陳尚年,李錄平*,張世海,歐陽(yáng)敏南,樊昂,文賢馗
汽輪發(fā)電機(jī)組振動(dòng)故障診斷技術(shù)研究進(jìn)展
陳尚年1,李錄平1*,張世海2,歐陽(yáng)敏南1,樊昂1,文賢馗2
(1.長(zhǎng)沙理工大學(xué)能源與動(dòng)力工程學(xué)院,湖南省 長(zhǎng)沙市 410014;2.貴州電網(wǎng)有限責(zé)任公司電力科學(xué)研究院,貴州省 貴陽(yáng)市 550002)
高參數(shù)大容量汽輪發(fā)電機(jī)組的安全穩(wěn)定運(yùn)行對(duì)電力生產(chǎn)具有重要意義。綜述了汽輪發(fā)電機(jī)組振動(dòng)故障的機(jī)理、信號(hào)檢測(cè)、信號(hào)分析、特征提取以及故障診斷方法。針對(duì)傳統(tǒng)的智能診斷方法面臨采樣數(shù)據(jù)量大、信號(hào)特征提取困難、故障訓(xùn)練樣本不足等問(wèn)題,介紹了先進(jìn)的傳感技術(shù)和以深度學(xué)習(xí)為代表的新一代智能機(jī)器學(xué)習(xí)技術(shù)。通過(guò)分析得出結(jié)論:未來(lái)汽輪發(fā)電機(jī)組振動(dòng)故障診斷技術(shù)應(yīng)以人工智能、大數(shù)據(jù)、云計(jì)算等技術(shù)為核心,融合虛擬化及三維可視化技術(shù),實(shí)現(xiàn)故障診斷的速度與精度相統(tǒng)一。
汽輪發(fā)電機(jī)組;特征提取;故障診斷;人工智能;大數(shù)據(jù);云計(jì)算;深度學(xué)習(xí)
汽輪發(fā)電機(jī)組作為電力生產(chǎn)系統(tǒng)的關(guān)鍵設(shè)備,造價(jià)昂貴、結(jié)構(gòu)復(fù)雜、自動(dòng)化程度高、運(yùn)行工況多變,不同運(yùn)行數(shù)據(jù)之間關(guān)聯(lián)性強(qiáng),往往面臨多故障并存的風(fēng)險(xiǎn),導(dǎo)致診斷數(shù)據(jù)信息量大增,機(jī)組狀態(tài)信息存在嚴(yán)重的數(shù)據(jù)異構(gòu),信息冗余度高,不同的機(jī)組之間難以實(shí)現(xiàn)資源共享[1-4]。國(guó)內(nèi)外關(guān)于汽輪發(fā)電機(jī)組故障診斷技術(shù)方面的研究已經(jīng)有很大的進(jìn)展,例如美國(guó)西屋公司研制出的TurbinID系統(tǒng)和GenAID系統(tǒng),德國(guó)EPro公司研制的SCOPE系統(tǒng)等,在機(jī)組安全運(yùn)行方面發(fā)揮著巨大的作用。另外,我國(guó)也在汽輪發(fā)電機(jī)組的故障診斷方面取得了一定的進(jìn)展,如華中科技大學(xué)研制的汽輪發(fā)電機(jī)組振動(dòng)監(jiān)測(cè)與故障診斷專家系統(tǒng)和東南大學(xué)研制的基于知識(shí)的汽輪發(fā)電機(jī)組故障診斷專家系統(tǒng)等,對(duì)汽輪發(fā)電機(jī)組的安全運(yùn)行和振動(dòng)故障診斷起到了重要的作用[5]。
本文針對(duì)汽輪發(fā)電機(jī)組的轉(zhuǎn)子不平衡振動(dòng)故障、動(dòng)靜部分碰磨故障和轉(zhuǎn)子不對(duì)中振動(dòng)故障機(jī)理的分析,總結(jié)了近年來(lái)一些專家學(xué)者在汽輪發(fā)電機(jī)組振動(dòng)故障機(jī)理方面的相關(guān)研究進(jìn)展;概括了關(guān)于汽輪發(fā)電機(jī)組振動(dòng)故障檢測(cè)中應(yīng)用的基于激光測(cè)量的信號(hào)檢測(cè)技術(shù)、基于電測(cè)量的信號(hào)檢測(cè)技術(shù)及基于光纖的信號(hào)檢測(cè)技術(shù)的研究現(xiàn)狀,對(duì)目前在機(jī)組振動(dòng)故障信號(hào)分析方面較常應(yīng)用的信號(hào)分析與特征提取方法,如基于時(shí)頻的信號(hào)分析、基于模態(tài)分解的信號(hào)分析和自適應(yīng)迭代濾波等振動(dòng)信號(hào)分析方法進(jìn)行歸納,并闡述了不同方法的優(yōu)缺點(diǎn)??偨Y(jié)了在汽輪發(fā)電機(jī)組振動(dòng)故障診斷方面所應(yīng)用的故障診斷方法,如專家系統(tǒng)、支持向量機(jī)(support vector machines,SVM)、神經(jīng)網(wǎng)絡(luò)等方法。針對(duì)未來(lái)電廠趨于智能化、虛擬化運(yùn)行的發(fā)展方向,為提高機(jī)組運(yùn)行維護(hù)的效率,加快實(shí)現(xiàn)火力發(fā)電站全智能化運(yùn)行,提出了以人工智能、大數(shù)據(jù)、云計(jì)算等技術(shù)為核心的智能診斷技術(shù),并將其運(yùn)用于汽輪發(fā)電機(jī)組振動(dòng)故障的診斷技術(shù)中,為今后汽輪發(fā)電機(jī)組振動(dòng)故障診斷技術(shù)的研究提供了相應(yīng)的建議和參考。
對(duì)大功率汽輪發(fā)電機(jī)組轉(zhuǎn)子系統(tǒng)而言,無(wú)論是單根轉(zhuǎn)子還是整個(gè)軸系,轉(zhuǎn)軸的第1階臨界轉(zhuǎn)速均小于工作轉(zhuǎn)速,因此,大功率的汽輪發(fā)電機(jī)組轉(zhuǎn)軸均為柔性轉(zhuǎn)子。在具有黏性阻尼的情況下,柔性不平衡轉(zhuǎn)軸運(yùn)動(dòng)微分方程[6]為
方程(1)的解為
式中:A,B為系數(shù),由初始條件決定;為轉(zhuǎn)子階臨界轉(zhuǎn)速;為軸長(zhǎng);表示初始相位角,由初始條件決定,
不平衡量的存在使轉(zhuǎn)子各橫截面質(zhì)心的連線與各橫截面幾何中心連線不重合,從而產(chǎn)生的空間離心力系使轉(zhuǎn)子或與轉(zhuǎn)子相連接的支撐部件產(chǎn)生振動(dòng)。Bin等[7]通過(guò)總結(jié)轉(zhuǎn)子系統(tǒng)動(dòng)平衡的方法,針對(duì)聯(lián)軸器連接的多轉(zhuǎn)子系統(tǒng),建立了多轉(zhuǎn)子運(yùn)動(dòng)的有限元模型,分析轉(zhuǎn)子系統(tǒng)的不平衡響應(yīng),提出一種多轉(zhuǎn)子系統(tǒng)的無(wú)試重虛擬動(dòng)平衡方法。賓光富等[8]通過(guò)建立汽輪發(fā)電機(jī)組兩跨三支撐軸系的有限元模型,求解軸系前3階臨界轉(zhuǎn)速的振型,并通過(guò)實(shí)驗(yàn)施加同向和反向的不平衡激勵(lì),模擬了一階和二階不平衡響應(yīng)特性。沈意平等[9]通過(guò)研究多跨轉(zhuǎn)子系統(tǒng)在一階和二階不平衡激勵(lì)下,轉(zhuǎn)子系統(tǒng)的幅頻、相頻以及臨界轉(zhuǎn)速的變化特性,表明各轉(zhuǎn)子間在臨界轉(zhuǎn)速附近的振動(dòng)響應(yīng)比較明顯,會(huì)出現(xiàn)多個(gè)峰值的可能,且單支撐的多跨轉(zhuǎn)子系統(tǒng)具有外伸端的振動(dòng)特性。周生通等[10]通過(guò)分析柔性轉(zhuǎn)子的彎曲故障和不平衡故障相互耦合共振的特性,構(gòu)建了轉(zhuǎn)子共振穩(wěn)態(tài)響應(yīng)的動(dòng)力學(xué)函數(shù)模型,并通過(guò)實(shí)驗(yàn)仿真和計(jì)算驗(yàn)證了該模型的正確性。
