• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed Resource Allocation via Accelerated Saddle Point Dynamics

    2021-07-23 10:20:22WenTingLinYanWuWangChaojieLiandXinghuoYu
    IEEE/CAA Journal of Automatica Sinica 2021年9期

    Wen-Ting Lin, Yan-Wu Wang,, Chaojie Li, and Xinghuo Yu,

    Abstract—In this paper, accelerated saddle point dynamics is proposed for distributed resource allocation over a multi-agent network, which enables a hyper-exponential convergence rate.Specifically, an inertial fast-slow dynamical system with vanishing damping is introduced, based on which the distributed saddle point algorithm is designed. The dual variables are updated in two time scales, i.e., the fast manifold and the slow manifold. In the fast manifold, the consensus of the Lagrangian multipliers and the tracking of the constraints are pursued by the consensus protocol. In the slow manifold, the updating of the Lagrangian multipliers is accelerated by inertial terms. Hyper-exponential stability is defined to characterize a faster convergence of our proposed algorithm in comparison with conventional primal-dual algorithms for distributed resource allocation. The simulation of the application in the energy dispatch problem verifies the result,which demonstrates the fast convergence of the proposed saddle point dynamics.

    I. INTRODUCTION

    A. Motivation and Related Works

    RESOURCE allocation among autonomous multi-agents,which have preference over alternative resources and participate in the decision making of the resource allocation[1], has received increasing attention due to its promising applications in the smart grid [2]–[4], wireless and social networks [5]–[7], and robotics [8].

    A possible approach for solving the resource allocation problem is the centralized optimization method, since the problem can be modeled into an optimization problem with globally coupled equality constraints and an uncoupled objective function. The problem exists widely, for instance, in the load sharing problem in smart grids [9], the allocation problem with 5G virtualized networks [10], the energyefficient power allocation of wireless power transfer-enabled orthogonal frequency-division multiple access (OFDMA)multicell networks [11], the peer-to-peer energy trading problem of smart grids [12], and the resource allocation of cognitive radio networks [13]. By the aid of the centralized optimization method, decision making is accomplished by solving a mathematical program. Though the centralized optimization method is feasible, it requires heavy computation for solving a large-scale resource allocation problem.Moreover, privacy issues arise with the exchange of the objective function and constraints among the agents.

    As we can see, the objective function of the resource allocation problem is uncoupled. Based on this formulation,one option to solve the resource allocation problem is using the distributed optimization method over a multi-agent network. These algorithms are designed by coordinative computing among a number of agents, see [14]–[16], which overcome the disadvantages of scalability problems and privacy issues. Multi-agent based distributed optimization algorithms have been studied by many researchers, and they can be categorized as algorithms with a sub-linear convergence rate (asymptotical convergence for continuoustime systems), linear convergence rate (exponential convergence for continuous-time systems), super-linear convergence rate (super-exponential convergence for continuous-time systems) and fixed-time convergence rate.For the first category, early work in [17] is a gradient descent based method with a sub-linear convergence rate for the convex optimization problem, which cannot deal with globally coupled constraints. To address globally coupled constraints that are known by all agents, in [18], by employing the projected primal-dual sub-gradient method, an algorithm with a sub-linear convergence rate is proposed. In practice, globally coupled constraints are not always available for all agents,thus, the algorithm in [18] may lose its effectiveness unless there is a central coordinator, which means the algorithm is not fully distributed. Concerning the decoupling of the constraints, algorithms based on a continuous-time network is proposed in [19], [20], where the augmented Lagrange function is introduced for dealing with the coupled constraints. In [19], by introducing the penalty terms in the Lagrange function, the constraints are decoupled. The penalty coefficient in [19] depends on the global information of the coupled constraints, which implies the proposed algorithm is not initialization-free. In [20], by employing projected primal dual dynamics which is based on the augmented Lagrange function, an initialization-free approach is proposed. In [21],by combining the projected primal-dual dynamic with the consensus method, an initialization-free algorithm is proposed. In [19]–[21], the algorithms can only converge to the optimal solution asymptotically (sub-linear convergence rate). Recently, by using the linear Laplacian-gradient, a distributed algorithm based on a continuous-time multi-agent network is revealed in [22] for the resource allocation problem. The proposed algorithm in [22] can avoid directly dealing with coupled constraints by using an interior point method and converges asymptotically. Under the same framework, an algorithm based on a second-order network is disclosed in [23], which also shows an asymptotical convergence rate. Since the interior point method is employed,both of the algorithms in [22], [23] are not initialization-free.For the second category that can achieve exponential convergence with the globally coupled constraints being known by all agents, the algorithm of [24] over a continuoustime network is proposed, where primal-dual dynamics are employed to achieve an exponential convergence rate(corresponding to the linear convergence rate) for problems with only equality constraints. For problems with a quadratic objective, in [25], based on the primal-dual dynamics, a twotime-scale initialization-free algorithm is proposed, which can achieve an exponential convergence rate. In [26], for problems with a nonsmooth objective, differentiated projection operations and differential inclusions are introduced and a distributed continuous-time algorithm is proposed to achieve an exponential convergence rate. For the third category, in[27], an algorithm with a super convergence rate is proposed with Nesterov’s acceleration. This can achieve a super exponential convergence rate, which is faster than the conventional exponential convergence rate. However, it is limited to the unconstrained problem.

