段媛媛 吳佳奇 周武先 唐濤 王帆帆 郭曉亮 游景茂 郭杰
摘要:【目的】探究不同改良劑對(duì)連作大黃產(chǎn)量及其土壤肥力的影響,為消減大黃的連作障礙及促進(jìn)大黃產(chǎn)業(yè)的健康可持續(xù)發(fā)展提供理論依據(jù)?!痉椒ā窟x擇有機(jī)肥、鈣鎂磷肥和生石灰作為土壤改良劑,以不施用改良劑為對(duì)照,對(duì)不同處理連作大黃產(chǎn)量及其根際土壤pH、養(yǎng)分含量和生態(tài)化學(xué)計(jì)量特征進(jìn)行分析,并利用主成分分析法對(duì)不同處理連作大黃的土壤肥力進(jìn)行評(píng)價(jià)?!窘Y(jié)果】施用3種改良劑均可提高連作大黃的產(chǎn)量,其中有機(jī)肥和鈣鎂磷肥處理較對(duì)照分別提高75.37%和42.62%,差異達(dá)顯著水平(P<0.05,下同)。有機(jī)肥和生石灰處理顯著提高連作大黃的土壤pH,較對(duì)照分別提高9.13%和7.34%。有機(jī)肥和鈣鎂磷肥處理顯著提高土壤養(yǎng)分含量,其中,土壤有機(jī)質(zhì)、全氮、堿解氮、全磷和速效磷含量分別較對(duì)照提高7.45%、8.40%、15.93%、8.27%、31.05%和11.22%、7.56%、15.01%、14.22%、38.46%。與對(duì)照相比,生石灰處理的土壤全磷和速效磷含量分別顯著提高8.10%和8.83%。3種改良劑處理后連作大黃土壤的C∶N、C∶P、N∶P、C∶K、N∶K和P∶K的變化范圍分別為7.77~8.11、14.35~15.62、1.88~2.00、1.26~1.42、0.16~0.18和0.08~0.09。主成分分析表明,不同改良劑處理下,連作大黃土壤肥力綜合指數(shù)排序依次為鈣鎂磷肥(1.36)>有機(jī)肥(1.19)>生石灰(-0.99)>對(duì)照(-1.56)?!窘Y(jié)論】3種改良劑對(duì)連作大黃增產(chǎn)均有一定的促進(jìn)作用,也能有效改善連作大黃的根際土壤理化性質(zhì),對(duì)連作大黃土壤的改良效果依次為鈣鎂磷肥>有機(jī)肥>生石灰。
關(guān)鍵詞: 改良劑;大黃;產(chǎn)量;土壤肥力
中圖分類(lèi)號(hào): S156.2? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2021)03-0753-09
Effects of different amendments on the yield of Rheum officinale Baill. and rhizospheric soil fertility under continuous
cropping system
DUAN Yuan-yuan, WU Jia-qi, ZHOU Wu-xian, TANG Tao, WANG Fan-fan,
GUO Xiao-liang, YOU Jing-mao, GUO Jie*
(Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, Hubei? 445000, China)
Abstract:【Objective】The aim of this study was to learn the effects of different amendments on the yield of Rheum officinale Baill. and rhizospheric soil fertility. The results would provide a scientific basis for promoting the healthy deve-lopment of the R.officinale industry. 【Method】Organic matter(OM),calcium magnesium phosphate fertilizer(CMP)and quicklime(QL) were as amendments, and control(CK) applied no amendments. R.officinale yield and rhizospheric soil pH, nutrient content and ecological stoichiometric characteristics of different treatments were analyzed, the principal component analysis(PCA)was used to evaluate the rhizospheric soil fertility of R. officinale under continuous cropping. 【Result】Application of all three amendments could increase the yield of continuous cropping R. officinale. The OM and CMP treatments significantly increased the yield of R. officinale by 75.37% and 42.62%,respectively,compared with the CK(P<0.05, the same below). The OM and QL treatments significantly increased the soil pH by 9.13% and 7.34% compared with the CK. Moreover,OM and CMP treatments significantly increased the rhizospheric soil nutrient contents, among them, organic matter,total nitrogen,alkali-hydrolyzed nitrogen,total phosphorus and available phosphorus contents increased by 7.45%,8.40%,15.93%,8.27%,31.05% and 11.22%,7.56%,15.01%,14.22%,38.46%,respectively,compared with the CK. The total phosphorus and available phosphorus contents under QL treatment were increased by? 8.10% and 8.83%,respectively,compared with the CK. The C∶N,C∶P,N∶P,C∶K,N∶K and P∶K ratios of R. officinale rhizosphere soil were 7.77-8.11,14.35-15.62,1.88-2.00,1.26-1.42,0.16-0.18 and 0.08-0.09 under different amendment treatments. The PCA results showed that the ordination of integrated soil fertility index under different amendment treatments followed the order of CMP (1.36)>OM (1.19)>QL (-0.99)>CK(-1.56). 【Conclusion】Three amendments have certain yield promotion effect on the continuous cropping of R. officinale, and can effectively improve its physicochemical properties of the rhizosphere soil. And the promotion effects of the three amendments follow the order of CMP>OM>QL.
