熊佰煉 黃俊 申杰
摘要:【目的】探索短時間尺度下辣椒秸稈生物質炭添加對喀斯特石灰土地區(qū)土壤有機碳(SOC)礦化和SOC庫的直接影響,為評估西南喀斯特石灰土地區(qū)辣椒秸稈生物質炭還田利用的生態(tài)環(huán)境效應提供科學依據(jù)?!痉椒ā坎捎脧V口瓶進行恒溫、恒濕密封培養(yǎng)試驗,以不添加生物質炭為對照(CK),設置0.1%、0.5%、1.0%、2.0%和4.0%共5個辣椒秸稈生物質炭添加處理,用NaOH溶液吸收法測定63 d培養(yǎng)期內(nèi)喀斯特石灰土有機質礦化過程釋放的CO2,培養(yǎng)結束后測試各形態(tài)SOC含量的變化情況?!窘Y果】培養(yǎng)63 d后,0~4.0%添加處理石灰土SOC累積礦化量為473.05±78.60~673.74±102.66 mg C/kg,4.0%添加處理可明顯提高累積礦化量。各添加處理SOC礦化過程均可用雙庫一級動力學模型進行擬合,0.1%~0.5%和1.0%~4.0%添加處理條件下易降解SOC礦化速率常數(shù)(ka)分別為0.021±0.001~0.034±0.004/d和0.248±0.021~0.343±0.033/d,對易降解SOC的礦化分別起抑制和促進作用;所有添加處理對難降解SOC礦化起促進作用。1.0%~4.0%添加處理可顯著提高易降解SOC庫儲量(Ca)和土壤微生物量碳(MBC)含量(P<0.05,下同),其值范圍分別為238.19±20.72~937.48±71.75 mg/kg和368.22±12.19~449.52±18.91 g/kg。2.0%和4.0%添加處理顯著提高土壤易氧化有機碳(ROC)含量,其值分別為2849.97±184.21和3163.92±107.16 mg/kg。生物質炭添加對土壤水溶性有機碳(WSOC)含量無顯著影響(P>0.05,下同)。添加辣椒秸稈生物質炭的處理中,MBC與Ca、ka、難降解SOC礦化速率常數(shù)(ks)和ROC呈極顯著正相關(P<0.01,下同),與難降解SOC庫儲量(Cs)呈極顯著負相關,與WSOC無顯著相關性?!窘Y論】辣椒秸稈生物質炭對喀斯特石灰土SOC礦化速率的影響與添加量有關,1.0%~4.0%添加處理可提高礦化速率,同時增加Ca、MBC和ROC含量,但對WSOC含量無影響,4.0%添加處理在63 d培養(yǎng)期內(nèi)可提高土壤累積礦化量。為減少土壤碳排放,建議辣椒秸稈生物質炭改良西南喀斯特石灰土的添加量應低于4.0%。
關鍵詞: 辣椒秸稈生物質炭;喀斯特;石灰土;有機碳庫;有機碳礦化
中圖分類號: S153.61? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2021)03-0743-10
Effects of pepper straw biochar on karst limestone soil
organic carbon mineralization
XIONG Bai-lian1,2, HUANG Jun1, SHEN Jie1
(1College of Resources and Environment,Zunyi Normal University, Zunyi, Guizhou? 563006, China; 2Key Laboratory of Soil Resources and Environment in Qianbei of Guizhou Province, Zunyi, Guizhou? 563006, China)
Abstract:【Objective】To explore the direct effect of pepper straw biochar addition on soil organic carbon(SOC) mi-neralization and organic carbon pool in limestone soil in karst areas on a short-term time scale,and provide a scientific basis for evaluation of the ecological environmental effect of pepper straw biochar returned to cropland in limestone soil in karst areas in southwestern China. 【Method】Conducted the sealed incubation experiment in a jar at constant temperature and humidity, no biochar treatment was as control(CK),set 5 levels of pepper straw biochar addition,0.1%,0.5%,1.0%,2.0% and 4.0%, measured the CO2 release during mineralization of SOC within the incubation period of 63 d with the method of NaOH solution absorption,and tested the change of SOC of various forms at the end of incubation. 【Result】After 63 d of incubation,the cumulative amount of mineralization of SOC in limestone soil with 0-4.0 % additives was 473.05±78.60-673.74±102.66 mg C/kg; 4.0% addition could increase the cumulative amount of mineralization. At different levels of addition,SOC mineralization could be fitted by the two-compartment first order kinetic model. Under 0.1%-0.5% and 1.0%-4.0% treatments,easily biodegradable SOC mineralization rate constant (ka) was 0.021±0.001-0.034±0.004/d and 0.248±0.021-0.343±0.033/d,the effect on mineralization of easily biodegradable SOC was suppressing and facilitating,respectively. All addition levels could promote mineralization of hard-to-degrade SOC. The addition level of 1.0%-4.0% could significantly increase reserves of labile SOC(Ca) and microbial biomass carbon(MBC) content in the soil(P<0.05, the same below),the scope ranges were 238.19±20.72-937.48±71.75 mg/kg and 368.22±12.19-449.52±18.91 g/kg respectively. The addition levels of 2.0% and 4.0% significantly increased the content of readily oxidized carbon (ROC) in soil,the value being 2849.97±184.21 and 3163.92±107.16 mg/kg respectively. Biochar addition had no significant effect on water soluble organic carbon(WSOC) in soil(P>0.05, the same below). According to the process of pepper straw biochar addition,MBC was of extremely significantly positive correlation with Ca,ka,constant of the mineralization rate of recalcitrant SOC(ks) and ROC(P<0.01, the same below),of extremely significantly negative correlation with reserves of recalcitrant SOC(Cs),and no significant correlation to WSOC. 【Conclusion】The effect of pepper straw biochar on the minerali-zation rate of limestone soil in karst areas is related to the level of addition; 1.0%-4.0% addition can enhance the SOC mineralization rate while increase Ca and the content of MBC and ROC,but has no effect on WSOC content. The addition level of 4.0% can increase the cumulative emissions of mineralization during the incubation period of 63 d. To reduce soil carbon emissions,it is recommend the level of pepper straw biochar addition should be lower than 4.0% in improving limestone soil in karst areas in southwestern China.
