未必能維持蔗田磷處于平衡狀態(tài)或最佳含量。將土壤速效磷含量持續(xù)控制在臨界水平范圍內(nèi)的施肥量是最佳施肥量,且適用于不同肥力水平的土壤[49]。侯云鵬等[24]以理論磷素盈余為0時施磷量的95%置信區(qū)間作為磷肥的推薦依據(jù),推薦得出的施磷范圍既可保證玉米產(chǎn)量又能維持土壤磷素平衡。本研究結(jié)果表明,當施磷量為40.9 kg P2O5·hm-2時,磷素盈余率為0,甘蔗蔗莖產(chǎn)量為94.2 t·hm-2,與P1處理3年平均產(chǎn)量(96.3 t·hm-2)相近,而線性加平臺模型擬合的優(yōu)化施磷量,甘蔗產(chǎn)量僅比磷素盈余率為0的提高5.7%—6.1%,但顯著提高土壤Olsen-P含量56%—60%,可能加劇土壤磷素向水體流失的風險。因此,在Olsen-P含量較高的蔗區(qū),可以把40.9 kg P2O5·hm-2施用量作為推薦的適宜施磷量。
在廣西赤紅壤土壤Olsen-P含量較高的蔗區(qū),土壤Olsen-P含量、磷素表觀平衡量和磷素盈余率均隨施磷量的增加而顯著增加,磷素表觀回收率和磷素偏生產(chǎn)力隨施磷量的增加逐漸下降。40.9 kg P2O5·hm-2的施磷量可維持土壤磷素肥力的同時,獲得較高的甘蔗產(chǎn)量和磷素利用率。
[1] 張福鎖, 王激清, 張衛(wèi)峰, 崔振嶺, 馬文奇, 陳新平, 江榮風. 中國主要糧食作物肥料利用率現(xiàn)狀與提高途徑. 土壤學報, 2008, 45(5): 915-924.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MANG W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924. (in Chinese)
[2] 林阿典, 陳雪雯, 黃瑩, 黃振瑞, 陳迪文, 敖俊華, 周文靈, 江永, 李奇?zhèn)? 甘蔗磷營養(yǎng)研究進展. 甘蔗糖業(yè), 2018(6): 51-56.
LIN A D, CHEN X W, HUANG Y, HUANG Z R, CHEN D W, AO J H, ZHOU W L, JIANG Y, LI Q W. Research progresses on phosphorus nutrition in sugarcane. Sugarcane and Canesugar, 2018(6): 51-56. (in Chinese)
[3] 張淑香, 徐明崗. 土壤磷素演變與高效利用. 中國農(nóng)業(yè)科學, 2019, 52(21): 3828-3829. DOI: 10.3864/j.issn.0578-1752.2019.21.011.
ZHANG S X, XU M G. Change of soil phosphorus and its efficient utilization. Scientia Agricultura Sinica, 2019, 52(21): 3828-3829. DOI: 10.3864/j.issn.0578-1752.2019.21.011. (in Chinese)
[4] MA J C, HE P, XU X P, HE W T, LIU Y X, YANG F Q, CHEN F, LI S T, TU S H, JIN J Y, JOHNSTON A M, ZHOU W. Temporal and spatial changes in soil available phosphorus in China (1990–2012). Field Crops Research, 2016, 192: 13-20. DOI: 10.1016/j.fcr.2016.04. 006.
[5] 區(qū)惠平, 周柳強, 黃金色, 曾艷, 朱曉暉, 謝如林, 譚宏偉, 黃碧燕. 長期不同施肥對甘蔗產(chǎn)量穩(wěn)定性、肥料貢獻率及養(yǎng)分流失的影響. 中國農(nóng)業(yè)科學, 2018, 51(10): 1931-1939. DOI: 10.3864/j.issn. 0578-1752.2018.10.012.