汽輪發(fā)電機(jī)組發(fā)生動(dòng)靜碰磨時(shí)作用在轉(zhuǎn)軸上碰磨點(diǎn)的作用力[11]分別為:
聯(lián)軸器連接的轉(zhuǎn)子發(fā)生對(duì)中不良時(shí),轉(zhuǎn)子往往處于有軸線平行位移和軸線角度位移的綜合狀態(tài)[16],轉(zhuǎn)子受到交變力作用如式(7)所示:
當(dāng)平行位移D和偏角存在時(shí),交變力作用導(dǎo)致轉(zhuǎn)子發(fā)生彎曲變形,當(dāng)主動(dòng)轉(zhuǎn)子按一定轉(zhuǎn)速旋轉(zhuǎn)時(shí),從動(dòng)轉(zhuǎn)子的轉(zhuǎn)速會(huì)發(fā)生周期性變動(dòng),使其振動(dòng)頻率為轉(zhuǎn)子轉(zhuǎn)動(dòng)頻率的2倍。胡航領(lǐng)等[17]通過(guò)實(shí)驗(yàn)研究,表明三跨轉(zhuǎn)子的單支撐軸系比雙支撐軸系的耦合振動(dòng)更為強(qiáng)烈,并對(duì)比了不同聯(lián)軸器的振動(dòng)響應(yīng)。Lei等[18]利用轉(zhuǎn)子中心線和軸心軌跡組合的特征趨勢(shì)圖描述了不對(duì)中與不平衡的響應(yīng)變化特性。李自剛等[19]研究了交角不對(duì)中的柔性轉(zhuǎn)子–軸承耦合系統(tǒng)的非線性動(dòng)力學(xué)特性,結(jié)果表明:轉(zhuǎn)軸的運(yùn)動(dòng)特性在某些參數(shù)變化下會(huì)出現(xiàn)分叉、跳躍及混沌等非線性特性,使轉(zhuǎn)子失穩(wěn),增大橫向振動(dòng)。潘宏剛等[20]利用有限元分析和實(shí)驗(yàn)研究了雙跨三支撐轉(zhuǎn)子系統(tǒng)的不對(duì)中故障,分析表明不同的偏角量產(chǎn)生的不對(duì)中故障對(duì)倍頻的影響較明顯,在通過(guò)臨界轉(zhuǎn)速時(shí)3倍頻的振幅倍率提升最大。
良好的信號(hào)檢測(cè)技術(shù)能夠?qū)崟r(shí)監(jiān)控汽輪發(fā)電機(jī)組運(yùn)行狀態(tài)的各類信號(hào)參量,以下為目前在振動(dòng)信號(hào)檢測(cè)中應(yīng)用的3類傳感技術(shù)。
2.1.1 基于激光的信號(hào)檢測(cè)技術(shù)
基于激光測(cè)量的振動(dòng)檢測(cè)技術(shù)具有識(shí)別率高、測(cè)量范圍大、適應(yīng)性強(qiáng)等優(yōu)點(diǎn)。田新啟等[21]提出了一種基于位置靈敏探測(cè)器的激光傳感器,用于旋轉(zhuǎn)機(jī)械的振動(dòng)信號(hào)檢測(cè),具有精度高、響應(yīng)速度快以及穩(wěn)定性好等特點(diǎn)。李志鳳等[22]針對(duì)旋轉(zhuǎn)部件的在線檢測(cè),提出一種能同時(shí)測(cè)量旋轉(zhuǎn)機(jī)械軸彎曲振動(dòng)、扭轉(zhuǎn)振動(dòng)及轉(zhuǎn)速測(cè)量的激光多普勒振動(dòng)檢測(cè)技術(shù)。劉洋等[23]提出了基于虛擬現(xiàn)實(shí)的激光傳感器數(shù)據(jù)多維可視化技術(shù),用于數(shù)據(jù)采集與處理,以良好的三維可視性和靈活交互性能實(shí)現(xiàn)信號(hào)的快速采集處理和多維可視化操作。
2.1.2 基于電測(cè)量的信號(hào)檢測(cè)技術(shù)
電測(cè)法是通過(guò)傳感器將旋轉(zhuǎn)機(jī)械的振動(dòng)量轉(zhuǎn)化為電信號(hào)或電參數(shù)變化,比如電渦流傳感器具有高靈敏度、高分辨率、工作穩(wěn)定性好以及具有較寬的測(cè)量范圍[24],目前在汽輪發(fā)電機(jī)組的振動(dòng)測(cè)量中應(yīng)用較為廣泛。趙梓妤等[25]針對(duì)旋轉(zhuǎn)機(jī)械動(dòng)靜間隙測(cè)量困難的問(wèn)題,根據(jù)電渦流傳感器測(cè)量原理,設(shè)計(jì)了一種高分辨率的微小間隙測(cè)量裝置,用于旋轉(zhuǎn)機(jī)械動(dòng)態(tài)間隙的測(cè)量。Ye等[26]在汽輪發(fā)電機(jī)組末級(jí)葉片的振動(dòng)檢測(cè)中,提出了一種高頻響應(yīng)的電渦流傳感器,用于汽輪機(jī)帶冠葉片的振動(dòng)測(cè)量。許澤瑋等[27]通過(guò)渦流傳感器測(cè)量不同狀態(tài)下的軸徑中心,并分析了軸瓦變形會(huì)導(dǎo)致軸徑中心位置的測(cè)量誤差。
2.1.3 基于光纖的信號(hào)檢測(cè)技術(shù)
光纖傳感器是由纖維光學(xué)、光電子學(xué)、智能材料及微結(jié)構(gòu)加工等技術(shù)融合的一種新型傳感器檢測(cè)技術(shù)[28],相比于傳統(tǒng)的信號(hào)檢測(cè)技術(shù)更能適應(yīng)多維數(shù)據(jù)的信號(hào)檢測(cè),具有較高的檢測(cè)精度,且適用于寬頻微弱帶信號(hào)檢測(cè)。佟慶彬等[29]設(shè)計(jì)了一種用于高速旋轉(zhuǎn)機(jī)械徑向振動(dòng)檢測(cè)的反射式光強(qiáng)調(diào)制型非接觸式光纖傳感系統(tǒng),通過(guò)測(cè)量旋轉(zhuǎn)機(jī)械轉(zhuǎn)子和定子之間的間隙,實(shí)現(xiàn)高速旋轉(zhuǎn)機(jī)械徑向位移的在線測(cè)量,進(jìn)而實(shí)現(xiàn)設(shè)備運(yùn)行狀態(tài)直接有效的監(jiān)控。Li等[30]研究一種基于磁耦合原理和FBG傳感獲得振動(dòng)的非接觸式光纖光柵振動(dòng)傳感器,用于汽輪機(jī)轉(zhuǎn)子動(dòng)平衡的振動(dòng)測(cè)量,通過(guò)FBG振動(dòng)傳感器和電渦流位移傳感器的對(duì)比實(shí)驗(yàn)分析,表明兩者的時(shí)域、頻域和時(shí)頻變化的分析結(jié)果基本一致。Ye等[31]針對(duì)應(yīng)變儀測(cè)量葉片振動(dòng)特性的不足,提出了基于帶透鏡的光纖傳感器,用于汽輪機(jī)帶冠葉片同步振動(dòng)的測(cè)量,通過(guò)對(duì)葉片振動(dòng)試驗(yàn)的信號(hào)測(cè)量,表明帶透鏡的光纖振動(dòng)傳感器提高了信號(hào)測(cè)量的精度和速度。
汽輪發(fā)電機(jī)組旋轉(zhuǎn)部件的運(yùn)動(dòng)軌跡較為復(fù)雜,傳統(tǒng)的故障信號(hào)分析方法,如幅值域分析法、傅里葉變換、相關(guān)分析法等[32]對(duì)信號(hào)的分析缺乏時(shí)效性,分析精度差且抗干擾能力弱。因此,振動(dòng)故障信號(hào)的現(xiàn)代分析技術(shù)成為了研究熱點(diǎn)。
2.2.1 基于時(shí)頻信號(hào)分析的方法