Key words: pepper straw biochar; karst; limestone soil; soil organic carbon pool; organic carbon mineralization
Foundation item: Project of Department of Science and Technology of Guizhou(QKHPTRC〔2017〕5727-12);Pro-ject of Key Laboratory of Soil Resources and Environmental Characteristics in Northern Guizhou of Guizhou Department of Education(Qianjiaohe KY〔2017〕010)
0 引言
【研究意義】土壤有機碳(SOC)庫是陸地生態(tài)系統(tǒng)最大的碳庫,SOC礦化是SOC周轉的重要過程和土壤溫室氣體排放的主要來源(Lal,2004)。生物質炭是由農(nóng)作物秸稈、畜禽糞便等材料在250~750 ℃限氧條件下發(fā)生熱裂解生成,能改善土壤結構,提高保水保肥能力,促進作物生長(黃雁飛等,2020;涂保華等,2020)。由于在土壤中極難降解,生物質炭還田可將植物光合作用獲得的約20%碳封存在土壤中,是一條有效的碳匯途徑(Lehmann,2007)。石灰土是一種發(fā)育于碳酸鹽巖母質,廣泛分布于我國熱帶、亞熱帶喀斯特山區(qū)的非地帶性土壤,有機質含量相對較高(鄭永春和王世杰,2002)。貴州省石灰土分布面積為278.56萬ha,是種植辣椒的主要土壤類型之一,將辣椒秸稈生物質炭還施于石灰土是綠色環(huán)保利用辣椒秸稈的重要備選途徑。研究表明,生物質炭對SOC的礦化分解有激發(fā)和抑制作用,從而增加或減少土壤碳排放量并影響土壤肥力,不同類型生物質炭施入不同類型土壤的碳礦化效應尚無法預測(葛曉改等,2016)。探明辣椒秸稈生物質炭對喀斯特石灰土SOC礦化和土壤碳庫結構的影響是科學利用其改良石灰土的重要前提,也可為定量評估該類生物質炭輸入喀斯特石灰土后的碳匯效應提供科學依據(jù)?!厩叭搜芯窟M展】生物質炭隨前體材料類型、土壤類型和進入土壤時長等因素的不同,對SOC的礦化降解起激發(fā)或抑制作用。玉米、黑麥秸稈、柞木和芒草等制成的生物質炭可促進微生物生長,加速SOC降解,增加土壤碳排放(Hamer et al.,2004;Wardle et al.,2008;Luo et al.,2011)?;旌夏拘忌镔|炭添加到粉砂壤土中、玉米芯生物質炭添加到堿性土壤中則降低土壤微生物群落活性和土壤微生物量碳(MBC)含量,從而抑制SOC降解礦化,降低土壤碳排放(Spokas et al.,2009;Riaz et al.,2017)。而桉樹生物質炭對粘性土壤和砂質壤土中SOC的礦化作用分別起抑制和促進作用(Fang et al.,2015)。生物質炭的輸入會影響SOC的組成和轉化。柳桉生物質炭施入可增加大田難降解SOC儲量(Kimetu and Lehmann,2010),混合秸稈生物質炭則增加大田易降解SOC儲量(Liu et al.,2015)。胡桃殼生物質炭和水稻秸稈生物質炭能促進SOC向活性SOC的轉化,提高土壤水溶性有機碳(WSOC)和MBC含量(Wang et al.,2016;Yang et al.,2020)。劉燕萍等(2011)發(fā)現(xiàn)水稻秸稈生物質炭在培養(yǎng)前期(0~7 d)促進SOC的降解礦化,后期(7~112 d)則抑制??偟膩砜矗镔|炭輸入會影響土壤中有機質組成與礦化行為,從而改變土壤的碳排放?!颈狙芯壳腥朦c】盡管生物質炭對SOC礦化的影響已有大量研究,但由于影響因素復雜且尚未完全掌握相關機理,目前有關辣椒秸稈生物質炭還田利用對土壤環(huán)境影響的研究也較少,其對石灰土SOC礦化降解和SOC庫的影響尚不清楚?!緮M解決的關鍵問題】通過恒溫、恒濕密封培養(yǎng),探索短時間尺度(63 d)、無其他碳源條件下,不同辣椒秸稈生物質炭添加量處理對石灰土SOC礦化和SOC庫的影響,以期為評估西南喀斯特石灰土地區(qū)辣椒秸稈生物質炭還田利用的生態(tài)環(huán)境效應提供科學依據(jù)。
1 材料與方法
1. 1 試驗材料
選擇貴州省遵義市紅花崗區(qū)新蒲鎮(zhèn)棄耕的石灰土荒草坡地為采樣地,采用棋盤式法確定采樣點,去除雜草和凋落物后,挖取表層0~20 cm土層土樣。將各樣點采集的土樣混合,四分法取足所需土壤樣品。剔除土壤中植物殘體,撿出石塊、落葉和根等雜物,風干,過2 mm土壤篩。土壤基本理化性質見表1。
供試辣椒秸稈品種為遵辣9號,將其洗凈風干,破碎,用錫箔紙密封包裹,放入坩鍋,在馬弗爐內(nèi)以20 ℃/min的速度加熱升溫至550 ℃并保持45 min,自然冷卻后取出,過2 mm篩,密封備用。辣椒秸稈生物質炭的性質與主要成分:pH 9.79,灰分21%,總碳(TC)786.84 g/kg,總氮(TN)16.57 g/kg,總磷(TP)1.12 g/kg,總鉀(TK)0.85 g/kg。
1. 2 試驗方法