OU H P, ZHOU L Q, HUANG J S, ZENG Y, ZHU X H, XIE R L, TAN H W, HUAGN B Y.Effect of long-term different fertilization on sugarcane yield stability, fertilizer contribution rate and nutrition loss. Scientia Agricultura Sinica, 2018, 51(10): 1931-1939. DOI: 10.3864/j.issn.0578-1752.2018.10.012. (in Chinese)
[6] LI Y, STEVEN ARE K, HUANG Z G, GUO H, WEI L C, ABEGUNRIN T P, GU M H, QIN Z H. Particulate N and P exports from sugarcane growing watershed are more influenced by surface runoff than fertilization. Agriculture, Ecosysterms & Environment, 2020, 302: 107087. DOI: 10.1016/j.agee. 2020.107087.
[7] 黃琮斌, 李秀平, 李榮喜, 梁春輝, 張祥會. “3414”氮磷鉀肥配比對甘蔗農(nóng)藝性狀的影響. 中國糖料, 2018, 40(1): 5-7. DOI:10. 13570/j.cnki.scc.2018.01.002.
HUANG C B, LI X P, LI R X, LIANG C H, ZHANG X H. Effect of “3414” N, P and K fertilizer ratio on agronomic traits of sugarcane. Sugar Crops of China, 2018, 40(1): 5-7. DOI:10.13570/j.cnki.scc. 2018.01.002. (in Chinese)
[8] 林電, 朱治強, 吳淑義, 李如飛, 余能國. 旱地甘蔗配方施肥研究初報. 華南熱帶農(nóng)業(yè)大學學報, 2005,11(4): 8-11.
LIN D, ZHU Z Q, WU S Y, LI R F, YU N G. Initial report for balanced application of fertilizers to dry land sugarcane. Journal of South China University of Tropical Agriculture, 2005,11(4): 8-11. (in Chinese)
[9] 孫克剛, 李丙奇, 李潮海, 劉京寶, 和愛玲. 砂姜黑土區(qū)玉米田土壤有效磷施肥指標及施磷推薦-基于ASI法的土壤養(yǎng)分豐缺指標. 中國農(nóng)學通報, 2010, 26(21): 167-171.
SUN K G, LI B Q, LI C H, LIU J B, HE A L. Abundance and deficiency indices of soil available P for maize and fertilization recommendation in Shajiang Black Soil areas-indices of soil Available P based on ASI method. Chinese Agricultural Science Bulletin, 2010, 26 (21): 167-171. (in Chinese)
[10] GERGELY T, RANNVEIG-ANNA G, BRIGITTA T, TAMáS H. Phosphorus levels in croplands of the European Union with implications for P fertilizer use. European Journal of Agronomy, 2014, 55: 42-52. DOI.org/10.1016/j.eja.2013.12.008.
[11] 吳良泉, 武良, 崔振嶺, 陳新平, 張福鎖. 中國玉米區(qū)域氮磷鉀肥推薦用量及肥料配方研究. 土壤學報, 2015, 52(4): 802-817. DOI: 10.11766/trxb201409230480.
WU L Q, WU L, CUI Z L, CHEN X P, ZHANG F S. Basic NPK fertilizer recommendation and fertilizer formula for maize production regions in China. Acta Pedologica Sinica, 2015, 52(4): 802-817. DOI:10.11766/trxb201409230480. (in Chinese)
[12] 劉彥伶, 李渝, 張雅蓉, 張文安, 蔣太明. 長期施肥對黃壤性水稻土磷平衡及農(nóng)學閾值的影響. 中國農(nóng)業(yè)科學, 2016, 49(10): 1903-1912. DOI: 10.3864/j.issn.0578-1752.2016.10.007.