    For the fourth category, note that the aforementioned distributed algorithms for constrained optimization can only reach an asymptotical or an exponential convergence rate,which cannot fulfill the efficiency demand for algorithms in engineering application. In [28], [29], by using the graph Laplacian, the fixed-time algorithm based on a nonlinear protocol for the resource allocation problem is proposed,which can converge in fixed time if the constraints are satisfied during the initialization procedure.

    From the above discussion, the convergence rate of the existing distributed algorithms for solving the resource allocation problem is limited. Furthermore, fixed-time convergent algorithms require an initialization which brings additional computational cost. In this case, the requirement for the global information of the constraints in the initialization process may also lead to leakage of the privacy information with respect to the constraints.

    In this paper, we will design an initialization-free distributed algorithm to solve the resource allocation problem with a faster convergence rate. By employing the inertial accelerated method, a dual accelerated algorithm is proposed for the optimization problem.

    B. Contributions

    The proposed algorithm can be seen with accelerated saddle point dynamics for constrained optimization. The contributions of our paper versus the existing literature are summarized as follows.

    1) Accelerated saddle point dynamics are firstly proposed for resource allocation over a multi-agent network, which enables a hyper-exponential convergence rate. Hyperexponential stability is defined to characterize a faster convergence of our proposed algorithm in comparison with conventional primal-dual algorithms. With the objective function being strongly convex and its gradient being Lipschitz continuous, the proposed algorithm achieves a hyper-exponential convergence rate, which is faster than algorithms in [22]–[24].

    2) The proposed algorithm is initialization-free. Although in[28], [29], the fixed-time convergent algorithm is proposed, in which convergence to the optimal solution for optimization with globally coupled constraints can be achieved in fixed time, and they require that the globally coupled constraints are fulfilled during the initialization procedure. In the proposed algorithm, we do not require that the globally coupled constraints are fulfilled during the initialization procedure,which means there is no need to reveal the information related to constraints. Therefore, privacy related to constraint information can be preserved efficiently.

    3) An inertial fast-slow dynamical system with vanishing damping is introduced, based on the distributed saddle point algorithm designed. The dual variables are updated in two time scales through this formulation, which enables the acceleration of the dual dynamic. Specifically, the consensus of Lagrangian multipliers and the tracking of the constraints is designed in the fast manifold. In the slow manifold, the updating of Lagrangian multipliers is accelerated by inertial terms. This acceleration makes the proposed algorithm converge faster than saddle point dynamics in [25].

    II. PRELIMINARIES

    A. Notations and Definitions

    Definition 1:Consider the nonautonomous system

    Fig. 1. The convergence rate comparison between HS and ES.

    Thus, we can obtain that

    Lemma 2 gives us suggestions on designing accelerated saddle point dynamics to achieve a fast convergence rate,which will be presented in the next section.

    B. Problem Formulation

    In this paper, the following resource allocation problem is considered

    C. Assumptions

    First, the Lagrangian function for (11) is constructed as follows:

    Then, by characterizing the primal-dual solutions of the optimization problem as the saddle point of the augmented Lagrangian function and motivated by Lemma 2, the following algorithm is proposed for seeking the saddle point in a distributed manner

    Similar to acceleration methods in [33], classical results in ODE theory do not directly imply the existence of the solutions to (14). However, through the Lyapunov analysis,we can ensure the wellposedness of (14), which will be shown in the next section.