采用室內(nèi)恒溫、恒濕培養(yǎng),堿液吸收法測定SOC礦化與CO2排放:稱取100 g供試土樣置于1 L廣口瓶中,添加0(CK)、0.1%(T1)、0.5%(T2)、1.0%(T3)、2.0%(T4)和4.0%(T5)的生物質炭,混勻,調節(jié)含水量至田間飽和持水量的60%;用小燒杯盛20 mL 1 mo1/L NaOH溶液,放入橫置的廣口瓶中吸收土壤呼吸釋放的CO2;在廣口瓶中放置10 mL去CO2水,以維持瓶內(nèi)空氣飽和濕度,橡皮塞密封廣口瓶,25 ℃生化培養(yǎng)箱中恒溫黑暗培養(yǎng)。每處理設3次重復。在培養(yǎng)的第3、7、12、18、25、33、42、52和63 d取出廣口瓶中NaOH溶液,經(jīng)稀釋處理后測定土壤釋放的CO2,并換上新配制的NaOH溶液,繼續(xù)培養(yǎng)。設置不加土壤和生物質炭的空白對照組,用于扣除堿液對空氣中CO2的吸收。
1. 3 測定項目及方法
將從廣口瓶中取出的NaOH溶液稀釋后用總碳分析儀(島津TOC-LCPH)測定分析碳含量。培養(yǎng)結束后,取適量土壤,分析測試各形態(tài)SOC含量。SOC用重鉻酸鉀外加熱法測定;WSOC用0.5 mol/L K2SO4浸提(水土質量比5∶1),用TOC分析儀測定(王戰(zhàn)磊等,2014);MBC采用氯仿熏蒸浸提法測定,以熏蒸和未熏蒸土樣含碳量之差除以系數(shù)0.45得到(吳金水等,2006);易氧化有機碳(ROC)采用高錳酸鉀氧化法測定(趙世翔等,2017)。
1. 4 計算公式
日均礦化速率[mg C/(kg·d)]以單位質量土壤(1 kg)單位時間(1 d)內(nèi)礦化釋放的碳量表示;累積礦化量(mg C/kg)以單位質量土壤(1 kg)在63 d培養(yǎng)期內(nèi)礦化釋放的總碳量表示。土壤微生物商(Soil microbial quotient)=MBC/SOC,碳庫活度(Lability of carbon,L)=ROC/(SOC-ROC)(Blair et al.,1995)。
運用雙庫一級動力學方程對土壤易降解碳庫和難降解碳庫大小進行擬合(Ci et al.,2015):
Ct=Ca×(1-e-kat)+(CSOC-Ca)×(1-e-kst)
式中,Ct為培養(yǎng)t時的累積礦化量(mg/kg),Ca和ka分別為易降解SOC庫儲量(mg/kg)及其礦化速率常數(shù)(/d),CSOC為SOC含量,Cs(Cs=CSOC-Ca)和ks分別為難降解SOC庫儲量(mg/kg)及其礦化速率常數(shù)(/d),t為培養(yǎng)時間(d)。生物質炭輸入后SOC的半衰期(T1/2)由難降解SOC庫的降解速率ks通過公式計算得出:T1/2=ln2/ks。
1. 5 統(tǒng)計分析
采用SPSS 19.0對試驗數(shù)據(jù)進行單因素方差分析(One-way ANOVA)、Pearson相關分析和顯著性分析,以Origin 8.5繪圖。
2 結果與分析
2. 1 SOC礦化特征
由圖1可知,各生物質炭處理的SOC日均礦化速率均隨培養(yǎng)時間的延長而降低。培養(yǎng)0~3 d,CK和T1~T5處理的SOC日均礦化率分別為35.31±9.43、30.51±0.63、32.63±2.11、36.85±2.31、38.99±2.67和53.39±5.61 mg C/(kg·d)。培養(yǎng)至第4~7 d,各處理SOC日均礦化速率大幅降低至11.33±0.97~15.83±0.89 mg C/(kg·d)。培養(yǎng)0~18 d,CK和T1~T4處理之間日均礦化速率無顯著差異(P>0.05,下同)。表明培養(yǎng)的前18 d,添加0.1%~2.0%的辣椒秸稈生物質炭對SOC日均礦化速率影響不大。培養(yǎng)25~63 d,T1~T3處理日均礦化速率顯著小于CK(P<0.05,下同),表明在此時間段內(nèi),添加0.1%~1.0%的辣椒秸稈生物質炭對SOC的礦化表現(xiàn)出一定的抑制作用。T5處理在整個培養(yǎng)期內(nèi)SOC日均礦化速率均顯著高于其他添加處理,在0~52 d培養(yǎng)期內(nèi)顯著高于CK,表明添加4.0%辣椒秸稈生物質炭能提高SOC日均礦化速率。
由圖2-A可知,CK和T1~T5處理培養(yǎng)63 d后SOC累積礦化量分別為473.05±78.60、427.03±30.12、442.27±23.45、454.44±43.73、503.77±33.51和673.74±102.66 mg C/kg,其中T5處理累積礦化量高于其他處理,CK和T1~T4處理間無明顯差異。SOC礦化率是礦化生成的CO2-C占SOC的比例。由圖2-B可知,CK和T1~T5處理培養(yǎng)63 d后SOC累積礦化率分別為(2.18±0.36)%、(1.97±0.11)%、(2.04±0.13)%、(2.09±0.19)%、(2.32±0.15)%和(3.11±0.47)%, 其中T5處理SOC累積礦化率顯著高于其他處理,CK和T1~T4處理間無顯著差異。
2. 2 SOC礦化的動力學特征
本研究中SOC礦化過程可用雙庫一級動力學模型進行擬合(P<0.01),估算出Ca、Cs和相應的降解速率常數(shù),結果見表2。除CK、T1和T2處理的Ca無顯著差異外,Ca隨辣椒秸稈生物質炭添加量的增加而顯著增大。CK的ka顯著大于T1和T2處理,表明0.1%~0.5%的辣椒秸稈生物質炭添加處理抑制石灰土中易降解SOC的礦化速率;T3~T5處理的ka是CK的3.59~4.97倍,表明1.0%~4.0%的辣椒秸稈生物質炭添加處理可顯著提高石灰土中易降解SOC的礦化速率。T1~T5處理的ks均顯著大于CK,其中T5處理最大,表明辣椒秸稈生物質炭添加可提高難降解SOC庫的降解速率。CK石灰土SOC降解半衰期為11.74±0.62年,隨著生物質炭的增加而顯著降低,T5處理半衰期降至5.19±0.50年。Ca/SOC表征SOC的礦化潛力,該值越高,SOC的可礦化能力越強。CKCa/SOC為(0.76±0.06)%,與T1和T2處理間無顯著差異,表明0.1%~0.5%的辣椒秸稈生物質炭添加量對石灰土SOC的礦化能力影響不明顯,T3~T5處理Ca/SOC是CK的1.43~5.68倍,表明1.0%~4.0%的辣椒秸稈生物質炭添加能較大幅度提升SOC的礦化潛力。