Key words: amendment; Rheum officinale Baill.; yield; soil fertility
Foundation item: National Modern Agricultural Industrial Technology System Construction Program(CARS-21); Science Fund for Young Scholars of Hubei Academy of Agricultural Science(2019NKYJJ14)
0 引言
【研究意義】藥用大黃(Rheum officinale Baill.)為蓼科(Polygonaceae)大黃屬(Rheum)多年生草本植物(中國(guó)科學(xué)院中國(guó)植物志編輯委員會(huì),1993),具有清熱瀉火,涼血解毒等功效(國(guó)家藥典委員會(huì),2020)。長(zhǎng)期連作會(huì)引起土壤酸化,導(dǎo)致養(yǎng)分失衡,從而抑制作物對(duì)養(yǎng)分的吸收利用,降低作物的產(chǎn)量及品質(zhì)(李小萌等,2020;周武先等,2021)。研究表明,黨參、半夏、三七等中藥材均存在嚴(yán)重的連作障礙(何志貴等,2019;劉海嬌等,2020;周武先等,2021)。大黃在栽培過(guò)程中的土壤連作障礙問(wèn)題也日益突出,嚴(yán)重影響了大黃產(chǎn)業(yè)的發(fā)展。因此,采取措施消減大黃的連作障礙,提高其產(chǎn)量和品質(zhì),是大黃產(chǎn)業(yè)健康發(fā)展亟待解決的問(wèn)題?!厩叭搜芯窟M(jìn)展】近年來(lái),學(xué)者們相繼探索出多種消減作物連作障礙的方法,如間套作(馬怡茹等,2019;王廷峰等,2019)、輪作(何志貴等,2019)、有機(jī)肥替代部分化肥(李小萌等,2020)等。施用土壤改良劑是一種成本較低且見(jiàn)效快的方法,目前有機(jī)肥、鈣鎂磷肥及生石灰等改良劑技術(shù)相對(duì)成熟,在消減作物連作障礙方面應(yīng)用廣泛(王梅和蔣先軍,2017;周武先等,2019,2021)。張世標(biāo)等(2016)研究表明,有機(jī)肥和磷鉀肥配施能改善辣椒土壤的理化性質(zhì),提高土壤肥力及辣椒產(chǎn)量。余小蘭等(2018)研究發(fā)現(xiàn),鈣鎂磷肥能提高水稻土壤的pH及養(yǎng)分含量,有效改善土壤性質(zhì)。呂波等(2018)研究發(fā)現(xiàn),施用生石灰能提高白菜土壤的pH,但降低了土壤養(yǎng)分含量。喬鈜元等(2020)研究表明,適當(dāng)施用生石灰能改善連作土壤性質(zhì),促進(jìn)平邑甜茶幼苗生長(zhǎng)。王棋等(2020)研究表明,連作能降低烤煙的土壤養(yǎng)分化學(xué)計(jì)量特征,影響土壤養(yǎng)分的供應(yīng)平衡。周武先等(2021)研究表明,施用有機(jī)肥等3種改良劑均能減緩川黨參的連作障礙,改善土壤性質(zhì),提高黨參產(chǎn)量?!颈狙芯壳腥朦c(diǎn)】不同改良劑對(duì)不同作物土壤的改良作用存在差異。有機(jī)肥、生石灰及鈣鎂磷肥等3種改良劑對(duì)連作辣椒、白菜、川黨參、甜茶等多種作物的根際土壤理化性質(zhì)改良效果較好(張世標(biāo)等,2016;呂波等,2018;喬鈜元等,2020;周武先等,2021),但其對(duì)連作大黃及其土壤肥力影響的研究尚未見(jiàn)報(bào)道。