    Remark 2:Due to the introduction of saddle point dynamics, the algorithm cannot achieve fixed-time convergence, however, it is initialization-free and the coupled constraints are satisfied with the convergence of the algorithm. Compared with the centralized algorithm withO(n)computational complexity (linear complexity), the computational complexity of the proposed algorithm isO(1) (constant complexity). This means the computation complexity of the proposed algorithm will not increase with the increase of the problems’ dimension.

    IV. STABILITY ANALYSIS

    For the convenience of stability analysis, the proposed algorithm (14) is rewritten as follows:

    In order to show the stability of (15), we will follow the following steps. First, by employing the time-scale decomposition method (Section 11.2 in [30]), algorithm (15)is decomposed into the reduced system and the boundarylayer system. Then, the stability of these two systems are analyzed, respectively. At last, the stability analysis is combined and the stability of the whole algorithm is obtained via Lyapunov’s method.

    Following the aforementioned steps, we decompose algorithm (15) first. According to the singular perturbation theorem, we can obtain the boundary-layer system as follows:

    A. Stability Analysis of the Reduced System

    Defineh=[xT,,yT]T. Letx?,andy?be the vectors satisfying the following equalities:

    where

    Hence, we can obtain that

    By substituting (33) into (37), we can obtain

    Now, we have proven the exponential stability of the reduced model. To determine the stability of algorithm (15),we need to perform further analysis of the stability of the boundary-layer system (16).

    B. The Stability Analysis of the Boundary-Layer System

    where

    V. APPLICATION TO THE SMART GRID

    In this section, the effectiveness of algorithm (14) is illustrated by applying it to the economic dispatch problem of the smart grid, which is investigated in [29]. Here, a system with 10 generators is considered. This problem consists of finding the optimal strategy for 10 generators which minimizes the total generation cost. At the same time, the supply and demand, which can be modeled into globally coupled constraint, should be satisfied. First, based on the characteristics of power generators, similar to [22], [23] and[25] in the manuscript. The cost function of generatoriin the system can be modeled as

    TABLE I THE CHARACTERISTIC PARAMETERS OF GENERATORS

    A 10 agents based network is chosen to solve (67). It is undirected and circularly connected. Each agent represents one generator. The proposed algorithm (17) is used.

    For comparison, the best known optimal solutions are listed in Table II, and the distributed algorithm in [22], [23] and [25]are also carried out.andC3, the relative error with algorithmC2 creeps down while it ebbs with algorithmC3, which shows a smaller slope than bothC1 andC4. Furthermore, to verify robustness of the proposed algorithm with regard to the initial condition, in Table III, under 20 sets of random initial conditions, the average convergence time ofC1,C2,C3 andC4 is compared.From both Fig. 4 and Table III, we can see that the convergence rate of the proposed algorithm (15) is faster than the algorithm with an exponential convergence rate in [25].Moreover, it is also faster that the algorithm in [22], and the algorithm in [23], which is asymptotically convergent and requires that the constraint is fulfilled during the initialization procedure. This means the inertial terms we employed in the proposed algorithm (15) perform well in the acceleration of the algorithm. Combining this with the two-time-scale property of the proposed algorithm (15), the inertial accelerated method leads to hyper-exponential stability of the proposed algorithm (15), which verifies the statement in Theorem 2.

    TABLE II THE BEST KNOWN OPTIMAL SOLUTIONS

    Fig. 2. The evolutions of xi (i=1,2,...,10).

    Fig. 3. The evolutions of

    Fig. 4. The convergence rate comparison.

    TABLE III CONVERGENCE TIME UNDER RANDOM INITIAL CONDITIONS

    VI. CONCLUSIONS

    In this paper, a distributed dual accelerated algorithm for the distributed optimization problem with coupled linear equality constraints has been proposed. By designing the algorithm in two time scales, the proposed algorithm avoids the consensus updating of the multipliers, and the tracking of constraints being executed at the same speed with saddle point seeking,which makes the inertial acceleration possible. Moreover, by introducing inertial terms in the dual dynamic, saddle point dynamics are accelerated. With the aid of saddle point dynamics, the proposed algorithm is initialization free, which means that the globally coupled constraints do not need to be fulfilled at the initialization procedure; thus, the privacy related to constraint information is well-preserved. Notably,the proposed algorithm has been proven to converge to an optimal solution faster than the ordinary saddle point dynamics, with a so-called hyper-exponential convergence rate. Simulation of the energy dispatch problem in smart grid has shown that the proposed algorithm converges faster than the exponentially convergent and asymptotically convergent algorithms.