2. 3 易降解SOC含量變化特征
由圖3-A可知,未培養(yǎng)前石灰土WSOC含量為94.89±5.41 mg/kg,培養(yǎng)63 d后各處理土壤WSOC含量均較未培養(yǎng)前顯著下降。其中,CK土壤WSOC含量降至44.34±2.79 mg/kg,T1~T5處理的含量降至42.39±2.46~43.08±2.49 mg/kg,CK和T1~T5處理間WSOC含量無顯著差異。
由圖3-B可知,未培養(yǎng)前石灰土MBC含量為357.62±10.09 mg/kg,培養(yǎng)63 d后CK、T1和T2處理土壤MBC含量均較未培養(yǎng)前顯著下降,分別降至316.72±10.12、318.65±15.49和333.38±4.14 mg/kg,且3個處理間無顯著差異;T3處理土壤MBC含量為368.22±12.19 mg/kg,與未培養(yǎng)前的含量無顯著差異,但顯著高于CK、T1和T2處理;T4和T5處理土壤MBC含量分別為386.68±9.81和449.52±18.91 mg/kg,較CK分別顯著增加22.09%和41.93%??偟膩砜矗?3 d培養(yǎng)期內(nèi),不添加辣椒秸稈生物質炭的CK土壤MBC含量較未培養(yǎng)前顯著減少,0.1%和0.5%的辣椒秸稈生物質炭添加與CK間無顯著差異,對喀斯特石灰土中MBC含量影響較小;添加1.0%~4.0%的辣椒秸稈生物質炭顯著提高土壤MBC含量,且隨著添加量的增加土壤中MBC含量越高。
由圖3-C可知,未培養(yǎng)前石灰土ROC含量為4062.67±243.33 mg/kg,培養(yǎng)63 d后各處理土壤ROC含量均顯著下降。其中,CK土壤ROC含量降至2162.25±204.89 mg/kg,T1~T3處理的含量分別降至2010.72±114.65、2156.42±179.45和2342.92±149.39 mg/kg,CK和T1~T3處理間無顯著差異;T4和T5處理土壤ROC含量分別降至2849.97±184.21和3163.92±107.16 mg/kg,但較CK分別提高31.81%和46.33%,也顯著高于T1~T3處理。總的來看,63 d培養(yǎng)期內(nèi),與CK相比,添加0.1%~1.0%的辣椒秸稈生物質炭對喀斯特石灰土中ROC含量影響較小,2.0%~4.0%的添加量可顯著提高土壤中ROC含量。
土壤微生物商能靈敏地指示SOC的微生物可利用性,其值越大,SOC礦化周轉越快(Melero et al.,2009)。由表3可知,CK、T1和T2土壤微生物商無顯著差異,T3~T5處理較CK處理顯著提高土壤微生物商。表明63 d培養(yǎng)期內(nèi),在未種植植物和施肥的條件下,1.0%~4.0%的辣椒秸稈生物質炭處理可加速喀斯特石灰土中SOC周轉速率,提高碳素礦化能力。土壤碳庫活度越大,表示SOC越易被微生物分解,土壤肥力質量也就越高(戴全厚等,2008)。由表3可知,CK和T1~T3處理碳庫活度無顯著差異,T4和T5處理顯著提高碳庫活度。表明添加2.0%~4.0%辣椒秸稈生物質炭能提高SOC的微生物可降解性,不利于SOC的固持。
微生物是SOC礦化排放的決定性因素。對辣椒秸稈添加處理條件下土壤MBC與土壤有機質碳化指標的相關性進行分析,結果(表4)表明,土壤Ca和Ka均與MBC呈極顯著正相關(P<0.01,下同)。1.0%~4.0%添加處理可促進土壤MBC含量的增加,故1.0%~4.0%辣椒秸稈生物質炭添加處理在加速易降解SOC礦化分解速率的同時提高Ca,對SOC的礦化起促進作用。Cs和ks分別與MBC呈極顯著負相關和正相關,表明1.0%~4.0%的辣椒秸稈生物質炭處理能加速喀斯特石灰土中難降解SOC的礦化降解,加速土壤碳排放,減少難降解SOC含量。MBC與ROC呈極顯著正相關,與WSOC無顯著相關性,說明1.0%~4.0%生物質炭添加在提高土壤微生物生物量的同時可增加ROC含量。
3 討論
3. 1 辣椒秸稈生物質炭對石灰土SOC礦化的影響
生物質炭輸入對土壤有機質的礦化排放存在激發(fā)、抑制和無顯著影響3種效應(Spokas et al.,2009;Smith et al.,2010)。本研究結果顯示,低添加量處理(0.1%~1.0%)前期(0~18 d)對石灰土SOC礦化無影響,后期(19~63 d)為抑制效應,從整個培養(yǎng)期(0~63 d)來看為無顯著影響;高添加量處理(4.0%)前期表現(xiàn)為激發(fā)效應,后期無顯著影響,從整個培養(yǎng)期來看為激發(fā)效應;而2.0%添加量處理前、后期均無顯著影響??梢姡苯方斩捝镔|炭對石灰土SOC礦化的影響會隨添加量的不同表現(xiàn)出激發(fā)、抑制和無顯著影響3種效應,且對SOC礦化的效應還會隨時間發(fā)生改變。