LIU Y L, LI Y, ZHAGN Y R, ZHAGN W A, JIAGN T M. Effect of long-term fertilization on the P balance and critical value of soil Olsen-P in paddy soil from yellow earth. Scientia Agricultura Sinica, 2016, 49(10): 1903-1912. DOI: 10.3864/j.issn.0578-1752.2016.10.007. (in Chinese)
[13] 郭鑫年, 孫嬌, 梁錦繡, 周濤, 田旭東, 陳剛. 栽培方式與施磷量對水稻養(yǎng)分累積、分配及磷素平衡的影響. 中國土壤與肥料, 2017(4): 104-111. DOI: 10.11838/sfsc.20170416.
SUN X N, SUN J, LIAGN J X, ZHOU T, TIAN X D, CHEN G. Cultivation way and phosphorus fertilizer on rice nutrient accumulation, distribution and soil phosphorus balance. Soil and Fertilizer Sciences in China, 2017(4): 104-111. DOI: 10.11838/sfsc. 20170416. (in Chinese)
[14] 連彩云, 馬忠明. 干旱綠洲灌區(qū)大白菜施磷效應與磷肥投入閾值. 應用生態(tài)學報, 2018, 29(2): 592-598. DOI: 10.13287/j.1001-9332. 201802.027.
LIAN C Y, MA Z M. Phosphorus application effects and input threshold of Chinese cabbage in the oasis irrigation. Chinese Journal of Applied Ecology, 2018, 29(2): 592-598. DOI: 10.13287 /j.1001-9332.201802.027. (in Chinese)
[15] CAO N, CHEN X, CUI Z, ZHAGN F. Change in soil available phosphorus in relation to the phosphorus budget in China. Nutrient Cycling in Agroecosystems, 2012, 94: 161-170. DOI:10.1007/s10705- 012-9530-0.
[16] 吳啟華, 劉曉斌, 張淑香, 尹彩俠, 李桂花, 謝佳貴. 施用常規(guī)磷水平的 80% 可實現(xiàn)玉米高產(chǎn)、磷素高效利用和土壤磷平衡. 植物營養(yǎng)與肥料學報, 2016, 22(6): 1468-1476. DOI: 10.11674/zwyf. 16005.
WU Q H, LIU X B, ZHAGN S X, YIN C X, LI G H, XIE J G. Application of 80% of routine phosphorus rate to keep high yield and P efficiency of maize and P balance in soil. Journal of Plant Nutrition and Fertilizers, 2016, 22(6): 1468-1476. DOI: 10.11674/zwyf.16005. (in Chinese)
[17] 李楊瑞. 現(xiàn)代甘蔗學. 北京: 中國農(nóng)業(yè)出版社, 2010: 1.
LI Y R. Modern Sugarcane Science. Beijing: China Agriculture Press, 2010: 1. (in Chinese)
[18] 尚懷國, 李莉, 王克健, 譚宏偉, 蘭宗寶, 楊本鵬, 彭李順, 冷楊. 甘蔗生產(chǎn)化肥農(nóng)藥減施增效技術(shù)研究進展. 西南農(nóng)業(yè)學報, 2020, 33(1): 211-216. Doi: 10.16213/j.cnki.scjas. 2020.1.034.
SHANG H G, LI L, WANG K J, TAN H W, LAN Z B, YANG B P, PENG L S, LENG Y. Research progress on chemical fertilizer and pesticide application reduction and efficiency enhancement technologies of sugarcane production. Southwest China Journal of Agricultural Sciences, 2020, 33(1): 211-216. Doi: 10.16213/j.cnki.scjas.2020.1.034.(in Chinese)
[19] 譚宏偉. 甘蔗施肥管理. 北京: 中國農(nóng)業(yè)出版社, 2009: 88.
TAN H W. Fertilization Management on Sugarcane. Beijing: China Agriculture Press, 2009: 88. (in Chinese)
[20] 段正品, 曹連福, 孫廷富, 段曰亮. 甘蔗3414 肥料試驗. 云南農(nóng)業(yè), 2016(8): 50-52.