在故障診斷中常用的時(shí)頻信號(hào)分析方法,如短時(shí)傅里葉變換和小波分析等,能夠?qū)⒉杉钠啺l(fā)電機(jī)組振動(dòng)的原始信號(hào)經(jīng)合適的函數(shù)變換進(jìn)行分析,此類方法能夠觀察其信號(hào)的結(jié)構(gòu),直接反映信號(hào)中的頻率構(gòu)成隨時(shí)間變化的規(guī)律,并能在故障診斷中快速提取故障信號(hào)[33]。短時(shí)傅里葉變換[34]克服了標(biāo)準(zhǔn)傅里葉變換不具備局部分析能力的不足,將汽輪發(fā)電機(jī)組振動(dòng)的時(shí)域特征和頻域特征聯(lián)系起來(lái),分別從振動(dòng)信號(hào)的時(shí)域或者頻域觀察信號(hào)的整體信息,能夠分析平穩(wěn)和分段平穩(wěn)的信號(hào),具有對(duì)確定性信號(hào)和平穩(wěn)性信號(hào)處理的能力。但由于時(shí)頻窗口固定,其信號(hào)提取的精確性受限于窗口的長(zhǎng)度,因此適用于特征尺度大致相同的信號(hào)分析。
小波分析的本質(zhì)是一種待分析信號(hào)與不同比例小波函數(shù)之間的近似計(jì)算,信號(hào)與小波函數(shù)越相似,故障越容易被提取[35]。當(dāng)分解尺度和小波基確定時(shí),信號(hào)頻帶就是固定范圍,小波變換能夠反映出信號(hào)的整體性,克服了傅里葉變換不能在時(shí)頻域上局部化的缺點(diǎn),能夠較好地處理非平穩(wěn)信號(hào)[36]。牛培峰等[37]采用小波包能量分析提取汽輪機(jī)故障的特征,該方法具有靈活的時(shí)頻分辨率,能對(duì)汽輪發(fā)電機(jī)組的平穩(wěn)信號(hào)進(jìn)行表征,檢測(cè)運(yùn)行中的突變故障。Liao等[38]對(duì)汽輪發(fā)電機(jī)組振動(dòng)的信號(hào)利用小波包進(jìn)行頻譜分析,提取振動(dòng)信號(hào)的特征向量作為分類數(shù)據(jù),建立以數(shù)據(jù)驅(qū)動(dòng)的故障分類方法對(duì)特征向量進(jìn)行分類驗(yàn)證,經(jīng)實(shí)例驗(yàn)證了基于小波和數(shù)據(jù)驅(qū)動(dòng)故障診斷分類方法的有效性。因汽輪機(jī)碰磨產(chǎn)生的振動(dòng)信號(hào)為微弱沖擊信號(hào),胡三高等[39]通過(guò)對(duì)采集的汽輪發(fā)電機(jī)組碰磨故障的軸振和瓦振信號(hào)進(jìn)行濾波處理,利用希爾伯特解調(diào)法對(duì)提取的瞬時(shí)沖擊成分進(jìn)行包絡(luò)分析,通過(guò)小波奇異值檢測(cè)碰磨引起信號(hào)突變的位置和持續(xù)作用的時(shí)間。李宏坤等[40]針對(duì)旋轉(zhuǎn)機(jī)械早期的故障信號(hào)特征表現(xiàn)微弱問(wèn)題,提出小波尺度譜進(jìn)行同步平均和小波脊線的解調(diào)方法,經(jīng)過(guò)仿真分析與實(shí)驗(yàn)驗(yàn)證了該方法對(duì)微弱故障信號(hào)特征提取的有效性。Umbrajlaar等[41]在對(duì)轉(zhuǎn)子系統(tǒng)的不對(duì)中故障進(jìn)行分析時(shí),應(yīng)用了離散的小波變換與模糊邏輯相結(jié)合的方法,實(shí)驗(yàn)結(jié)果表明,利用該方法能夠預(yù)測(cè)轉(zhuǎn)子系統(tǒng)的不對(duì)中程度,提高故障分析的精度。
2.2.2 基于模態(tài)分解的方法
汽輪發(fā)電機(jī)組運(yùn)行的振動(dòng)參數(shù)具有海量、高維、及非線性和非平穩(wěn)的特點(diǎn),基于傅里葉變換和小波分析的方法對(duì)此類信號(hào)的分析適應(yīng)性弱。因此,模態(tài)分解方法能夠自適應(yīng)地處理振動(dòng)信號(hào),對(duì)振動(dòng)信號(hào)進(jìn)行解調(diào),將復(fù)雜非平穩(wěn)信號(hào)分解為多個(gè)瞬時(shí)頻率,得到完整的信號(hào)時(shí)頻分布,有效提取了振動(dòng)信號(hào)的特征[42]。文獻(xiàn)[43]中將局部模態(tài)分解方法應(yīng)用在故障信號(hào)的處理中,將給定信號(hào)分解為多個(gè)單分量調(diào)頻–調(diào)幅信號(hào)和單調(diào)函數(shù),組合所有的單分量調(diào)幅–調(diào)頻信號(hào),獲取給定信號(hào)的完整時(shí)頻分布。文獻(xiàn)[44]中針對(duì)汽輪發(fā)電機(jī)組振動(dòng)信號(hào)經(jīng)驗(yàn)?zāi)B(tài)分解的模態(tài)混疊現(xiàn)象,采用了集合經(jīng)驗(yàn)?zāi)B(tài)分解和云模型相結(jié)合的方法,有效地提取振動(dòng)信號(hào)并做降噪處理,提高了故障特征的識(shí)別率。田松峰等[45]利用變分模態(tài)分解和相對(duì)熵云模型把故障信號(hào)分解為多個(gè)模態(tài)分量,根據(jù)各分量和原始信號(hào)相對(duì)熵的大小,去除故障信號(hào)中夾雜的偽分量信號(hào),利用逆向發(fā)生器提取輸入云模型的最佳分量的特征向量。該方法相比于傳統(tǒng)的經(jīng)驗(yàn)?zāi)B(tài)分解方法,能夠在一定程度上有效抑制端點(diǎn)效應(yīng),避免包絡(luò)、欠包絡(luò)及模態(tài)混疊的出現(xiàn)。
2.2.3 基于自適應(yīng)迭代濾波的方法
濾波是通過(guò)迭代篩選的方法得到每個(gè)本征模態(tài)函數(shù)(intrinsic mode function,IMF)分量,首先經(jīng)內(nèi)循環(huán)過(guò)程對(duì)信號(hào)濾波構(gòu)造滑動(dòng)算子迭代篩選每個(gè)IMF分量,然后外循環(huán)終止內(nèi)循環(huán)的IMF分量提取過(guò)程。自適應(yīng)迭代濾波[46]通過(guò)自適應(yīng)局部迭代濾波將原始信號(hào)分解為一系列瞬時(shí)頻率,再利用希爾伯特變換對(duì)每個(gè)瞬時(shí)頻率進(jìn)行求解。因汽輪發(fā)電機(jī)組的振動(dòng)故障信號(hào)往往是多分量的非平穩(wěn)信號(hào),自適應(yīng)迭代濾波相比于其他信號(hào)分析方法可以自適應(yīng)地選取濾波函數(shù),有效提取多分量的非平穩(wěn)特征信號(hào),同時(shí)還有效避免模態(tài)分解中存在的過(guò)包絡(luò)、欠包絡(luò)及模態(tài)混疊問(wèn)題。Lin等[47]通過(guò)迭代濾波算法代替?zhèn)鹘y(tǒng)的經(jīng)驗(yàn)?zāi)B(tài)分解方法,對(duì)信號(hào)進(jìn)行分解,求其曲線擬合函數(shù)。Cicone等[48]提出的自適應(yīng)局部迭代濾波能較大程度提高信號(hào)的分解,對(duì)噪聲和異常信號(hào)具有抗干擾能力。唐貴基等[49]提出了一種自適應(yīng)噪聲完備集合魯棒局部均值分解的特征提取方法,通過(guò)對(duì)轉(zhuǎn)子不平衡和動(dòng)靜碰磨故障模擬信號(hào)的處理,表明該方法能精確提取故障的特征,并準(zhǔn)確識(shí)別故障類型。
2.2.4 基于圖像表征的信號(hào)特征提取