Orlova等(2019)研究發(fā)現(xiàn),樺木和白楊木制成的生物質炭添加量為0.1%時對土壤有機質礦化無影響,添加量增至1.0%時可使有機質礦化率顯著提高15%~18%。曹坤坤等(2020)研究發(fā)現(xiàn),3%玉米秸稈生物質炭處理對SOC礦化前期(0~14 d)激發(fā)和后期(15~161 d)抑制。上述前人研究結果表明,添加量和培養(yǎng)時間的不同可能會使生物質炭對土壤有機質礦化產(chǎn)生截然不同的效應,本研究結果與之基本一致。生物質炭對SOC礦化的影響與土壤微生物密切相關。生物質炭中豐富的不穩(wěn)定碳和營養(yǎng)元素可為微生物的生長提供養(yǎng)料(Xu et al.,2016),孔隙結構可作為微生物棲息的微環(huán)境,避免微生物間的競爭,從而增加土壤微生物生物量和多樣性(Palansooriya et al.,2019),促進土壤有機質礦化分解。由于生物質炭對土壤微生物活性或豐度難以形成持久刺激作用(Ameloot et al.,2014),因而本研究中4.0%辣椒秸稈生物質炭添加處理只在前期(0~18 d)對石灰土SOC礦化起激發(fā)作用,而后期(19~63 d)則無顯著影響。此外,生物質炭能將土壤有機質吸附到孔隙和外表面,形成包封和吸附保護作用,有效隔離微生物及其產(chǎn)生的胞外酶與有機質的接觸,降低有機質的可利用性,從而抑制被吸附有機質的礦化分解(Zimmerman et al.,2004;Cheng and Reinhard,2008)。生物質炭對SOC的吸附過程需要一定的時間,添加前期吸附量少,隨著培養(yǎng)時間的增加吸附逐漸增大,對SOC礦化的抑制作用也逐漸增強。這可能是本研究中0.1%~1.0%辣椒秸稈生物質炭添加處理前期(0~18 d)對石灰土SOC礦化無顯著影響,而后期(19~63 d)則顯著抑制的原因;2.0%添加處理可能是抑制與激發(fā)作用效應相當,因而整體表現(xiàn)出對SOC礦化無顯著影響。
3. 2 辣椒秸稈生物質炭對石灰土SOC庫及碳化速率的影響
生物質炭的輸入會影響土壤碳庫組成,并進一步影響SOC的礦化排放。研究發(fā)現(xiàn),生物質炭輸入會提高土壤中Cs,而對Ca起降低或無明顯影響的作用(Hernandez-Soriano et al.,2016;Tsai and Chang,2020)。本研究中,1.0%~4.0%的辣椒秸稈生物質炭顯著提高Ca,相應降低Cs,體現(xiàn)了辣椒秸稈生物質炭對SOC庫儲量影響的獨特之處。難降解SOC決定著SOC的儲備,在提升土壤碳庫穩(wěn)定性方面有重要作用(Schmidt et al.,2011)。結合1.0%~4.0%和2.0%~4.0%添加處理分別顯著提高土壤微生物商和土壤碳庫活度的結果,推測1.0%~4.0%辣椒秸稈生物質炭添加處理可能會減弱喀斯特石灰土有機庫的穩(wěn)定性。研究表明,生物質炭添加通常提高ka,降低ks,使得易降解SOC加快降解,難降解SOC更難降解(Hernandez-Soriano et al.,2016;Tsai and Chang,2020)。本研究中,1.0%~4.0%的辣椒秸稈生物質炭添加處理同時提高ka和ks,與上述研究結果不同;1.0%~4.0%處理中生物質炭添加量越大,MBC含量越高,MBC與ks和Ca呈極顯著正相關,微生物生物量的增加應是土壤難降解生物質炭礦化加速的主要原因。微生物對SOC的利用主要包括真菌和細菌2種途徑,真菌和細菌的生活史策略分別為K對策和r對策(徐嘉暉等,2018)。r型微生物傾向于降解活性SOC,而K型微生物主要降解相對難降解的SOC。可合理推測,辣椒秸稈生物質炭添加到喀斯特石灰土中促進了土壤真菌生長,加快了對難降解SOC的礦化分解,使難降解SOC呈現(xiàn)出易降解SOC的降解特性而使得Ca增加。
值得注意的是,雖然1.0%~4.0%添加處理可同時提高ka和ks,但63 d累積礦化量表明,只有4.0%添加處理明顯提高土壤累積礦化量。其原因可能是,本研究除了土壤和生物質炭所含的SOC,沒有外來碳源,土壤中能被礦化的SOC在63 d培養(yǎng)期內(nèi)已被礦化降解,導致1.0%~2.0%生物質炭添加處理雖然可加快有機質的礦化速率,但不能增加累積礦化量。4.0%添加處理對累積礦化量的提升可能與生物質炭所含的可降解SOC有關,但具體原因有待進一步研究。為減少土壤碳排放,建議辣椒秸稈生物質炭改良西南喀斯特地區(qū)石灰的添加量應低于4.0%。
3. 3 辣椒秸稈生物質炭對石灰土易降解SOC含量的影響
易降解SOC主要由WSOC、MBC和ROC等組成,由于其穩(wěn)定性較低,礦化速率較快,雖然僅占SOC總量的較小部分,卻是產(chǎn)生溫室氣體的主要碳源(趙世翔等,2017)。SOC的溶解是被微生物利用并將其礦化的先決條件,WSOC含量動態(tài)和周轉與SOC的礦化密切相關(Demisie et al.,2014)。Mitchell等(2015)研究發(fā)現(xiàn),糖楓木生物質炭添加到土壤中可顯著提高WSOC含量。Wang等(2016)研究發(fā)現(xiàn)胡桃殼生物質炭在干濕循環(huán)條件下可促進SOC向WSOC轉化。本研究中,辣椒秸稈生物質炭添加對石灰土WSOC含量無顯著影響。SOC礦化是一個以微生物學過程為主的復雜過程,MBC對其影響較大(謝國雄和章明奎,2014)。研究發(fā)現(xiàn),隨炭化溫度和在土壤中存在時間的不同,生物質炭對土壤MBC含量影響會呈現(xiàn)出提高和降低2種不同的效應(Zhang et al.,2014;Li et al.,2018)。本研究中,550 ℃下炭化的辣椒秸稈生物質炭在1.0%~4.0%添加處理時可顯著提高喀斯特石灰土MBC含量。ROC對外部環(huán)境變化的響應非常敏感,可反映出SOC的有效性和時效性(張哲等,2019)。Demisie等(2014)研究表明,0.5%添加量的橡木和竹生物質炭就能顯著提高土壤中ROC含量。本研究中只有2.0%和4.0%添加量的辣椒秸稈生物質炭能顯著提高土壤中ROC含量,與Jien等(2015)發(fā)現(xiàn)2%和4%稻殼生物質炭添加量能顯著提高土壤中ROC含量的結果類似。