DUAN Z P, CAO L F, SUN Y F, DUAN Y L. Fertilizer test of sugarcane “3414”. Yunnan Agriculture, 2016(8): 50-52. (in Chinese)
[21] 雷崇華, 江翠平, 覃劍峰. 甘蔗測土配方施肥經(jīng)濟效益的研究. 廣西熱帶農(nóng)業(yè), 2010(2): 9-12.
LEI C H, JIANG C P, QIN J F. Study on economic benefit of soil testing and fertilizer recommendation of sugarcane. Agricultural Research and Application, 2010(2): 9-12. (in Chinese)
[22] 朱曉暉, 黃金生, 曾艷, 區(qū)惠平, 周柳強, 謝如林, 譚宏偉. 紅壤植蔗區(qū)施磷的淋溶風險評估. 西南農(nóng)業(yè)學報, 2018, 31(3): 532-537. DOI: 10.16213/j.cnki. Scjas.2018.3.018.
ZHU X H, HUANG J S, ZENG Y, OU H P, ZHOU L Q, XIE R L, TAN H W. Phosphorous leaching risk assessment of sugarcane planting in red soil area. Southwest China Journal of Agricultural Sciences, 2018, 31(3): 532-537. DOI: 10.16213/j.cnki. Scjas.2018. 3.018. (in Chinese)
[23] 魯如坤. 土壤農(nóng)業(yè)化學分析方法. 北京: 中國農(nóng)業(yè)科學技術(shù)出版社, 2000.
LU R K. Analytical Methods for Agrochemistry of Soils. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[24] 侯云鵬, 王立春, 李前, 尹彩俠, 秦裕波, 王蒙, 王永軍, 孔麗麗. 覆膜滴灌條件下基于玉米產(chǎn)量和土壤磷素平衡的磷肥適用量研究. 中國農(nóng)業(yè)科學, 2019, 52(20): 3573-3584. DOI: 10.3864/j.issn.0578- 1752.2019.20.008.
HOU Y P, WANG L C, LI Q, YIN C X, QIN Y B, WANG M, WANG Y J, KONG L L. Research on optimum phosphorus fertilizer rate based on maize yield and phosphorus balance in soil under film mulched drip irrigation conditions. Scientia Agricultura Sinica, 2019, 52(20): 3573-3584. DOI: 10.3864/j.issn.0578-1752.2019.20.008. (in Chinese)
[25] 區(qū)惠平, 周柳強, 黃美福, 黃金生, 韋運蘭, 謝如林, 曾艷, 劉昔輝, 朱曉暉, 譚宏偉. 不同施磷量下稻田土壤磷素平衡及其潛在環(huán)境風險評估. 植物營養(yǎng)與肥料學報, 2016, 22(1): 40-47. DOI: 10. 11674 / zwyf.14298.
OU H P, ZHOU L Q, HUANG M F, HUANG J S, WEI Y L, XIE R L, ZENG Y, LIU X H, ZHU X H, TAN H W. Phosphorus balance in paddy soils and its environmental effect under different phosphorus application rates. Journal of Plant Nutrition and Fertilizers, 2016, 22(1): 40-47. DOI: 10. 11674 / zwyf.14298. (in Chinese)
[26] 林誠, 王飛, 李清華, 何春梅, 張輝. 長期不同施肥下南方黃泥田有效磷對磷盈虧的響應特征. 植物營養(yǎng)與肥料學報, 2017, 23(5): 1175-1183. DOI: 10.11674/zwyf.16444.
LIN C, WANG F, LI Q H, HE C M, ZHANG H. Response characteristics of Olsen-P to P balance in yellow paddy fields of southern China. Journal of Plant Nutrition and Fertilizer, 2017, 23(5): 1175-1183. DOI: 10.11674/zwyf.16444. (in Chinese)
[27] 賈良平, 陳新平, 張福鎖, 劉宏斌, 吳健繁. 北京市冬小麥氮肥適宜用量評價方法的研究. 中國農(nóng)業(yè)大學學報, 2001, 6(3):67-73.