    伊人亚洲综合成人网| 亚洲天堂av无毛| 日本vs欧美在线观看视频 | 看十八女毛片水多多多| 亚洲美女黄色视频免费看| 国产亚洲午夜精品一区二区久久| 午夜福利影视在线免费观看| 女的被弄到高潮叫床怎么办| 成人午夜精彩视频在线观看| 国产免费一级a男人的天堂| 亚洲美女视频黄频| 午夜免费鲁丝| 麻豆乱淫一区二区| 国产在线男女| 中文天堂在线官网| 欧美精品国产亚洲| 欧美日韩av久久| 久久久久久久久久久丰满| 成年人免费黄色播放视频 | 久久久久精品性色| 成人综合一区亚洲| 全区人妻精品视频| 最近最新中文字幕免费大全7| 免费观看无遮挡的男女| 在线亚洲精品国产二区图片欧美 | 街头女战士在线观看网站| 免费久久久久久久精品成人欧美视频 | 午夜影院在线不卡| 制服丝袜香蕉在线| 国产成人精品婷婷| 色婷婷久久久亚洲欧美| 久久这里有精品视频免费| 精品熟女少妇av免费看| 18禁裸乳无遮挡动漫免费视频| 美女内射精品一级片tv| 免费黄网站久久成人精品| kizo精华| 男女边摸边吃奶| 高清av免费在线| 2021少妇久久久久久久久久久| av线在线观看网站| 欧美日韩综合久久久久久| 欧美bdsm另类| 免费观看无遮挡的男女| av线在线观看网站| 国产高清不卡午夜福利| 国产成人免费观看mmmm| 日韩免费高清中文字幕av| 亚洲av在线观看美女高潮| 女人久久www免费人成看片| 亚洲熟女精品中文字幕| 少妇猛男粗大的猛烈进出视频| 丝袜在线中文字幕| www.av在线官网国产| 国产精品国产三级专区第一集| 国产男女内射视频| 水蜜桃什么品种好| 赤兔流量卡办理| 91久久精品电影网| 丰满乱子伦码专区| 99热这里只有是精品在线观看| 赤兔流量卡办理| 男人舔奶头视频| 夫妻午夜视频| 亚洲欧美日韩另类电影网站| 亚洲国产精品999| 欧美亚洲 丝袜 人妻 在线| 我要看日韩黄色一级片| 色视频www国产| 亚洲精品一二三| 亚洲精品,欧美精品| 搡老乐熟女国产| 在线免费观看不下载黄p国产| 在线观看免费视频网站a站| 成人毛片60女人毛片免费| 国产精品人妻久久久影院| 99久久精品国产国产毛片| 91成人精品电影| 肉色欧美久久久久久久蜜桃| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品亚洲一区二区| 国产综合精华液| 热re99久久精品国产66热6| 亚洲无线观看免费| 少妇丰满av| 午夜福利视频精品| 国产高清三级在线| 在线观看av片永久免费下载| 国产日韩一区二区三区精品不卡 | 久久精品国产亚洲av天美| 女人久久www免费人成看片| 一区二区av电影网| 国产在视频线精品| 在线观看一区二区三区激情| 一级,二级,三级黄色视频| 97在线视频观看| 97精品久久久久久久久久精品| 久久毛片免费看一区二区三区| 汤姆久久久久久久影院中文字幕| 欧美日韩视频高清一区二区三区二| 欧美3d第一页| 三级经典国产精品| 777米奇影视久久| 国产老妇伦熟女老妇高清| 美女中出高潮动态图| 大话2 男鬼变身卡| 99热网站在线观看| 9色porny在线观看| 国产视频内射| 国产成人一区二区在线| 久久99一区二区三区| 亚洲天堂av无毛| 一级a做视频免费观看| 午夜福利视频精品| 精品一区二区三区视频在线| 另类精品久久| 亚洲av成人精品一区久久| 乱人伦中国视频| 免费看不卡的av| 五月开心婷婷网| 亚洲国产日韩一区二区| 欧美日韩国产mv在线观看视频| 亚洲精品日本国产第一区| 国产精品伦人一区二区| 国产69精品久久久久777片| 