且以往的土壤肥力評(píng)價(jià)多以土壤養(yǎng)分含量、酶活性等作為評(píng)價(jià)指標(biāo),而將土壤化學(xué)計(jì)量特征納入評(píng)價(jià)指標(biāo)進(jìn)行分析的研究較少。【擬解決的關(guān)鍵問(wèn)題】選擇有機(jī)肥、鈣鎂磷肥和生石灰3種土壤改良劑,對(duì)連作大黃的產(chǎn)量及根際土壤pH、養(yǎng)分含量及生態(tài)化學(xué)計(jì)量特征進(jìn)行分析,利用主成分分析法對(duì)不同改良劑處理的連作大黃土壤肥力進(jìn)行評(píng)價(jià),探究3種改良劑對(duì)連作大黃產(chǎn)量及其土壤肥力的影響,以期為消減大黃的連作障礙及促進(jìn)大黃產(chǎn)業(yè)的健康可持續(xù)發(fā)展提供理論依據(jù)。
1 材料與方法
1. 1 試驗(yàn)區(qū)概況
試驗(yàn)樣地位于湖北省利川市元堡鄉(xiāng)朝陽(yáng)村(東經(jīng)108°59'08″,北緯30°07′30″),海拔1350 m,屬亞熱帶季風(fēng)和季風(fēng)性濕潤(rùn)氣候,年均降水量1301.4 mm,年均溫度12.9 ℃,無(wú)霜期210 d,相對(duì)濕度81%。前茬作物為大黃,土壤為紅壤土,土壤pH 4.01,土壤有機(jī)質(zhì)26.82 g/kg,堿解氮172.2 mg/kg,速效磷86.54 mg/kg,速效鉀305.60 mg/kg,全氮2.23 g/kg,全磷1.11 g/kg,全鉀14.50 g/kg。
1. 2 試驗(yàn)材料
試驗(yàn)用大黃為藥用大黃,其子芽由利川市勤隆中藥材專(zhuān)業(yè)合作社提供。土壤改良劑分別為豐疆有機(jī)肥(pH 7.80,原料為牛糞、菜餅和米糠等,有機(jī)質(zhì)≥45%,N-P2O5-K2O≥5%),購(gòu)自金正大國(guó)際利川團(tuán)堡直銷(xiāo)店;荊珠鈣鎂磷肥(P2O5≥12.0%,8% MgO,25% CaO,25% SiO2)及生石灰(99.6% CaO),購(gòu)自恩施施州農(nóng)化有限責(zé)任公司。
1. 3 試驗(yàn)方法
田間試驗(yàn)于2018年10月—2019年9月進(jìn)行。采用單因素完全隨機(jī)設(shè)計(jì),以不施用改良劑為對(duì)照,設(shè)生石灰、鈣鎂磷肥和有機(jī)肥3個(gè)處理,3種改良劑分別按照廠家建議施用量施用,分別為生石灰2250 kg/ha,鈣鎂磷肥2250 kg/ha,有機(jī)肥4500 kg/ha。每處理設(shè)3個(gè)重復(fù)(小區(qū)),每小區(qū)面積為8 m2,小區(qū)間以30 cm間隔作為保護(hù)行防止改良劑互滲,所有改良劑在大黃種植前一次性均勻撒施。
選取大小一致的大黃子芽,于2018年11月移栽至試驗(yàn)地,各處理組種植密度保持一致,株行距為50 cm×80 cm,所有處理田間除草等管理方法一致。
1. 4 樣品采集及指標(biāo)測(cè)定
分別于2019年9月采集大黃根莖并收集根際土壤。將每個(gè)小區(qū)的大黃全部挖出,使用金旺電子秤(HY-809)進(jìn)行測(cè)產(chǎn)。每個(gè)小區(qū)隨機(jī)選取3點(diǎn)挖取大黃根莖,測(cè)定大黃的根莖鮮重。將采集的根莖分別裝入自封袋帶回實(shí)驗(yàn)室,洗凈,晾干表面水分,采用游標(biāo)卡尺測(cè)量大黃根莖直徑和細(xì)根直徑,按不同處理切段后置于45 ℃烘箱烘干,測(cè)量大黃根莖的干重。