基于對(duì)稱點(diǎn)模式 (symmetrized dot pattern,SDP)算法的圖像表征是將原始信號(hào)經(jīng)過(guò)降噪處理后,利用SDP對(duì)時(shí)域信號(hào)進(jìn)行變換,將一維的時(shí)間序列信號(hào)變換為極坐標(biāo)空間下的圖像,在極坐標(biāo)空間下不同的形狀特征反映出不同信號(hào)的原始特征[50]。能夠?qū)⒄駝?dòng)信號(hào)映射為可視化表達(dá)形式,有效避免了特征信息丟失;特征信息融合SDP圖能夠更清楚、直觀、全面地表征轉(zhuǎn)子的振動(dòng)信號(hào)特征,提高不同狀態(tài)特征間的可區(qū)分度[51]。為去除所提取特征信號(hào)中含有的冗余信息,文獻(xiàn)[52]通過(guò)SDP算法對(duì)原始信號(hào)進(jìn)行特征提取,再利用線性局部切空間排列(linear local tangent space alignment,LLTSA)對(duì)所提取的信號(hào)做降維處理后輸入支持向量機(jī)進(jìn)行分類識(shí)別,去除形狀特征中的冗余信息,獲取高維非線性數(shù)據(jù)中低維精確的特征數(shù)據(jù)。朱霄珣等[53]通過(guò)在轉(zhuǎn)子上多個(gè)位置固定的傳感器采集振動(dòng)信號(hào),使用SDP融合多傳感器的信號(hào)特征,將高維非線性信號(hào)轉(zhuǎn)化為可視化圖像,結(jié)合卷積神經(jīng)網(wǎng)絡(luò)對(duì)故障狀態(tài)進(jìn)行識(shí)別,相比于其他的智能診斷狀態(tài)識(shí)別,具有精準(zhǔn)、高效的故障狀態(tài)識(shí)別能力。
故障診斷技術(shù)的智能化發(fā)展日趨成熟,基于知識(shí)、模型及數(shù)據(jù)分析的故障診斷方法已經(jīng)有較成熟的研究。
基于專家系統(tǒng)的故障診斷方法根據(jù)其原理的不同分為基于規(guī)則推理、案例推理、模型推理等方法。因汽輪發(fā)電機(jī)組故障信息難提取,且多故障并存現(xiàn)象使得單一的故障診斷方法很難實(shí)現(xiàn)精確的診斷,如基于規(guī)則式推理過(guò)程易于理解,推理速度快,但是知識(shí)獲取不易、診斷效率低、對(duì)多故障并存問(wèn)題診斷能力低;基于案例推理無(wú)須進(jìn)行規(guī)則提取,求解方式簡(jiǎn)單、準(zhǔn)確,但診斷速度過(guò)慢,推理過(guò)程不易理解[54-55]。Yang等[56]通過(guò)對(duì)機(jī)組的故障診斷研究,提出了基于模糊規(guī)則推理和基于案例推理方法所集成的專家系統(tǒng),并通過(guò)實(shí)例證明了此方法診斷結(jié)果的準(zhǔn)確性。Yan等[57]建立了一種基于規(guī)則推理和案例推理相結(jié)合的專家系統(tǒng),從汽輪發(fā)電機(jī)組的故障知識(shí)中提取規(guī)則,用于汽輪發(fā)電機(jī)組的故障診斷,經(jīng)過(guò)實(shí)例驗(yàn)證,多技術(shù)融合的故障診斷方法不僅縮小了故障信息的搜索范圍,同時(shí)提高了故障檢索效率、故障的診斷精度及系統(tǒng)的可靠性。Fang等[58]研究汽輪發(fā)電機(jī)組故障診斷時(shí),針對(duì)轉(zhuǎn)子不平衡和轉(zhuǎn)子與靜止部件碰磨故障的信號(hào)采樣率相對(duì)較低的問(wèn)題,提出將專家系統(tǒng)與神經(jīng)網(wǎng)絡(luò)分析相結(jié)合的故障診斷方法,用于消除不同的信號(hào)值所產(chǎn)生的干擾,測(cè)試結(jié)果表明,專家系統(tǒng)與神經(jīng)網(wǎng)絡(luò)技術(shù)的融合,將故障信息并行處理、自學(xué)習(xí)和聯(lián)想記憶,能夠?qū)收系膹?fù)雜信息進(jìn)行精確識(shí)別,使故障診斷技術(shù)得到優(yōu)化。
支持向量機(jī)是基于統(tǒng)計(jì)學(xué)習(xí)理論與結(jié)構(gòu)風(fēng)險(xiǎn)最小化原則的一種機(jī)器學(xué)習(xí)方法,針對(duì)汽輪發(fā)電機(jī)組故障的非線性樣本,通過(guò)核函數(shù)能夠?qū)⒎蔷€性樣本映射到高維的線性特征分類空間,利用SVM分類器得到非線性分類的最優(yōu)分類函數(shù)[59]。該方法具有結(jié)構(gòu)簡(jiǎn)單的數(shù)學(xué)表達(dá)和直觀的幾何解釋,能夠?qū)崿F(xiàn)快速學(xué)習(xí)與診斷,利用有限的樣本集得到獨(dú)立函數(shù),提高機(jī)器學(xué)習(xí)的泛化能力,有效診斷汽輪發(fā)電機(jī)組的振動(dòng)故障。Lin等[60]基于支持向量機(jī)的機(jī)械故障診斷原理,利用故障模擬數(shù)據(jù)建立了多故障分類器模型,并在汽輪發(fā)電機(jī)組的故障分類中得到了驗(yàn)證。石志標(biāo)[61]等針對(duì)軸系振動(dòng)信號(hào)的瞬態(tài)沖擊特征受噪聲干擾難以提取的問(wèn)題,通過(guò)小波變換將采集的振動(dòng)故障信號(hào)分解為一系列單分量信號(hào),由相關(guān)度原則選取異常本征模態(tài)函數(shù),并計(jì)算其排列熵值,構(gòu)建特征向量,利用SVM實(shí)現(xiàn)振動(dòng)故障的診斷與分類。文獻(xiàn)[62]提出排列熵與果蠅算法優(yōu)化相關(guān)向量機(jī)(improved fruit fly optimization algorithm-related vector machines,IFOA-RVM)相結(jié)合的方法,用于汽輪機(jī)轉(zhuǎn)子振動(dòng)故障診斷,利用自適應(yīng)完備的集合經(jīng)驗(yàn)?zāi)B(tài)將原始信號(hào)分解為多個(gè)IMF,利用排列熵計(jì)算IMF中的異常信號(hào),將結(jié)果輸入IFOA-RVM分類模型對(duì)故障進(jìn)行診斷識(shí)別。
基于神經(jīng)網(wǎng)絡(luò)的故障診斷方法,利用大量歷史數(shù)據(jù)建立訓(xùn)練系統(tǒng)與決策結(jié)果間的映射關(guān)系,通過(guò)歷史數(shù)據(jù)的積累,實(shí)現(xiàn)對(duì)模型的不斷修正、自我進(jìn)化與學(xué)習(xí)的能力[63]。文獻(xiàn)[64]提到在大數(shù)據(jù)推動(dòng)下以數(shù)據(jù)驅(qū)動(dòng)的診斷方法采用多隱層網(wǎng)絡(luò)逐層學(xué)習(xí)的方式從輸入的數(shù)據(jù)中提取信息,滿足對(duì)復(fù)雜系統(tǒng)中故障的高階、非線性自適應(yīng)特征的提取,其較強(qiáng)的表征學(xué)習(xí)能力使智能診斷技術(shù)更加準(zhǔn)確、有效。周奇才等[65]針對(duì)旋轉(zhuǎn)機(jī)械的故障診斷,提出了一維深度卷積神經(jīng)網(wǎng)絡(luò),利用卷積網(wǎng)絡(luò)的卷積層和池化層來(lái)實(shí)現(xiàn)輸入數(shù)據(jù)的特征提取和自學(xué)習(xí),將實(shí)驗(yàn)?zāi)M數(shù)據(jù)輸入該模型進(jìn)行驗(yàn)證,相比于傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)分析方法,該模型具有較深的網(wǎng)絡(luò)結(jié)構(gòu),能進(jìn)行復(fù)雜的特征學(xué)習(xí)和分類。