国产成人午夜福利电影在线观看| 搡女人真爽免费视频火全软件| 欧美日韩国产mv在线观看视频| 免费少妇av软件| 欧美精品人与动牲交sv欧美| 精品少妇久久久久久888优播| 精品99又大又爽又粗少妇毛片| 黄色日韩在线| 亚洲av福利一区| 国产老妇伦熟女老妇高清| 国产精品人妻久久久久久| 91aial.com中文字幕在线观看| 国精品久久久久久国模美| 久久精品国产a三级三级三级| 亚洲第一区二区三区不卡| 午夜久久久在线观看| 亚洲精品第二区| 亚洲,欧美,日韩| 26uuu在线亚洲综合色| 99九九在线精品视频 | 久久久久久久久大av| 五月天丁香电影| av视频免费观看在线观看| 国产午夜精品久久久久久一区二区三区| 亚洲色图综合在线观看| 久久久久久久亚洲中文字幕| 国产精品国产三级专区第一集| 日日爽夜夜爽网站| 免费少妇av软件| 汤姆久久久久久久影院中文字幕| 少妇猛男粗大的猛烈进出视频| 亚洲av成人精品一区久久| 国产黄色免费在线视频| 最后的刺客免费高清国语| 男女无遮挡免费网站观看| 国产精品福利在线免费观看| 性色avwww在线观看| 秋霞伦理黄片| 少妇丰满av| 国产精品嫩草影院av在线观看| 18+在线观看网站| 少妇丰满av| 最后的刺客免费高清国语| 欧美97在线视频| 汤姆久久久久久久影院中文字幕| 一本大道久久a久久精品| 99久久精品一区二区三区| 蜜臀久久99精品久久宅男| 国产av国产精品国产| 乱码一卡2卡4卡精品| 日韩av在线免费看完整版不卡| 黄色怎么调成土黄色| 伊人久久国产一区二区| 国内少妇人妻偷人精品xxx网站| 成人漫画全彩无遮挡| 99热这里只有精品一区| 亚洲精品乱码久久久久久按摩| 久久99热这里只频精品6学生| 在线观看人妻少妇| 哪个播放器可以免费观看大片| 国模一区二区三区四区视频| 国产伦在线观看视频一区| 日本wwww免费看| 女性被躁到高潮视频| 久久久久久久久久成人| 又粗又硬又长又爽又黄的视频| 国产老妇伦熟女老妇高清| 精品亚洲成a人片在线观看| 久久99一区二区三区| 18禁在线播放成人免费| 免费少妇av软件| 人妻夜夜爽99麻豆av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产色片| 久久狼人影院| 人妻夜夜爽99麻豆av| 偷拍熟女少妇极品色| 日日啪夜夜爽| 午夜av观看不卡| 美女cb高潮喷水在线观看| 欧美高清成人免费视频www| 久久精品久久久久久噜噜老黄| 亚洲四区av| a级片在线免费高清观看视频| 日韩不卡一区二区三区视频在线| 麻豆精品久久久久久蜜桃| 亚洲经典国产精华液单| 九色成人免费人妻av| 亚洲精品中文字幕在线视频 | 视频中文字幕在线观看| 欧美精品高潮呻吟av久久| 久久99精品国语久久久| 欧美 亚洲 国产 日韩一| 国产精品人妻久久久久久| 少妇人妻久久综合中文| 国产精品久久久久久精品古装| 99视频精品全部免费 在线| 狂野欧美激情性xxxx在线观看| 亚洲不卡免费看| 亚洲av欧美aⅴ国产| 啦啦啦中文免费视频观看日本| 国产免费又黄又爽又色| 久久久久精品久久久久真实原创| 国产老妇伦熟女老妇高清| 久久久久久久久久成人| 国产亚洲午夜精品一区二区久久| 国产日韩欧美亚洲二区| 五月伊人婷婷丁香| 水蜜桃什么品种好| 肉色欧美久久久久久久蜜桃| 久久韩国三级中文字幕| 91精品一卡2卡3卡4卡| 色婷婷av一区二区三区视频| 亚洲成人一二三区av| 高清黄色对白视频在线免费看 | 最近中文字幕2019免费版| 久久ye,这里只有精品| 