采用抖落法收集大黃根際土壤,S型五點(diǎn)取樣。將采集的大黃根際土壤樣品按不同處理分別混合,帶回實(shí)驗(yàn)室,風(fēng)干、研磨、過(guò)篩(1.00和0.25 mm)備用。土壤pH(土水比例2.5∶1)采用pH計(jì)進(jìn)行測(cè)定,有機(jī)質(zhì)含量采用K2Cr2O7滴定外加熱法測(cè)定,全氮含量采用半微量凱氏法—流動(dòng)分析儀測(cè)定,全磷含量采用NaOH熔融—鉬銻抗比色法測(cè)定,全鉀含量采用NaOH熔融—火焰光度法測(cè)定,堿解氮含量采用NaOH堿解擴(kuò)散法測(cè)定,速效磷含量采用0.03 mol/L NH4F-0.025 mol/L HCl浸提—鉬藍(lán)比色法測(cè)定,速效鉀含量采用醋酸銨浸提—火焰光度計(jì)法測(cè)定(鮑士旦,2000)。
以根際土壤有機(jī)質(zhì)、全氮、全磷、全鉀、堿解氮、速效磷、速效鉀、C∶N、C∶P、N∶P、C∶K、N∶K、P∶K作為土壤肥力評(píng)價(jià)的基本指標(biāo)。將各指標(biāo)進(jìn)行標(biāo)準(zhǔn)化處理,主成分特征向量為對(duì)應(yīng)的載荷矩陣值除以該主成分特征值的平方根,各處理主成分因子得分為主成分特征向量和標(biāo)準(zhǔn)化數(shù)據(jù)的乘積(王鈺瑩等,2016)。計(jì)算土壤肥力綜合指數(shù)(Integrated fertility index,IFI)(Jin et al.,2008):
IFI=[WiFi]
式中,Wi為各處理主成分貢獻(xiàn)率,F(xiàn)i為各處理主成分因子得分。
1. 5 統(tǒng)計(jì)分析
采用Excel 2016和SPSS 19.0對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。采用One-way ANOVA和Duncans新復(fù)極差法分析各處理下大黃根際土壤養(yǎng)分含量及土壤化學(xué)計(jì)量特征差異,采用主成分分析法評(píng)價(jià)施用土壤改良劑一年后連作大黃土壤的肥力,利用Origin 8.1制圖。
2 結(jié)果與分析
2. 1 不同改良劑對(duì)大黃產(chǎn)量及其構(gòu)成因素的影響
由圖1可知,3種改良劑處理下大黃根莖直徑和細(xì)根直徑與對(duì)照相比無(wú)顯著差異(P>0.05,下同);但施用有機(jī)肥和鈣鎂磷肥可顯著增加大黃的根莖鮮重(P<0.05,下同),二者較對(duì)照分別提高85.06%和50.50%,生石灰處理的根莖鮮重增幅為33.32%,但與對(duì)照的差異未達(dá)顯著水平;有機(jī)肥、鈣鎂磷肥及生石灰處理的大黃根莖干重較對(duì)照分別顯著提高55.98%、48.35%和35.47%;有機(jī)肥和鈣鎂磷肥處理顯著提高大黃產(chǎn)量,較對(duì)照分別顯著提高75.37%和42.62%,生石灰處理的大黃產(chǎn)量較對(duì)照提高26.35%,但差異未達(dá)顯著水平。
2. 2 不同改良劑對(duì)連作大黃土壤理化性質(zhì)的影響
由圖2可知,有機(jī)肥和鈣鎂磷肥處理的土壤全氮、堿解氮和有機(jī)質(zhì)含量顯著高于對(duì)照,分別較對(duì)照提高8.40%、15.93%、7.45%和7.56%、15.01%、11.22%;3種改良劑處理的土壤全磷和速效磷含量顯著高于對(duì)照,有機(jī)肥處理分別提高8.27%和31.05%,鈣鎂磷肥處理分別提高14.22%和38.46%,生石灰處理分別提高8.10%和8.83%;施用3種改良劑對(duì)連作大黃土壤全鉀和速效鉀含量無(wú)顯著影響;有機(jī)肥和生石灰處理顯著提高連作大黃的土壤pH,二者較對(duì)照分別提高9.13%和7.34%,鈣鎂磷肥處理的土壤pH與對(duì)照無(wú)顯著差異。