Wang等[66]提出一種具有3種連接權(quán)值和改進(jìn)的相關(guān)函數(shù)的加權(quán)可拓神經(jīng)網(wǎng)絡(luò)(weighted- extension neural network,W-ENN),用于汽輪發(fā)電機(jī)組的故障診斷中,經(jīng)過(guò)與ENN等相關(guān)模型進(jìn)行對(duì)比分析,表明W-ENN模型具有較強(qiáng)的抗噪聲能力,在小樣本集環(huán)境下能夠?qū)崿F(xiàn)較高的故障識(shí)別精度。王崇宇等[67]通過(guò)建立汽輪機(jī)轉(zhuǎn)子模型,模擬不平衡和不對(duì)中的故障信號(hào),利用深度卷積神經(jīng)網(wǎng)絡(luò)故障檢測(cè)方法實(shí)現(xiàn)了單一簡(jiǎn)單故障的位置、故障程度等多任務(wù)的協(xié)同檢測(cè)。
隨著大數(shù)據(jù)、云計(jì)算、虛擬化、數(shù)字孿生等信息技術(shù)的發(fā)展,人工智能技術(shù)通過(guò)構(gòu)建分布式數(shù)據(jù)計(jì)算系統(tǒng)實(shí)現(xiàn)數(shù)據(jù)分析計(jì)算、多物理量及數(shù)據(jù)的廣泛采集與共享,突破傳統(tǒng)數(shù)據(jù)之間的壁壘。將大數(shù)據(jù)與深度學(xué)習(xí)模型以及訓(xùn)練方法有機(jī)結(jié)合,能實(shí)現(xiàn)數(shù)據(jù)的高速計(jì)算處理、異常數(shù)據(jù)監(jiān)測(cè)等功能。基于機(jī)器的深度學(xué)習(xí)、知識(shí)圖譜和類腦科學(xué)等新一代人工智能技術(shù),利用深度學(xué)習(xí)技術(shù)在人工神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)上增加網(wǎng)絡(luò)隱層數(shù)量[68],針對(duì)圖像分析和故障診斷,借助先進(jìn)智能感知技術(shù),快速處理與深度融合多參數(shù)信息,實(shí)現(xiàn)“精度”與“速度”的統(tǒng)一,快速獲取信息與知識(shí)分析需求。文獻(xiàn)[69]提出再優(yōu)化深度自編碼器,使得燃?xì)廨啓C(jī)無(wú)監(jiān)督異常檢測(cè)的性能得到提升。文獻(xiàn)[70]將雙向長(zhǎng)短時(shí)記憶和膠囊網(wǎng)絡(luò)相融合應(yīng)用于機(jī)械故障診斷,利用雙向長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)對(duì)提取的故障特征進(jìn)行融合,利用膠囊網(wǎng)絡(luò)完成小樣本的高精度故障診斷。
將智慧化的故障診斷技術(shù)應(yīng)用于電廠中,集數(shù)字化、三維可視化、遠(yuǎn)程互動(dòng)和協(xié)調(diào)、數(shù)據(jù)的深度挖掘與利用等技術(shù)的實(shí)現(xiàn),能夠推進(jìn)以人工智能運(yùn)行為核心的智能電廠的發(fā)展。
多傳感器采集樣本數(shù)據(jù)緯度高、故障的非線性特征信號(hào)微弱,并且采樣頻率的不同會(huì)造成特定數(shù)據(jù)的丟失及采樣數(shù)據(jù)失效。與傳統(tǒng)分析方法相比,新一代故障信號(hào)分析、特征提取及故障診斷方法借助于大數(shù)據(jù)、物聯(lián)網(wǎng)、人工智能等信息技術(shù),將以深度學(xué)習(xí)、強(qiáng)化學(xué)習(xí)、知識(shí)圖譜和類腦科學(xué)等為核心的機(jī)器學(xué)習(xí)方法應(yīng)用于故障診斷中,大數(shù)據(jù)技術(shù)與深度學(xué)習(xí)模型、訓(xùn)練方法相結(jié)合,能夠?qū)崿F(xiàn)數(shù)據(jù)的高速計(jì)算處理、異常數(shù)據(jù)監(jiān)測(cè)等功能。
1)未來(lái)電廠的運(yùn)行將會(huì)向智能化、虛擬化的方向發(fā)展,實(shí)現(xiàn)全智能運(yùn)行的目標(biāo)將是今后研究的重點(diǎn)之一。將智能測(cè)量設(shè)備應(yīng)用于故障檢測(cè)中,研發(fā)高性能的傳感器,重點(diǎn)以無(wú)線智能傳感器和多參量傳感器等為研究對(duì)象,借助于5G通信網(wǎng)絡(luò),實(shí)現(xiàn)對(duì)故障數(shù)據(jù)的多元化采集和深度化采集,將故障信息通過(guò)可視化圖像的表達(dá)方式傳遞給數(shù)據(jù)終端,實(shí)現(xiàn)機(jī)器的自主學(xué)習(xí)和自動(dòng)檢測(cè)分析。
2)隨著人工智能、大數(shù)據(jù)、云計(jì)算等技術(shù)的發(fā)展,未來(lái)汽輪發(fā)電機(jī)組故障診斷技術(shù)將以深度學(xué)習(xí)、知識(shí)分析、大數(shù)據(jù)智能計(jì)算、云服務(wù)自主控制等為核心,在現(xiàn)有的故障診斷技術(shù)上,借助成熟的理論知識(shí),利用物聯(lián)網(wǎng)技術(shù)、虛擬化、三維可視性及數(shù)字孿生等信息技術(shù),建立區(qū)域性的機(jī)組實(shí)時(shí)信息監(jiān)控及故障診斷系統(tǒng)。
3)通過(guò)建立基于深度學(xué)習(xí)的知識(shí)圖譜模型,采用多技術(shù)融合的機(jī)器學(xué)習(xí)代替?zhèn)鹘y(tǒng)的故障分析方法,開(kāi)發(fā)具有自感知信息能力、同時(shí)進(jìn)行故障信息采集分析、提取故障特征并進(jìn)行自主學(xué)習(xí)訓(xùn)練的故障診斷系統(tǒng)。
4)通過(guò)人工智能技術(shù)、計(jì)算機(jī)軟件技術(shù)以及遠(yuǎn)程網(wǎng)絡(luò)監(jiān)測(cè)技術(shù),利用高帶寬的信息傳輸通道,實(shí)時(shí)地將分析結(jié)果和診斷意見(jiàn)以可視化的方式傳遞給技術(shù)人員,加快實(shí)現(xiàn)未來(lái)智能化電廠的步伐。
[1] 孫和泰,孫彬,黃翔,等.汽輪發(fā)電機(jī)組振動(dòng)故障診斷相關(guān)分析方法及應(yīng)用[J].汽輪機(jī)技術(shù),2020,62(4):292-294.
SUN H T,SUN B,HUANG X,et al.Correlative analysis method and application for vibration fault diagnosis of turbine generator unit[J].Turbine Technology,2020,62(4):292-94.
[2] 梁銀林,張小波,翟璇.?dāng)?shù)據(jù)驅(qū)動(dòng)的汽輪機(jī)健康狀態(tài)管理技術(shù)綜述[J].浙江電力,2021,40(4):120-126.