3. 4 辣椒秸稈生物質炭施入石灰土的碳環(huán)境效應
根據(jù)前述對研究結果的分析討論,將恒溫恒濕,不種植作物、不施肥、室內(nèi)短時間尺度培養(yǎng)下的辣椒秸稈生物質炭添加到喀斯特石灰土后的碳環(huán)境效應以圖4進行總結表達:由于生物質炭的碳化學結構以芳香碳為主,具有高度的生物化學和熱穩(wěn)定性,生物質炭中絕大部分非活性碳被封存于土壤環(huán)境中,起到固碳作用;生物質炭的輸入可促進微生物生長,在封閉培養(yǎng)的條件下,其碳源主要來自于SOC;微生物生物量的增加可加快難降解和易降解SOC礦化速率,在較短時間內(nèi)可增加土壤碳礦化排放量;同時,辣椒秸稈生物質炭添加提高了易降解SOC庫儲量,降低了難降解SOC庫儲量,在微生物的作用下部分難降解SOC轉化為易降解SOC。
4 結論
辣椒秸稈生物質炭對喀斯特石灰土SOC礦化速率的影響與添加量有關,1.0%~4.0%添加處理可提高礦化速率常數(shù),同時增加Ca、MBC和ROC含量,但對WSOC含量無影響,4.0%添加處理在63 d培養(yǎng)期內(nèi)可提高土壤累積礦化量。為減少土壤碳排放,建議辣椒秸稈生物質炭改良西南喀斯特石灰土的添加量應低于4.0%。
參考文獻:
曹坤坤,張沙沙,胡學玉,黃洋. 2020. 生物質炭影響下土壤呼吸溫度敏感性及細菌群落結構的變化[J]. 環(huán)境科學,41(11):5185-5192. doi:10.13227/j.hjkx.202004160. [Cao K K,Zhang S S,Hu X Y,Huang Y. 2020. Effect of biochar on changes of the temperature sensitivity of soil respiration and bacterial community structure[J]. Environmental Science, 41(11):5185-5192.]
戴全厚,劉國彬,薛萐,余娜,張超,蘭雪. 2008. 不同植被恢復模式對黃土丘陵區(qū)土壤碳庫及其管理指數(shù)的影響[J]. 水土保持研究,15(3):61-64. [Dai Q H,Liu G B,Xue S,Yu N,Zhang C,Lan X. 2008. Effect of different vegetation restoration on soil carbon and carbon management index in eroded hilly Loess Plateau[J]. Research of Soil and Water Conservation,15(3):61-64.]
葛曉改,周本智,肖文發(fā),王小明,曹永慧. 2016. 生物質炭輸入對土壤碳排放的激發(fā)效應研究進展[J]. 生態(tài)環(huán)境學報,25(2):339-345. doi:10.16258/j.cnki.1674-5906.2016. 02.023. [Ge X G,Zhou B Z,Xiao W F,Wang X M,Cao Y H. 2016. Priming effect of biochar addition on soil carbon emission:A review[J]. Ecology and Environmental Sciences,25(2):339-345.]
黃雁飛,陳桂芬,熊柳梅,劉斌,劉永賢,黃玉溢,唐其展. 2020. 不同秸稈生物炭對水稻生長及土壤養(yǎng)分的影響[J]. 南方農(nóng)業(yè)學報,51(9):2113-2119. doi:10.3969/j.issn. 2095-1191.2020.09.008. [Huang Y F,Chen G F,Xiong L M,Liu B,Liu Y X,Huang Y Y,Tang Q Z. 2020. Effects of different straw biochars on rice growth and soil nutrients[J]. Journal of Southern Agriculture,51(9):2113-2119.]
劉燕萍,高人,楊玉盛,尹云鋒,馬紅亮,薛麗佳. 2011. 黑碳添加對土壤有機碳礦化的影響[J]. 土壤,43(5):763-768. doi:10.13758/j.cnki.tr.2011.05.017. [Liu Y P,Gao R,Yang Y S,Yin Y F,Ma H L,Xue L J. 2011. Effect of black carbon addition on soil organic carbon mineralization[J]. Soils,43(5):763-768.]