JIA L P, CHEN X P, ZHANG F S, LIU H B, WU J F. Study of optimum N supplying rate in winter wheat in Beijing area. Journal of China Agricultural University, 2001, 6(3): 67-73. (in Chinese)
[28] 魏猛, 張愛君, 李洪民, 唐忠厚, 陳曉光. 基于長期施肥下潮土磷素演變及農(nóng)學閾值的研究. 西南農(nóng)業(yè)學報, 2018, 31(11): 2373-2378. Doi:10.16213/j. cnki. scjas. 2018.11. 025.
WEI M, ZHAGN A J, LI H M, TANG Z H, CHEN X G. Study on evolution characteristics of soil phosphorus and critical value of soil Olsen-P in fluvo-aquic soil under long-term fertilization. Southwest China Journal of Agricultural Sciences, 2018, 31(11): 2373-2378. Doi:10.16213/j. cnki. scjas. 2018.11. 025. (in Chinese)
[29] 謝如林, 譚宏偉, 周柳強, 黃金生, 黃美福, 黃獻華, 董文斌, 王磊. 不同氮磷施用量對甘蔗產(chǎn)量及氮肥、磷肥利用率的影響. 西南農(nóng)業(yè)學報, 2012, 15(1):198-202. DOI: 10.16213/j.cnki.scjas.2012. 01.048.
XIE R L, TAN H W, ZHOU L Q, HUANG J S, HUANG M F, HUAGN X H, DONG W B, WANG L. Effect of N fertilizer and P fertilizer amount on fertilizer use efficiency in sugarcane yield. Southwest China Journal of Agricultural Sciences, 2012, 15(1): 198-202. DOI:10.16213/j.cnki.scjas.2012.01.048. (in Chinese)
[30] HAWKESFORD M, HORST W, KICHEY T, LAMBERS H, SCHJOERRING J, MOLLER I S, WHITE P. Function of macronutrients. MARSCHNER P.. London, UK: Elseiver, 2012: 135-189.
[31] KINGSTON G. Mineral nutrition of sugarcane//MOORE P H, BOTHA F C. Sugarcane Physiology, Biochemistry, and Functional Biology. New York: Wiley, 2014: 85-120.
[32] DEVI T C, BHARATHALAKSHMI M, KUMARI M B G S, NAIDU N V. Effect of sources and levels of phosphorus with zinc on yield and quality of sugarcane. Sugar Tech, 2012, 14(2): 195-198.DOI:10.1007/ s12355-012-0144-2.
[33] ALVARADO J S, MCCRAY J M, ERICKSON J E, SANDHU H S, BHADHA J H. Sugarcane biomass yield response to phosphorus fertilizer on four mineral soils as related to extractable soil phosphorus. Communications in Soil Science & Plant Analysis, 2019, 50(22): 2960-2970. DOI: 10.1080/00103624.2019.1689260.
[34] DOS SANTOS V R, SOLTANGHEISI A, JUNQUEIRA F H C, KOLLN O, VITTI A C, DOS SANTOS D C T, PAVINATO P S. Phosphate sources and their placement affecting soil phosphorus pools in sugarcane. Agronomy-Basel, 2018, 8(12): 283. DOI: org/10.3390/ agronomy8120283
[35] OMOLLO J O, ABAYO G O. Effects of phosphorus sources and rates on sugarcane yield and quality in kibos, Nyando sugar zone. Innovations as key to the Green Revolution in Africa, 2011: 533-537. DOI: 10.1007/978-90-481-2543-2_55.
[36] 馮媛媛, 申艷, 徐明崗, 田應兵, 任鳳鈴, 段英華. 施磷量與小麥產(chǎn)量的關(guān)系及其對土壤、氣候因素的響應. 植物營養(yǎng)與肥料學報, 2019, 25(4): 683–691. DOI: 10.11674/zwyf.18171.