LIANG Y L,ZHANG X B,ZHAI X,et al.A review of data-driven health management technology of steam turbine[J].Zhejiang Electric Power,2021,40(4):120-126.
[3] 郝帥,吳昕,王明遠(yuǎn),等.350 MW超臨界機(jī)組汽輪機(jī)汽流激振分析及處理[J].發(fā)電技術(shù),2019,40(2):168-174.
HAO S,WU X,WANG M Y,et al.Analysis and processing of the steam-flow exciting vibration in steam turbine of a 350 MW supercritical unit[J].Power Generation Technology,2019,40(2):168-174.
[4] 王志杰,陳厚濤,唐楨淇.基于運(yùn)行數(shù)據(jù)的汽輪機(jī)閥門流量特性參數(shù)優(yōu)化[J].廣東電力,2019,32(3):32-36.
WANG Z J,CHEN H T,TANG Z Q,et al.Optimization on characteristic parameters of steam turbine valve flow based on operating data [J].Guangdong Electric Power,2019,32(3):32-36.
[5] 艾科勇.基于本體和信號(hào)分析的汽輪發(fā)電機(jī)組故障診斷技術(shù)[D].蘭州:蘭州理工大學(xué),2020.
AI K Y.Fault diagnosis technology of turbine generator based on ontology and signal analysis [D].Lanzhou:Lanzhou University of Technology,2020.
[6] 黃金平.轉(zhuǎn)子瞬態(tài)動(dòng)平衡方法研究[D].西安:西北工業(yè)大學(xué),2006.
HUANG J P.Research on transient dynamic balancing method of rotor[D].Xi’an:Northwestern Polytechnical University,2006.
[7] BIN G,LI X,WU J,et al.Virtual dynamic balancing method without trial weights for multi-rotor series shafting based on finite element model analysis [J].Journal of Renewable & Sustainable Energy,2014,6(4):130-136.
[8] 賓光富,李學(xué)軍,蔣勉,等.三支撐軸系轉(zhuǎn)子殘余不平衡量相位差組合振動(dòng)特性研究[J].動(dòng)力學(xué)與控制學(xué)報(bào),2017,15(5):446-452.
BIN G F,LI X J,JIANG M,et al.Vibration characteristics for residual unbalance phase difference of shafting with three supports[J].Journal of Vibration and Control,2017,15(5):446-452.
[9] 沈意平,賓光富,王鋼,等.透平機(jī)械三轉(zhuǎn)子四支撐軸系不平衡振動(dòng)特性[J].振動(dòng)、測(cè)試與診斷,2018,38(5):985-990.
SHEN Y P,BIN G F,WANG G,et al.Vibration characteristics for unbalance of turbomachinery shafting with three-rotor and four-support[J].Journal of Vibration,Measurement & Diagnosis,2018,38(5):985-990.
[10] 周生通,祁強(qiáng),周新建,等.軸彎曲與不平衡柔性轉(zhuǎn)子共振穩(wěn)態(tài)響應(yīng)隨機(jī)分析[J].計(jì)算力學(xué)學(xué)報(bào),2020,37(1):23-30.
ZHOU S T,QI Q,ZHOU X J,et al.Stochastic analysis of resonance steady-state response of rotor with shaft bending and unbalance faults[J].Chinese Journal of Computational Mechanics,2020,37(1):23-30.
[11] 崔亞輝,姚劍飛,徐亞濤,等.西門子1 000 MW汽輪機(jī)組軸系碰磨故障特性研究[J].中國(guó)電力,2020,53(6):133-139.
CUI Y H,YAO J F,XU Y T,et al.Theoretical study and experimental research on collision fault of shaft system of Siemens 1000MW steam turbine unit[J].China Electric Power,2020,53(6):133-139.
[12] 許琦,吳昊,趙立超,等.多跨轉(zhuǎn)子系統(tǒng)耦合故障定量診斷方法[J].振動(dòng)工程學(xué)報(bào),2015,28(3):495-502.
XU Q,WU H,ZHAO L C,et al.Quantitative coupling fault diagnosis method of multi-span rotor based on harmonic components[J].Journal of Vibration Engineering,2015,28(3):495-502.
[13] ASJAD M M,DARPE A K,KSHITIJ G.Analysis of stator vibration response for the diagnosis of rub in a coupled rotor-stator system[J].International Journal of Mechanical Sciences,2018,144:392-406.
[14] 王威,甘春標(biāo).不確定性激勵(lì)下碰摩轉(zhuǎn)子的振動(dòng)響應(yīng)識(shí)別[J].振動(dòng)與沖擊,2019,38(18):122-127.
WANG W,GAN C B.Identification of the vibration responses of a rub-impact rotor under uncertain excitations[J].Journal of Vibration and Shock,2019,38(18):122-127.
[15] 李傲,趙立,周傳迪,等.碰摩拉桿轉(zhuǎn)子彎扭耦合非線性動(dòng)力學(xué)響應(yīng)特性[J].動(dòng)力工程學(xué)報(bào),2020,40(3):205-211.
LI A,ZHAO L,ZHOU C D,et al.Nonlinear dynamic characteristics of a rod rotor with rub-impact faults under bending-torsion coupling[J].Journal of Chinese Society of Power Engineering,2020,40(3):205-211.
[16] 李洪亮,侯磊,徐梅鵬,等.基于HB-AFT方法的不對(duì)中轉(zhuǎn)子系統(tǒng)超諧共振分析[J].機(jī)械工程學(xué)報(bào),2019,55(13):94-100.
LI H J,HOU L,XU M P,et al.Superharmonic resonance analysis of misaligned rotor system based on HB-AFT method[J].Journal of Mechanical Engineering,2019,55(13):94-100.
[17] 胡航領(lǐng),何立東,王晨陽(yáng).2N和N+1支撐三跨轉(zhuǎn)子在三種聯(lián)軸器下的振動(dòng)特性實(shí)驗(yàn)研究[J].振動(dòng)與沖擊,2017,36(5):172-176.
HU H L,HE L D,WANG C Y.Tests for vibration characteristics of a N-span & 2N-support rotor system and a N-span & (N+1)-support one connected with three kinds of coupling[J].Journal of Vibration and Shock,2017,36(5):172-176.
[18] LEI Q,LIN J,LIAO Y,et al.Changes in rotor response characteristics based diagnostic method and its application to identification of misalignment[J].
Measurement,2019,86:268-276.
[19] 李自剛,李明,江?。唤遣粚?duì)中轉(zhuǎn)子-軸承系統(tǒng)非線性動(dòng)力學(xué)行為研究[J].振動(dòng)工程學(xué)報(bào),2019,32(3):509-516.
LI Z G,LI M,JIANG J.Nonlinear dynamics of rotor-bearing systems with a fault of angular misalignment[J].Journal of Vibration Engineering,2019,32(3):509-516.
[20] 潘宏剛,龐智元,肖增弘,等.多跨轉(zhuǎn)子系統(tǒng)聯(lián)軸器偏角不對(duì)中試驗(yàn)研究[J].動(dòng)力工程學(xué)報(bào),2020,40(4):305-310.
PAN H G,PANG Z Y,XIAO Z H,et al.Experimental study on misalignment of coupling deflection angle in multi-span rotor system[J].Journal of Chinese Society of Power Engineering,2020,40(4):305-310.
[21] 田新啟,高亹.基于PSD的旋轉(zhuǎn)機(jī)械振動(dòng)傳感器[J].振動(dòng)、測(cè)試與診斷,2010,30(6):638-641.
TIAN X Q,GAO W.Rotating machinery vibration sensor based on position sensitive detector[J].Journal of Vibration,Measurement & Diagnosis,2010,30(6):638-641.
[22] 李志鳳,趙登峰,馬國(guó)鷺,等.回轉(zhuǎn)件彎扭測(cè)量系統(tǒng)及其不確定度分析[J].應(yīng)用光學(xué),2015,36(5):778-783.
LI Z F,ZHAO D F,MA G L,et al.Bending and torsion measuring system of rotary parts and it's uncertainty analysis[J].Journal of Applied Optics,2015,36(5):778-783.