国产乱人偷精品视频| 日韩人妻高清精品专区| 能在线免费看毛片的网站| 两个人免费观看高清视频 | 在线观看人妻少妇| 国产极品粉嫩免费观看在线 | 国产爽快片一区二区三区| 男的添女的下面高潮视频| 美女内射精品一级片tv| 黄色配什么色好看| 亚洲欧洲日产国产| 国产精品麻豆人妻色哟哟久久| 亚洲精品久久久久久婷婷小说| 人妻人人澡人人爽人人| h日本视频在线播放| 欧美国产精品一级二级三级 | 亚洲精品国产成人久久av| 涩涩av久久男人的天堂| 精品久久久久久久久亚洲| 丝袜脚勾引网站| 日韩熟女老妇一区二区性免费视频| 国产精品欧美亚洲77777| 亚洲图色成人| av福利片在线| 色视频www国产| 午夜福利网站1000一区二区三区| 性色avwww在线观看| 十八禁网站网址无遮挡 | 夫妻性生交免费视频一级片| 日韩成人av中文字幕在线观看| 久久婷婷青草| 亚洲精品色激情综合| 色视频www国产| 成人毛片a级毛片在线播放| 少妇猛男粗大的猛烈进出视频| 亚洲精华国产精华液的使用体验| 亚洲国产欧美在线一区| 中文字幕人妻熟人妻熟丝袜美| 一区在线观看完整版| 最近的中文字幕免费完整| 国产熟女欧美一区二区| 国产免费视频播放在线视频| 亚洲国产精品999| 亚洲国产欧美在线一区| 免费黄频网站在线观看国产| 少妇被粗大猛烈的视频| 欧美3d第一页| 日韩av不卡免费在线播放| 我要看黄色一级片免费的| 亚洲国产日韩一区二区| 综合色丁香网| 中国美白少妇内射xxxbb| 少妇的逼好多水| 高清在线视频一区二区三区| 国产伦精品一区二区三区视频9| 婷婷色av中文字幕| 一区二区三区精品91| 我要看黄色一级片免费的| 性高湖久久久久久久久免费观看| 成人漫画全彩无遮挡| 日韩精品免费视频一区二区三区 | 在线天堂最新版资源| 国产免费视频播放在线视频| 黄色一级大片看看| 亚洲,一卡二卡三卡| 日韩在线高清观看一区二区三区| 国产精品三级大全| av专区在线播放| 十分钟在线观看高清视频www | 亚洲一区二区三区欧美精品| 欧美xxxx性猛交bbbb| 免费观看av网站的网址| 日韩欧美精品免费久久| 99精国产麻豆久久婷婷| 成人无遮挡网站| 少妇高潮的动态图| 久久青草综合色| 熟女av电影| 97在线视频观看| 国产免费又黄又爽又色| 777米奇影视久久| 中文字幕人妻熟人妻熟丝袜美| 国产极品粉嫩免费观看在线 | 久久99热6这里只有精品| 国产成人精品无人区| 久久午夜福利片| 人妻制服诱惑在线中文字幕| 人人妻人人添人人爽欧美一区卜| 久久婷婷青草| 哪个播放器可以免费观看大片| 黄色视频在线播放观看不卡| 天天躁夜夜躁狠狠久久av| 2021少妇久久久久久久久久久| 国产av精品麻豆| 精品少妇内射三级| 波野结衣二区三区在线| 亚洲高清免费不卡视频| 亚洲成色77777| 久久青草综合色| 国产精品人妻久久久久久| 18禁裸乳无遮挡动漫免费视频| 国产淫片久久久久久久久| 黄色日韩在线| 在线观看免费高清a一片| 免费人成在线观看视频色| 亚洲怡红院男人天堂| 三级国产精品片| 欧美三级亚洲精品| av又黄又爽大尺度在线免费看| 人妻人人澡人人爽人人| 看免费成人av毛片| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩人妻高清精品专区| 国产精品久久久久久av不卡| 秋霞伦理黄片| 久久久午夜欧美精品| 五月天丁香电影| av有码第一页| 一边亲一边摸免费视频| 免费黄网站久久成人精品| 久久99精品国语久久久| 91久久精品国产一区二区成人| 