FENG Y Y, SHEN Y, XU M G, TIAN Y B, REN F L, DUAN Y H. Relationship between phosphorus application amount and grain yield of wheat and its response to soil and climate factors. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 683-691. DOI: 10.11674/zwyf. 18171. (in Chinese)
[37] JIMMY W R A, CLAUDIA C C A, EDUARDO A M, GERSON L D, LEANDRO S DA S. Phosphorus fertilization and lime application and its effect on sugarcane growth, yield and borer attack in sugarcane. Centro Agricola, 2016, 43(1): 36-43.
[38] GUSTAVO C, RENATO DE M P, CID N S C, LEANDRO R M, RICARDO de L V, JO?O M P J. Response of sugarcane in a red ultisol to phosphorus rates, phosphorus sources, and filter cake. The Scientific World Journal, 2015: 405970. DOI: 10.1155/2015/ 405970.
[39] AMIN S, VALDEVAN R dos S, HENRIQUE C J F, ORIEL K, ANDRé C V, CARLOS T DOS S D, WILFRAND F B H, MARCOS R, THAIS DEM S, PAUL J A W. Phosphate sources and filter cake amendment affecting sugarcane yield and soil phosphorus fractions. Revista Brasileira de Ciência do Solo, 2019: 43. DOI:10.1590/ 18069657rbcs20180227.
[40] 展曉瑩, 任意, 張淑香, 康日峰. 中國主要土壤有效磷演變及其與磷平衡的響應關(guān)系. 中國農(nóng)業(yè)科學, 2015, 48 (23): 4728-4737. DOI: 10.3864/j.issn.0578-1752.2015.23.014.
ZHAN X Y, REN Y, ZHANG S X, KANG R F. Changes in Olsen phosphorus concentration and its response to phosphorus balance in the main types of soil in China. Scientia Agricultura Sinica, 2015, 48(23): 4728-4737. DOI: 10.3864/j.issn.0578-1752.2015.23.014.(in Chinese)
[41] 呂真真, 劉秀梅, 侯紅乾, 翼建華, 藍賢瑾, 馮兆濱, 劉益仁. 長期不同施肥對紅壤性水稻土磷素及水稻磷營養(yǎng)的影響. 植物營養(yǎng)與肥料學報 2019, 25(8): 1316-1324. DOI: 10.11674/zwyf.18340.
Lü Z Z, LIU X M, HOU H Q, YI J H, LAN X J, FENG Z B, LIU Y R. Effects of long-term fertilizations on soil phosphorus and its supply to rice in red paddy soil. Journal of Plant Nutrition and Fertilizers, 2019, 25(8): 1316-1324. DOI: 10.11674/zwyf.18340.(in Chinese)
[42] 魯艷紅, 廖育林, 聶軍, 周興, 謝堅, 楊曾平. 長期施肥紅壤性水稻土壤磷素演變特征及對磷盈虧的響應. 土壤學報, 2017, 54(6): 1471-1485. DOI: 10.11766/trxb201703210020.
LU Y H, LIAO Y L, NIE J, ZHOU X, XIE J, YANG Z P. Evolution of soil phosphorus in reddish paddy soil under long-term fertilization varying in formulation and its response to P balance. Acta Pedologica Sinica, 2017, 54(6): 1471-1485. DOI:10.11766/trxb201703210020.
[43] 俄勝哲, 楊志奇, 曾希柏, 王亞男, 羅照霞, 袁金華, 車宗賢. 長期施肥黃綿土有效磷含量演變及其與磷素平衡和作物產(chǎn)量的關(guān)系. 應用生態(tài)學報, 2017, 28(11): 3589-3598.