[23] 劉洋,曹宇,辛旭.基于虛擬現(xiàn)實(shí)技術(shù)的激光傳感器數(shù)據(jù)多維可視化方法[J].激光雜志,2021,42(2):166-169.
LIU Y,CAO Y,XIN X.Multi-dimensional visualization method of laser sensor data based on virtual reality technology[J].Laser Journal,2021,42(2):166-169.
[24] 許良毅.汽輪機(jī)軸向位移、脹差的安裝與調(diào)試[J].控制工程,2009,16:171-172.
XU L Y.Eddy current transducer installation and debugging in turbine axis displacement and differential expansion[J].Control Engineering of China,2009,16:171-172.
[25] 趙梓妤,劉振俠,呂亞國(guó),等.高分辨率轉(zhuǎn)子葉尖間隙測(cè)量傳感器的設(shè)計(jì)及驗(yàn)證[J].儀器儀表學(xué)報(bào),2018,39(6):132-139.
ZHAO Z Y,LIU Z X,LIU Y G,et al.Design and verification of high resolution eddy current sensor for blade tip clearance measurement[J].Chinese Journal of Scientific Instrument,2018,39(6):132-139.
[26] YE D C,DUAN F J,Zhou Q,et al.Vibrations measurements for shrouded blades of steam turbines based on eddy current sensors with high frequency response[J].Journal of Measurement Science and Instrumentation,2019,10(4):315-321.
[27] 許澤瑋,楊建剛,沈德明.熱應(yīng)力引發(fā)的軸頸中心位置測(cè)量誤差分析[J].動(dòng)力工程學(xué)報(bào),2021,41(3):208-213.
XU Z W,YANG J G,SHEN D M.Analysis of measurement error of journal center position caused by thermal stress[J].Journal of Chinese Society of Power Engineering,2021,41(3):208-213.
[28] 滕峰成,蔡亞楠,李志全,等.一種改進(jìn)型光纖光柵振動(dòng)檢測(cè)系統(tǒng)[J].儀器儀表學(xué)報(bào),2005,26(5):17-19.
TENG F C,CAI Y N,LI Z Q,et al.An improved vibration detecting system based on fiber grating[J].Chinese Journal of Scientific Instrument,2005,26(5):17-19.
[29] 佟慶彬,馬惠萍,劉麗華,等.高速旋轉(zhuǎn)機(jī)械徑向振動(dòng)檢測(cè)系統(tǒng)關(guān)鍵技術(shù)研究[J].儀器儀表學(xué)報(bào),2011,32(5):1026-1032.
TONG Q B,MA H P,LIU L H,et al.Key technology study on radial vibration detection system of high-speed rotating machinery[J].Chinese Journal of Scientific Instrument,2011,32(5):1026-1032.
[30] LI T,TAN Y,ZHOU Z,et al.Turbine rotor dynamic balance vibration measurement based on the non-contact optical fiber grating sensing[J].IEICE Electronics Express,2015,12(12):1210-1219.
[31] YE D,DUAN F,JIANG J,et al.Synchronous vibration measurements for shrouded blades based on fiber optical sensors with lenses in a steam turbine [J].Sensors,2019,19(11):156-163.
[32] Al-BADOUR F,SUNAR M,CHEDED L.Vibration analysis of rotating machinery using time–frequency analysis and wavelet techniques[J].Mechanical Systems & Signal Processing,2011,25(6):2083-2101.
[33] YU X,LI S,CHENG C,et al.An intelligent fault diagnosis method of rotating machinery based on deep neural networks and time-frequency analysis [J].Journal of Vibroengineering,2018,20(6):2321-2335.
[34] 向玲,李媛媛.經(jīng)驗(yàn)小波變換在旋轉(zhuǎn)機(jī)械故障診斷中的應(yīng)用[J].動(dòng)力工程學(xué)報(bào),2015,35(12):975-981.
XIANG L,LI Y Y.Application of empirical wavelet transform in fault diagnosis of rotary mechanisms [J].Journal of Chinese Society of Power Engineering,2015,35(12):975-981.
[35] YAN R,GAO R X,CHEN X.Wavelets for fault diagnosis of rotary machines:a review with applications[J].Signal Processing,2014,96:1-15.
[36] NIU P F,ZHANG J,ZOU G.Study on application of wavelet transform technique to turbine generator fault diagnosis[J].Chinese Journal of Scientific Instrument,2007,28(1):189-192.
[37] 牛培峰,張君,鄒剛.小波分析技術(shù)在汽輪機(jī)故障診斷中的應(yīng)用研究[J].儀器儀表學(xué)報(bào),2007,28(1):189-192.
NIU P F,ZHANG J,ZOU G.Study on application of wavelet transform technique to turbine generator fault diagnosis[J].Chinese Journal of Scientific Instrument,2007,28(1):189-192.
[38] LIAO W,HUA W,F(xiàn)ENG L.Fault diagnosis of turbine generator vibration based on wavelet packet and data-driven[C]//ISECS International Colloquium on Computing,Communication,Control,& Management.IEEE,2009.
[39] 胡三高,安宏文,馬志勇,等.基于小波奇異值分析的汽輪機(jī)碰磨特征提取[J].動(dòng)力工程學(xué)報(bào),2013,33(3):184-188.
HU S G,AN H W,MA Z Y,et al.Feature extraction of rubbing fault for steam turbines based on wavelet singularity analysis[J].Journal of Chinese Society of Power Engineering,2013,33(3):184-188.
[40] 李宏坤,徐福健,高巧紅,等.利用小波尺度譜同步平均的時(shí)頻脊故障特征提取[J].振動(dòng)工程學(xué)報(bào),2015,28(3):487-494.
LI H K,XU F J,GAO Q H,et al.Fault feature extraction for synchronous averaging wavelet scalogram based on time-frequency ridge[J].Journal of Vibration Engineering,2015,28(3):487-494.
[41] UMBRAJKAAR A,KRISHNAMOORTHY A.Vibration analysis using wavelet transform and fuzzy logic for shaft misalignment[J].Journal of Vibroengineering,2018,20(8):156-161.
[42] LEI Y,LI N,LIN J,et al.Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition[J].Sensors,2013,13(12):286-294.
[43] 向玲,鄢小安.汽輪機(jī)轉(zhuǎn)子故障診斷中LMD法和EMD法的性能對(duì)比研究[J].動(dòng)力工程學(xué)報(bào),2014,34(12):945-951.
XIANG L,YAN X A.Performance contrast between lmd and emd in fault diagnosis of turbine rotors [J].Journal of Chinese Society of Power Engineering,2014,34(12):945-951.
[44] 田松峰,胥佳瑞,王美俊,等.基于EEMD云模型與SVM的汽輪機(jī)轉(zhuǎn)子故障診斷方法[J].熱力發(fā)電,2017,46(4):111-114.
TIAN S F,XU J R,WANG M J,et al.A rotor fault diagnosis method based on EEMD cloud model and SVM[J].Thermal Power Generation,2017,46(4):111-114.
[45] 田松峰,魏言,郁建雄,等.基于變分模態(tài)分解云模型和優(yōu)化LSSVM的汽輪機(jī)振動(dòng)故障診斷[J].動(dòng)力工程學(xué)報(bào),2019,39(10):818-825.
TIAN S F,WEI Y,YU J X,et al.Vibration fault diagnosis of steam turbines based on VMD and optimized LSSVM[J].Journal of Chinese Society of Power Engineering,2019,39(10):818-825.
[46] 唐貴基,龐彬.基于ALIF-HT的汽輪發(fā)電機(jī)組轉(zhuǎn)子故障診斷[J].動(dòng)力工程學(xué)報(bào),2017,37(11):883-889.
TANG G J,PANG B.Fault diagnosis of a turbo-generator rotor based on ALIF-HT[J].Journal of Chinese Power Engineering,2017,37(11):883-889.
[47] LIN L,WANG Y,ZHOU H.Iterative filtering as an alternative algorithm for empirical mode decomposition[J].Advances in Adaptive Data Analysis,2009,1(4):543-560.
[48] CICONE A,LIU J,ZHOU H.Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis[J].Applied & Computational Harmonic Analysis,2016,41(2):384-411.