涂保華,胡茜,張藝,符菁,肖嫻,孫悅,趙遠. 2020. 基于不同類型秸稈制備的生物炭對稻田土壤溫室氣體排放的影響[J]. 江蘇農(nóng)業(yè)學報,35(6):1374-1380. doi:10.3969/j.issn.1000-4440.2019.06.015. [Tu B H,Hu Q,Zhang Y,F(xiàn)u J,Xiao X,Sun Y,Zhao Y. 2020. Effects of biochar based on different types of straw on greenhouse gas emission from paddy soil[J]. Jiangsu Journal of Agricultural Sciences,35(6):1374-1380.]
王戰(zhàn)磊,李永夫,姜培坤,周國模,劉娟. 2014. 施用竹葉生物質炭對板栗林土壤CO2通量和活性有機碳庫的影響[J]. 應用生態(tài)學報,25(11):3152-3160. doi:10.13287/j.1001-9332.20140918.001. [Wang Z L,Li Y F,Jiang P K,Zhou G M,Liu J. 2014. Effect of bamboo leaf biochar addition on soil CO2 efflux and labile organic carbon pool in a Chinese chestnut plantation[J]. Chinese Journal of Applied Ecology,25(11):3152-3160.]
吳金水,林啟美,黃巧云,肖和艾. 2006. 土壤微生物生物量的測定方法及其應用[M]. 北京:氣象出版社. [Wu J S,Lin Q M,Huang Q Y,Xiao H A. 2006. Determination of soil microbial biomass and its application[M]. Beijing: China Meteorological Press.]
謝國雄,章明奎. 2014. 施用生物質炭對紅壤有機碳礦化及其組分的影響[J]. 土壤通報,45(2):413-419. doi:10.19336/ j.cnki.trtb.2014.02.027. [Xie G X,Zhang M K. 2014. Influence of biochar application on mineralization and fractions of organic carbon in red soils with different land use[J]. Chinese Journal of Soil Science,45(2):413-419.]
徐嘉暉,孫穎,高雷,崔曉陽. 2018. 土壤有機碳穩(wěn)定性影響因素的研究進展[J]. 中國生態(tài)農(nóng)業(yè)學報,26(2):222-230. doi:10.13930/j.cnki.cjea.170627. [Xu J H,Sun Y,Gao L,Cui X Y. 2018. A review of the factors influencing soil organic carbon stability[J]. Chinese Journal of Eco-Agriculture,26(2):222-230.]
張哲,王邵軍,李霽航,曹潤,陳閩昆,李少輝. 2019. 土壤易氧化有機碳對西雙版納熱帶森林群落演替的響應[J]. 生態(tài)學報,39(17):6257-6263. doi:10.5846/stxb201806021230. [Zhang Z,Wang S J,Li J H,Cao R,Chen M K,Li S H. 2019. Response of soil readily oxidizable carbon to community succession of Xishuangbanna tropical forests[J]. Acta Ecologica Sinica,39(17):6257-6263.]
趙世翔,于小玲,李忠徽,楊艷,劉丹,王旭東,張阿鳳. 2017. 不同溫度制備的生物質炭對土壤有機碳及其組分的影響:對土壤活性有機碳的影響[J]. 環(huán)境科學,38(1):333-342. doi:10.13227/j.hjkx. 201604058. [Zhao S X,Yu X L,Li Z H,Yang Y,Liu D,Wang X D,Zhang A F. 2017. Effects of biochar pyrolyzed at varying temperatures on soil organic carbon and its components:Influence on the soil active organic carbon[J]. Environment Science, 38(1):333-342.]
鄭永春,王世杰. 2002. 貴州山區(qū)石灰土侵蝕及石漠化的地質原因分析[J]. 長江流域資源與環(huán)境,11(5):461-465. doi:10.3969/j.issn.1004-8227.2002.05.014. [Zheng Y C,Wang S J. 2002. Geological cause of calcareous soil erosion and land rocky desertification in karst area,Guizhou Province[J]. Resources and Enuironment in the Yangtza Basin,11(5):461-465.]
Ameloot N,Sleutel S,Case S D C,Alberti G,McNamara N P,Zavalloni C,Vervisch B,Vedove G D,Neve S D. 2014. C mineralization and microbial activity in four biochar field experiments several years after incorporation[J]. Soil Biology & Biochemistry,78:195-203. doi:10. 1016/j.soilbio.2014.08.004.
Blair G J,Lefroy R D B,Lisle L. 1995. Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research,46(7):1459-1466. doi:10.1071/AR9951459.
Cheng H,Reinhard M. 2008. The rate of 2,2-dichloropropane transformation in mineral micropores:Implications of sorptive preservation for fate and transport of organic contaminants in the subsurface[J]. Environmental Science & Technology, 42(8):2879-2885. doi:10.1021/es702888h.
Ci E,Al-Kaisi M M,Wang L G,Ding C H,Xie D T. 2015. Soil organic carbon mineralization as affected by cyclical temperature fluctuations in a karst region of Southwestern China[J]. Pedosphere,25(4):512-523. doi:10.1016/S1002- 0160(15)30032-1.
Demisie W L,Liu Z Y,Zhang M K. 2014. Effect of biochar on carbon fractions and enzyme activity of red soil[J]. CATENA,121:214-221. doi:10.1016/j.catena.2014.05.020.
Fang Y Y,Singh B,Singh B P. 2015. Effect of temperature on biochar priming effects and its stability in soils[J]. Soil Biology and Biochemistry,80:136-145. doi:10.1016/j.soilbio.2014.10.006.
Hamer U,Marschner B,Brodowski S,Amelung W. 2004. Interactive priming of black carbon and glucose mineralization[J]. Organic Geochemistry,35(7):823-830. doi:10. 1016/j.orggeochem.2004.03.003.
Hernandez-Soriano M C,Kerré B,Kopittke P M,Horemans B,Smolders E. 2016. Biochar affects carbon composition and stability in soil:A combined spectroscopy-microscopy study[J]. Scientific Reports,6:25127. doi:10.1038/srep 25127.
Jien S H,Wang C C,Lee C H,Lee T Y. 2015. Stabilization of organic matter by biochar application in compost-amended soils with contrasting pH values and textures[J]. Sustainability,7(10):13317-13333. doi:10.3390/su 71013317.