国产在线男女| 久久99蜜桃精品久久| 成年人午夜在线观看视频| 老司机影院毛片| 亚洲情色 制服丝袜| 丁香六月天网| 精品久久久久久久久亚洲| 一级黄片播放器| 久久99一区二区三区| 欧美日韩视频高清一区二区三区二| 久久久a久久爽久久v久久| 少妇被粗大猛烈的视频| 国产乱来视频区| 国产永久视频网站| 人妻人人澡人人爽人人| 日本黄色日本黄色录像| 欧美国产精品一级二级三级 | 极品人妻少妇av视频| 欧美3d第一页| 插逼视频在线观看| 久久ye,这里只有精品| 免费黄频网站在线观看国产| 久久国产乱子免费精品| 国产美女午夜福利| 麻豆成人av视频| 久久精品国产自在天天线| 中文乱码字字幕精品一区二区三区| 人人妻人人爽人人添夜夜欢视频 | av卡一久久| 涩涩av久久男人的天堂| 免费看不卡的av| 国产一区二区在线观看日韩| 国产日韩一区二区三区精品不卡 | 国产精品久久久久久av不卡| 熟妇人妻不卡中文字幕| 成人亚洲欧美一区二区av| 一本—道久久a久久精品蜜桃钙片| 麻豆成人午夜福利视频| kizo精华| 我的老师免费观看完整版| 大片电影免费在线观看免费| 亚洲精品国产av成人精品| 一个人免费看片子| 亚洲欧美成人综合另类久久久| 精品国产一区二区三区久久久樱花| 精品国产露脸久久av麻豆| 国产精品免费大片| h视频一区二区三区| 少妇人妻 视频| 亚洲精品乱码久久久v下载方式| 国产伦精品一区二区三区视频9| 亚洲av不卡在线观看| 日韩在线高清观看一区二区三区| 日日啪夜夜撸| 亚洲精品456在线播放app| 亚洲天堂av无毛| 蜜桃久久精品国产亚洲av| 国产成人免费观看mmmm| 午夜影院在线不卡| 伦理电影免费视频| 国产成人一区二区在线| 毛片一级片免费看久久久久| 欧美三级亚洲精品| 51国产日韩欧美| 汤姆久久久久久久影院中文字幕| 18禁动态无遮挡网站| 九九久久精品国产亚洲av麻豆| 精品亚洲成国产av| 一本—道久久a久久精品蜜桃钙片| 亚洲三级黄色毛片| 狂野欧美激情性xxxx在线观看| 麻豆成人av视频| 91久久精品国产一区二区成人| 色网站视频免费| 在线 av 中文字幕| 久久久午夜欧美精品| 国产精品伦人一区二区| 色婷婷av一区二区三区视频| 亚洲丝袜综合中文字幕| 成人漫画全彩无遮挡| 岛国毛片在线播放| 久久国内精品自在自线图片| 男人舔奶头视频| a级毛色黄片| 午夜av观看不卡| av线在线观看网站| 2018国产大陆天天弄谢| 色5月婷婷丁香| 啦啦啦视频在线资源免费观看| 18禁在线无遮挡免费观看视频| 少妇高潮的动态图| 免费观看的影片在线观看| 寂寞人妻少妇视频99o| 久久久久精品性色| 国产 一区精品| 久久精品国产亚洲av天美| 黑人高潮一二区| 国产成人精品一,二区| 国产精品三级大全| 亚洲国产日韩一区二区| 一本大道久久a久久精品| a级毛片在线看网站| 婷婷色av中文字幕| av免费在线看不卡| 久热这里只有精品99| 噜噜噜噜噜久久久久久91| 成年人免费黄色播放视频 | 18禁动态无遮挡网站| 一级毛片 在线播放| 久久这里有精品视频免费| 欧美日韩视频高清一区二区三区二| 久久女婷五月综合色啪小说| 成年人午夜在线观看视频| 亚洲精品,欧美精品| 丝瓜视频免费看黄片| 自拍欧美九色日韩亚洲蝌蚪91 | 国模一区二区三区四区视频| 天天躁夜夜躁狠狠久久av| 男人狂女人下面高潮的视频| 国产一区二区在线观看日韩| 亚洲第一av免费看| 成人漫画全彩无遮挡| 国产成人freesex在线| av国产久精品久网站免费入址| 大话2 