[49] 唐貴基,李樹(shù)才,盧盛陽(yáng),等.基于CERLMDAN的轉(zhuǎn)子故障診斷[J].動(dòng)力工程學(xué)報(bào),2020,309(9):34-41.
TANG G J,LI S C,LU S Y,et al.Rotor fault diagnosis based on CERLMDAN[J].Journal of Chinese Power Engineering,2020,309(9):34-41.
[50] ZHU X,ZHAO J,HOU D,et al.An SDP characteristic information fusion-based CNN vibration fault diagnosis method[J].Shock and Vibration,2019(3):1-14.
[51] ZHU X,HOU D,ZHOU P,et al.Rotor fault diagnosis using a convolutional neural network with symmetrized dot pattern images[J].Measurement,2019,67:365-372.
[52] 張前圖,房立清.基于圖像形狀特征和LLTSA的故障診斷方法[J].振動(dòng)與沖擊,2016,35(9):172-177.
ZHANG Q T,F(xiàn)ANG L Q.Fault diagnosis method based on image shape features and LLTSA[J].Journal of Vibration and Shock,2016,35(9):172-177.
[53] 朱霄珣,羅學(xué)智,葉行飛,等.基于深度特征學(xué)習(xí)的汽輪機(jī)轉(zhuǎn)子狀態(tài)識(shí)別方法[J].中國(guó)電機(jī)工程學(xué)報(bào),2021,41(2):432-442.
ZHU X X,LUO X Z,YE X F,et al.State recognition method of turbine rotor based on depth feature learning[J].Proceedings of the CSEE,2021,41(2):432-442.
[54] 王慧濱.基于規(guī)則和案例推理的汽輪發(fā)電機(jī)組故障診斷專家系統(tǒng)[D].蘭州:蘭州理工大學(xué),2014.
WANG H B.Fault diagnosis expert system of turbine generator sets based on rules reasoning and case reasoning[D].Lanzhou:Lanzhou University of Technology,2014.
[55] 于達(dá)仁,王偉.基于規(guī)則的故障診斷計(jì)算復(fù)雜性分析[J].動(dòng)力工程,2007,27(3):372-375.
YU D R,WANG W.On computational complexity of rule-based fault diagnosis[J].Journal of Chinese Society of Power Engineering,2007,27(3):372-375.
[56] YANG M,QIANG S.Reinforcing fuzzy rule-based diagnosis of turbomachines with case-based reasoning [J].International Journal of Knowledge-Based and Intelligent Engineering Systems,2008,12(2):173-181.
[57] YAN C F,WANG H B,ZHOU L L,et al.Fault diagnosis expert system of turbine generator sets based on rule reasoning and case reasoning[J].Applied Mechanics & Materials,2014,513/517:4443-4448.
[58] FANG M,XU Z.Vibration fault diagnosis for steam turbine-generators based on history cases and artificial neural network[C]//2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC).IEEE,2018.
[59] XU C,HAO Z,PENG D.Study of fault diagnosis based on SVM for turbine generator unit[J].IEEE,2012(5):110-113.
[60] LIN S,ZHANG T.Fault diagnosis of steam turbine generator unit based on support vector machine[C]// International Conference on Measurement.IEEE,2014.
[61] 石志標(biāo),陳斐,曹麗華.基于EWT與排列熵的SVM汽輪機(jī)轉(zhuǎn)子故障診斷[J].汽輪機(jī)技術(shù),2017,59(6):439-442.
SHI Z B,CHEN F,CAO L H.Fault diagnosis of steam turbine rotor based on EWT and permutation entropy and SVM[J].Turbine Technology,2017,59(6):439-442.
[62] 石志標(biāo),陳斐,曹麗華.基于排列熵與IFOA-RVM的汽輪機(jī)轉(zhuǎn)子故障診斷[J].振動(dòng)與沖擊,2018,37(5):79-84.
SHI Z B,CHEN F,CAO L H.Fault diagnosis of steam turbine rotor based on permutation entropy and IFOA-RVM[J].Journal of Vibration and Shock,2018,37(5):79-84.
[63] 楊楠,葉迪,林杰,等.基于數(shù)據(jù)驅(qū)動(dòng)具有自我學(xué)習(xí)能力的機(jī)組組合智能決策方法研究[J].中國(guó)電機(jī)工程學(xué)報(bào),2019,39(10):2934-2946.
YANG N,YE D,LIN J,et al.Research on data-driven intelligent security-constrained unit commitment dispatching method with self-learning ability [J].Proceedings of the CSEE,2019,39(10):2934-2946.
[64] 尚宇煒,郭劍波,吳文傳,等.?dāng)?shù)據(jù)–知識(shí)融合的機(jī)器學(xué)習(xí)(1):模型分析[J].中國(guó)電機(jī)工程學(xué)報(bào),2019,39(15):4406-4416.
SHANG Y W,GUO J B,WU W C,et al.Machine learning methods embedded with domain knowledge (part i):model analysis[J].Proceedings of the CSEE,2019,39(15):4406-4416.
[65] 周奇才,劉星辰,趙炯,等.旋轉(zhuǎn)機(jī)械一維深度卷積神經(jīng)網(wǎng)絡(luò)故障診斷研究[J].振動(dòng)與沖擊,2018,37(23):39-45.
ZHOU Q C,LIU X C,ZHAO J,et al.Fault diagnosis for rotating machinery based on 1D depth convolutional neural network[J].Journal of Vibration and Shock,2018,37(23):39-45.
[66] WANG T,WANG J,WU Y,et al.A fault diagnosis model based on weighted extension neural network for turbo-generator sets on small samples with noise [J].Chinese Journal of Aeronautics,2020,33(10):2757-2769.
[67] 王崇宇,鄭召利,劉天源,等.基于卷積神經(jīng)網(wǎng)絡(luò)的汽輪機(jī)轉(zhuǎn)子不平衡與不對(duì)中故障檢測(cè)方法研究[J].中國(guó)電機(jī)工程學(xué)報(bào),2021,41(7):2417-2427.
WANG C Y,ZHENG Z L,LIU T Y,et al.Research on detection method of steam turbine rotor unbalance and misalignment fault based on convolution neural network[J].Proceedings of the CSEE,2021,41(7):2417-2427.
[68] HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.
[69] FU S,ZHONG S,LIN L,et al.A re-optimized deep auto-encoder for gas turbine unsupervised anomaly detection[J].Engineering Applications of Artificial Intelligence,2021,101(12):104199.
[70] TIAN H A,RM A,JZ B.Combination bidirectional long short-term memory and capsule network for rotating machinery fault diagnosis[J].Measurement,2021,176:235-242.
Research Progress of Vibration Fault Diagnosis Technology for Steam Turbine Generator Sets
CHEN Shangnian1, LI Luping1*, ZHANG Shihai2, OUYANG Minnan1, FAN Ang1, WEN Xiankui2
(1. School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410014,Hunan Province, China; 2. Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550002, Guizhou Province, China)
With the increasing demand of power energy, the safe and stable operation of high parameter and large capacity turbo-generator sets is of great significance to power production. The vibration fault mechanism, signal detection, signal analysis, feature extraction and fault diagnosis methods of turbine generator set were summarized, respectively. Moreover, an advanced sensing technology and a new generation of intelligent machine learning technology represented by deep learning were introduced to solve the problems that traditional intelligent diagnosis methods are faced with, such as large amount of sampled data, difficulty in extracting signal features and shortage of fault training samples. It is summarized that the future vibration fault diagnosis technology of turbo generator sets should be based on artificial intelligence, big data, and cloud computing, supplemented by fusion virtualization and three-dimensional visualization technology, to achieve the unity of fault diagnosis speed and accuracy.
steam turbine generator set; feature extraction; fault diagnosis; artificial intelligence; big data; cloud computing; deep learning
2021-04-30。
10.12096/j.2096-4528.pgt.21048
TK 05
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFB0903600);南方電網(wǎng)公司重點(diǎn)科技項(xiàng)目(GZKJXM20172214)。
Project Supported by National Key Research and Development Program of China (2017YFB0903600);Key Science and Technology Project of China Southern Power Grid Corporation (GZKJXM20172214).
(責(zé)任編輯 辛培裕)