E S Z, YANG Z Q, ZENG X B, WANG Y N, LUO Z X, YUAN J H, ZHE Z X. Soil Olsen-P content changing trend and its relationship with phosphorus surplus and crop yield under long-term fertilization in loessial soil region on the Loess Plateau, China. Chinese Journal of Applied Ecology, 2017, 28(11): 3589-3598. DOI: 10.13287/j.1001- 9332.201711.037. (in Chinese)
[44] 葉會財, 李大明, 黃慶海, 柳開樓, 余喜初, 徐小林, 周利軍, 胡惠文, 王賽蓮. 長期不同施肥模式紅壤性水稻土磷素變化. 植物營養(yǎng)與肥料學報, 2015, 21(6): 1521-1528. DOI:10.11674/zwyf.2015. 0618.
YE H C, LI D M, HUANG Q H, LIU K L, YU X C, XU X L, ZHOU L J, HU H W, WANG S L. Variation of soil phosphorus under long-term fertilization in red paddy soil. Journal of Plant Nutrition and Fertilizers, 2015, 21(6): 1521-1528. DOI:10.11674/zwyf.2015. 0618. (in Chinese)
[45] 張少民, 郝明德, 柳燕蘭. 黃土區(qū)長期施用磷肥對冬小麥產(chǎn)量、吸氮特性及土壤肥力的影響. 西北農(nóng)林科技大學學報(自然科學版), 2007, 35(7): 159-163.
ZHANG S M, HAO M D, LIU Y L. Effects of long-term application of P fertilizer on the yield of winter wheat and characteristic of N absorption and soil fertility in dry-land of Loess Plateau. Journal of Northwest A & F University (Nat. Sci. Ed.), 2007, 35(7): 159-163. (in Chinese)
[46] 魯如坤, 時正元, 施建平. 我國南方 6 省農(nóng)田養(yǎng)分平衡現(xiàn)狀評價和動態(tài)變化研究. 中國農(nóng)業(yè)科學, 2000, 33(2): 63-67.
LU R K, SHI Z Y, SHI J P. Nutrient balance of agroecosystem in six provinces in southern China. Scientia Agricultura Sinica, 2000, 33(2): 63-67. (in Chinese)
[47] 謝如林, 黃獻華, 譚宏偉, 周柳強, 黃美福, 黃金生, 董文斌. 蔗園土壤速效磷豐缺臨界值的研究. 熱帶作物學報, 2009, 30(3): 304-308.
XIE R L, HUANG X H, TAN H W, ZHOU L Q, HUAGN M F, HUANG J S, DOGN W B. Critical level of soil available P in sugarcane grove. Chinese Journal of Tropical Crops, 2009, 30(3): 304-308. (in Chinese)
[48] 趙靚, 侯振安, 李水仙, 劉立鵬, 黃婷, 張揚. 磷肥用量對土壤速效磷及玉米產(chǎn)量和養(yǎng)分吸收的影響. 玉米科學, 2014, 22(2): 123-128. DOI: 10.13597/j.cnki.maize.science.
ZHAO L, HOU Z A, LI S X, LIU L P, HUAGN T, ZHANG Y. Effects of P rate on soil available P, yield and nutrient uptake of maize. Journal of Maize Sciences, 2014, 22(2): 123-128. DOI:10.13597/ j.cnki.maize.science. (in Chinese)
[49] 王興仁, 曹一平, 張福鎖, 陳新平. 磷肥恒量監(jiān)控施肥法在農(nóng)業(yè)中應用探討. 植物營養(yǎng)與肥料學報, 1995, 1(3/4): 59-64.