Kimetu J M,Lehmann J. 2010. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents[J]. Australian Journal of Soil Research,48(7):577-585. doi:10.1071/SR10036.
Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security[J]. Science,304(5677):1623-1627. doi:10.1126/science.1097396.
Lehmann J. 2007. A handful of carbon[J]. Nature,447:143-144. doi:10.1038/447143a.
Li Q,Lei Z F,Song X Z,Zhang Z T,Ying Y Q,Peng C H. 2018. Biochar amendment decreases soil microbial biomass and increases bacterial diversity in Moso bamboo(Phyllostachys edulis) plantations under simulated nitrogen deposition[J]. Environmental Research Letter,13(4):044029. doi:10.1088/1748-9326/aab53a.
Liu C,Wang H L,Tang X Y,Guan Z,Reid B J,Rajapaksha A U,Ok Y S,Sun H. 2015. Biochar increased water hol-ding capacity but accelerated organic carbon leaching from a sloping farmland soil in China[J]. Environmental Science and Pollution Research,23(2):995-1006. doi:10. 1007/s11356-015-4885-9.
Luo Y,Durenkamp M,De Nobili M,Lin Q,Brookes P C. 2011. Short term soil priming effects and the mineralization of biochar following its incorporation to soils of different pH[J]. Soil Biology and Biochemistry,43(11):2304-2314. doi:10.1016/j.soilbio.2011.07.020.
Melero S,López-Garrido R,Madejón E,Murillo J M,Vanderlinden K,Ordó?ez R,Moreno F. 2009. Long-term effects of conservation tillage on organic fractions in two soils in southwest of Spain[J]. Agriculture Ecosystems & Environment,133(1):68-74. doi:10.1016/j.agee.2009.05.004.
Mitchell P J,Simpson A J,Soong R,Simpson M J. 2015. Shifts in microbial community and water extractable organic matte composition with biochar amendment in a temperate forest soil[J]. Soil Biology and Biochemistry,81:244-254. doi: 10.1016/j.soilbio.2014.11.017.
Orlova N,Abakumov E V,Orlova E,Yakkonen K,Shahna-zarova V. 2019. Soil organic matter alteration under biochar amendment:Study in the incubation experiment on the Podzol soils of the Leningrad region(Russia)[J]. Journal of Soils and Sediments,19(1-2):2708-2716. doi:10.1007/s11368-019-02256-z.
Palansooriya K N,Wong J T F,Hashimoto Y,Huang L B,Rinklebe J,Chang S X,Bolan N,Wang H L,Ok Y S. 2019. Response of microbial communities to biochara-mended soils:A critical review[J]. Biochar,1(1):3-22. doi:10.1007/s42773-019-00009-2.
Riaz M,Roohi M,Arif M S,Hussain Q,Yasmeen T,Shahzad T,Shahzad S M,Muhammad H F,Arif M,Khalid M. 2017. Corncob-derived biochar decelerates mineralization of native and added organic matter(AOM) in organic matter depleted alkaline soil[J]. Geoderma,294:19-28. doi:10.1016/j.geoderma.2017.02.002.
Schmidt M W I,Torn M S,Abiven S,Dittmar T,Guggenber-ger G,Janssens I A,Kleber M. K?gel-Knabner I,Lehmann J,Manning D A C,Nannipieri P,Rasse D P,Weiner S,Trumbore S E. 2011. Persistence of soil organic matter as an ecosystem property[J]. Nature,478:49-56. doi:10. 1038/nature10386.
Smith J L,Collins H P,Bailey V L. 2010. The effect of young biochar on soil respiration[J]. Soil Biology & Biochemistry,42(12):2345-2347. doi:10.1016/j.soilbio.2010. 09.013.
Spokas K A,Koskinen W C,Baker J M,Reicosky D C. 2009. Impacts of woodchip biochar additions on greenhouse gas production and sorption /degradation of two herbicides in a Minnesota soil[J]. Chemosphere,77(4):574-581. doi:10.1016/j.chemosphere.2009.06.053.
Tsai C C,Chang Y F. 2020. Kinetics of C mineralization of biochars in three excessive compost-fertilized soils:Effects of feedstocks and soil properties[J]. Agronomy,10(11):1749-1767. doi:10.3390/agronomy10111749.
Wang D Y,Griffina D E,Parikha S J,Scow K M. 2016. Impact of biochar amendment on soil water soluble carbon in the context of extreme hydrological events[J]. Chemosphere,160:287-292. doi:10.1016/j.chemosphere.2016. 06.100.
Wardle D A,Nilsson M C,Zackrisson O. 2008. Fire-derived charcoal causes loss of forest humus[J]. Science,320(5876):629. doi:10.1126/science.1154960.
Xu N,Tan G C,Wang H Y,Gai X P. 2016. Effect of biochar additions to soil on nitrogen leaching,microbial biomass and bacterial community structure[J]. European Journal of Soil Biology,74:1-8. doi:10.1016/j.ejsobi.2016.02. 004.
Yang S H,Chen X,Jiang Z W,Ding J,Sun X,Xu J Z. 2020. Effects of biochar application on soil organic carbon composition and enzyme activity in paddy soil under water-saving irrigation[J]. International Journal of Environmental Research and Public Health,17(1):333. doi:10. 3390/ijerph17010333.
Zhang Q Z,Dijkstra F A,Liu X R,Wang Y D,Huang J,Lu N. 2014. Effects of biochar on soil microbial biomass after four years of consecutive application in the North China Plain[J]. PLoS One,9(7):e102062. doi:10.1371/journal.pone.0102062.
Zimmerman A R,Chorover J,Goyne K W,Brantley S L. 2004. Protection of mesopore-adsorbed organic matter from enzymatic degradation[J]. Environmental Science & Technology,38(17):4542-4548. doi:10.1021/es035340+.
(責任編輯 羅 麗)