2. 3 不同改良劑對(duì)連作大黃土壤化學(xué)計(jì)量特征的影響
由圖3可知,3種改良劑處理后連作大黃土壤的C∶N、C∶P、N∶P、C∶K、N∶K和P∶K變化范圍分別為7.77~8.11、14.35~15.62、1.88~2.00、1.26~1.42、0.16~0.18和0.08~0.09。生石灰處理的土壤C∶P較對(duì)照顯著降低;鈣鎂磷肥處理的土壤N∶P較對(duì)照顯著降低;有機(jī)肥和鈣鎂磷肥處理的土壤C∶K較對(duì)照顯著升高;3種改良劑處理的土壤N∶K和P∶K均較對(duì)照顯著升高;其余處理的土壤化學(xué)計(jì)量特征與對(duì)照無(wú)顯著差異。
2. 4 大黃產(chǎn)量、根莖與土壤養(yǎng)分化學(xué)計(jì)量特征的相關(guān)分析
由表1可知,大黃產(chǎn)量與土壤堿解氮和速效磷含量呈顯著正相關(guān),與N∶K呈極顯著正相關(guān)(P<0.01,下同);根莖鮮重與土壤速效磷含量呈顯著正相關(guān),與N∶K呈極顯著正相關(guān);根莖干重與土壤堿解氮、全氮、全磷含量及P∶K呈顯著正相關(guān),與土壤速效磷含量和N∶K呈極顯著正相關(guān);根莖直徑與土壤全氮和全磷含量呈顯著正相關(guān);細(xì)根直徑與土壤堿解氮含量呈顯著正相關(guān)??梢?jiàn),大黃產(chǎn)量主要受土壤堿解氮和速效磷含量及N∶K的影響,根莖生長(zhǎng)也與土壤養(yǎng)分及化學(xué)計(jì)量特征指標(biāo)有密切關(guān)系。
2. 5 不同改良劑處理對(duì)大黃土壤肥力的影響
由表2可知,按照特征值大于1的原則提取4個(gè)主成分,特征值分別為6.92、2.65、2.04和1.07,其貢獻(xiàn)率分別為53.22%、20.40%、15.73%和8.22%,累積貢獻(xiàn)率達(dá)97.56%(大于85%),說(shuō)明這4個(gè)主成分能反映出原始數(shù)據(jù)提供信息總量的97.56%。第一主成分(PC1)主要由有機(jī)質(zhì)含量、速效磷含量、全氮含量、P∶K、C∶K及N∶K等相關(guān)程度較高的變量組成;第二主成分(PC2)主要與C∶P相關(guān);第三主成分(PC3)主要受速效鉀含量及N∶P支配;第四主成分(PC4)主要受全磷含量支配。主成分分析結(jié)果表明,有機(jī)質(zhì)、速效磷和全氮含量及P∶K、C∶K和N∶K是評(píng)價(jià)土壤肥力的主要指標(biāo)。
各處理的主成分得分因子和方差貢獻(xiàn)率加權(quán)得到土壤肥力綜合指數(shù)(表3)。不同改良劑處理下連作大黃土壤肥力綜合指數(shù)排序?yàn)椋衡}鎂磷肥(1.36)>有機(jī)肥(1.19)>生石灰(-0.99)>對(duì)照(-1.56)。可見(jiàn),施用3種改良劑后連作大黃土壤肥力均高于對(duì)照,且鈣鎂磷肥處理下連作大黃土壤肥力最高,有機(jī)肥次之,生石灰最低。
3 討論