男鬼变身卡| 亚洲成人一二三区av| 七月丁香在线播放| 国产精品人妻久久久久久| 91精品国产国语对白视频| 在线看a的网站| 国产69精品久久久久777片| 日韩制服骚丝袜av| 午夜视频国产福利| 久久韩国三级中文字幕| 成人毛片a级毛片在线播放| 亚洲精品456在线播放app| 十分钟在线观看高清视频www | 国产亚洲91精品色在线| 国产精品人妻久久久久久| 美女福利国产在线| 久久久久久久久久久久大奶| 欧美日韩亚洲高清精品| 99久久精品热视频| 国产精品国产av在线观看| 在线观看免费高清a一片| 两个人的视频大全免费| 国产精品蜜桃在线观看| 九九久久精品国产亚洲av麻豆| 成年女人在线观看亚洲视频| 国精品久久久久久国模美| 久久99一区二区三区| 亚洲精品中文字幕在线视频 | 高清毛片免费看| 国产精品免费大片| av有码第一页| 国产成人aa在线观看| 26uuu在线亚洲综合色| 美女中出高潮动态图| 啦啦啦中文免费视频观看日本| 亚洲欧美一区二区三区黑人 | 十分钟在线观看高清视频www | 色哟哟·www| 欧美+日韩+精品| 美女cb高潮喷水在线观看| 日本与韩国留学比较| 日本91视频免费播放| 国产精品免费大片| 三级经典国产精品| 少妇人妻精品综合一区二区| 精品一区二区免费观看| 国产又色又爽无遮挡免| 亚洲高清免费不卡视频| 久久久午夜欧美精品| 国产乱人偷精品视频| av天堂久久9| 成人亚洲欧美一区二区av| 久久人人爽人人片av| 美女国产视频在线观看| 久久av网站| 亚洲精品国产av成人精品| 国产精品福利在线免费观看| 久久久久久久亚洲中文字幕| 久久99热这里只频精品6学生| 高清黄色对白视频在线免费看 | 在线观看三级黄色| 久久精品国产亚洲av涩爱| 春色校园在线视频观看| 深夜a级毛片| 亚洲第一av免费看| 高清不卡的av网站| 91午夜精品亚洲一区二区三区| 中文字幕免费在线视频6| 有码 亚洲区| h日本视频在线播放| 99热6这里只有精品| 七月丁香在线播放| 国产精品99久久久久久久久| 中文乱码字字幕精品一区二区三区| 国产无遮挡羞羞视频在线观看| 大码成人一级视频| 九草在线视频观看| 亚洲欧美中文字幕日韩二区| 26uuu在线亚洲综合色| 午夜视频国产福利| 精品久久久精品久久久| 国产一区二区三区av在线| 99热这里只有是精品50| 亚洲,一卡二卡三卡| 22中文网久久字幕| 高清在线视频一区二区三区| 久久综合国产亚洲精品| 国产成人精品久久久久久| 亚洲精品国产av蜜桃| 91久久精品国产一区二区三区| 国产av码专区亚洲av| 婷婷色av中文字幕| 国产男女内射视频| 老司机影院毛片| 欧美3d第一页| 九色成人免费人妻av| .国产精品久久| 久久精品久久久久久久性| 国产成人精品婷婷| 亚洲成色77777| 性色av一级| 少妇的逼好多水| 国产男女超爽视频在线观看| 国产69精品久久久久777片| 大片电影免费在线观看免费| 黄色日韩在线| 欧美3d第一页| 日本猛色少妇xxxxx猛交久久| av天堂中文字幕网| 国产精品久久久久久精品古装| 精品久久久久久久久av| 色网站视频免费| 国产精品久久久久久久久免| 一级毛片电影观看| 欧美三级亚洲精品| 久久久久久人妻| 欧美性感艳星| 高清黄色对白视频在线免费看 | 欧美国产精品一级二级三级 | 建设人人有责人人尽责人人享有的| 18禁裸乳无遮挡动漫免费视频| 黄色配什么色好看| 国产日韩欧美视频二区| 国产一区亚洲一区在线观看| 欧美激情极品国产一区二区三区 | 简卡轻食公司| 色吧在线观看|