WANG X R, CAO Y P, ZHAGN F S, CHEN X P. Feasibility of a fertilization method for keeping constant application rate of phosphorus by monitoring avaliable phosphorus in the soil. Plant Nutrition and Fertilizer Sciences,1995, 1(3/4): 59-64. (in Chinese)
Research on Phosphorus Application Rate Based on Sugarcane Yield and Phosphorus Balance in Soil
OU HuiPing, ZHOU LiuQiang, HUANG JinSheng, ZHU XiaoHui, ZENG Yan, PENG JiaYu, XIE RuLin, TAN HongWei, LI ZhongNing, SHEN XiaoWei, LIU XiHui
Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/South China Scientific Observation and Experiment Station of Plant Nutrition and Fertilization Technology, Ministry of Agriculture and Rural Affairs, Nanning 530007
【】This study was conducted to explore the phosphate fertilizer rate based on sugarcane yield and phosphorus (P) balance in soil, with an aim to provide a reference for the efficient utilization and scientific management of P in farmland. 【】A 3-year continuous field trail was conducted in Wuming district of Nanning city of Guangxi province from 2014 to 2016, which was designed with five phosphate fertilization treatments, including non-phosphate fertilization (P0), 75 kg P2O5·hm-2(P1), 150 kg P2O5·hm-2(P2), 300 kg P2O5·hm-2(P3) and 600 kg P2O5·hm-2(P4). The yield of cane and leaves and Olsen-P content in soil were measured, and the relation between cane yield and Olsen-P was evaluated by Mitscherlich model. The agronomic threshold of soil Olsen-P was also calculated. Plant P content, P uptake, P utilization efficiency and P balance in soil were further analyzed. 【】Compared with P0 treatment, the cane yield was significantly increased by 8.3% (2014), 18.0% (2015) and 15.5% (2016) under P2 treatment. P2 or P3 treatments had the highest yields for leaves and above-ground part, but there was no significant difference in cane, leaves and above-ground part among different P application rates. P accumulations in cane, leaves and above were also similar among P2 to P4 treatments. Olsen-P content, P balance and P surplus rate increased significantly with the increase of P application rate, while the PRE and PPFP decreased gradually with the increase of P application rate; where P1 treatment was the highest, which was significantly higher than that under P3 and P4 treatments. The agronomic threshold of Olsne-P was 13.4 mg kg-1based on Mitscherlich model. Correlation analysis showed that P surplus rate was significantly positively correlated with P application rate and soil Olsen-P (<0.01), and which was significantly quadratic correlated with sugarcane stem yield (<0.01), and significantly exponential correlated with PRE and PPFP (<0.01). When P application rate was 40.9 kg·hm-2, P surplus rate, soil Olsen-P content and cane yield were 0,15.87 mg kg-1and 94.2 t·hm-2, respectively. While the maximum cane yield was obtained by linear and platform fitting, soil P surplus rate, Olsen-P content and cane yield were 216.2%-232.7%, 24.7-25.4 mg·kg-1and 99.7-100 t·hm-2, respectively. 【】In lateritic red soil with relatively high Olsen-P content, the P application rate of 40.9 kg·hm-2would maintain the soil Olsen P content, meet the demand for high yield and high phosphorus utilization efficiency.Thus, it could beused as therecommended Papplication amount.
sugarcane; phosphorus application rate; Olsen-P; phosphorus balance
10.3864/j.issn.0578-1752.2021.13.011
2020-08-21;
2020-10-22
國家重點研發(fā)項目(2020YFD1000600)、國家自然科學基金項目(32060293,31860350,31750368,31860157,31860159)、廣西科技重大專項(桂科AA17204078-2,桂科AA20108002-2,桂AB18221027)、廣西農(nóng)科院項目(桂農(nóng)科2021YT036,桂農(nóng)科2020YM110,桂農(nóng)科2019Z12,桂農(nóng)科2019ZX123,桂農(nóng)科2018YM27,桂農(nóng)科盟202013)、農(nóng)業(yè)農(nóng)村部西南山地農(nóng)業(yè)環(huán)境重點實驗室開放基金(AESMA-OPP-2019003)
區(qū)惠平,E-mail:ouhuiping2006@163.com。通信作者譚宏偉,E-mail:hongwei_tan@163.com
(責任編輯 李云霞)