連續(xù)在同一塊土壤上種植同一種或相似農(nóng)作物時(shí),即使保持正常的栽培條件,也能引起作物的連作障礙,導(dǎo)致作物的產(chǎn)量下降(劉濤等,2019;喬鈜元等,2020)。施用改良劑能改善土壤性質(zhì),提高養(yǎng)分含量,促進(jìn)植物生長(zhǎng),進(jìn)而提高作物產(chǎn)量(王靜,2019)。研究表明,施用有機(jī)肥能促進(jìn)水稻生長(zhǎng),增加水稻產(chǎn)量(Liu et al.,2009);鈣鎂磷肥富含磷、鈣、鎂、硅等營(yíng)養(yǎng)元素,能有效補(bǔ)充植物所需的微量元素(侯翠紅等,2019);生石灰能有效緩解土壤酸化,促進(jìn)作物對(duì)養(yǎng)分的吸收,進(jìn)而提高作物產(chǎn)量(喬鈜元等,2020)。本研究結(jié)果表明,在連作大黃土壤上施用有機(jī)肥、鈣鎂磷肥及生石灰后,大黃產(chǎn)量分別提高75.37%、42.62%和26.35%,說(shuō)明施用3種改良劑均可有效提高大黃產(chǎn)量,以有機(jī)肥的增產(chǎn)效果最佳,其次是鈣鎂磷肥。有機(jī)肥的施入顯著提高了大黃產(chǎn)量,可能是由于有機(jī)肥中的有機(jī)質(zhì)和腐殖酸為大黃提供了生長(zhǎng)所需的營(yíng)養(yǎng)物質(zhì),促進(jìn)大黃根系的生長(zhǎng)及對(duì)養(yǎng)分的吸收能力(王建偉等,2019)。
本研究結(jié)果表明,施用生石灰顯著提高大黃根際土壤的pH,這可能與生石灰本身含有大量的CaO,遇水產(chǎn)生堿性的Ca(OH)2有關(guān)(周武先等,2019);施用有機(jī)肥也顯著提高大黃根際土壤的pH,可能是由于施用有機(jī)肥中和了土壤中的部分酸性物質(zhì)(周武先等,2021),促進(jìn)土壤中陽(yáng)離子的交換;也可能是有機(jī)肥中富含有機(jī)質(zhì),緩沖了大黃根際土壤的酸容量,進(jìn)而提高其土壤pH(周武先等,2021);施用鈣鎂磷肥后大黃根際土壤pH與對(duì)照相比無(wú)顯著差異,可能是由于鈣鎂磷肥在提高土壤pH作用中相對(duì)較緩慢(余小蘭等,2018),短期施用鈣鎂磷肥對(duì)提高大黃土壤pH作用不明顯。孫薇等(2013)研究表明,施用生物有機(jī)肥能顯著增加土壤有機(jī)質(zhì)及全量氮、磷、鉀及速效磷含量。本研究取得了相似結(jié)果,施用有機(jī)肥顯著提高大黃根際土壤的養(yǎng)分含量??赡苁怯捎谟袡C(jī)肥中含有大量的有機(jī)質(zhì),能吸附土壤中的養(yǎng)分,減少養(yǎng)分的流失(孫薇等,2013)。周武先等(2019)研究表明,鈣鎂磷肥的肥效平緩,磷素利用率高,有助于提高土壤的鈣鎂等營(yíng)養(yǎng)元素含量。本研究中施用鈣鎂磷肥后,連作大黃的根際土壤養(yǎng)分含量顯著提高,速效磷含量增幅最大??梢?jiàn),鈣鎂磷肥能提高大黃根際土壤磷素的利用率,改善土壤的理化性質(zhì)。施用生石灰后,除大黃根際土壤pH提高外,速效磷及全磷含量也顯著提高,表明適量的生石灰可有效改善連作大黃的根際土壤理化性質(zhì)。
土壤養(yǎng)分在循環(huán)過(guò)程中是耦合的,要全面評(píng)價(jià)土壤質(zhì)量,除考慮土壤養(yǎng)分的變化外,還需了解各元素間的比例關(guān)系(陶冶等,2016)。土壤養(yǎng)分化學(xué)計(jì)量特征既能指示土壤肥力的高低,也能反映土壤的有機(jī)構(gòu)成、土壤質(zhì)量及養(yǎng)分能力(王棋等,2020)。研究表明,C∶N和C∶P比值低有利于增強(qiáng)土壤微生物分解,增加土壤磷含量(陶冶等,2016;曹小玉等,2019);N∶P比值高反映磷是限制植物生長(zhǎng)的元素(Ren et al.,2016)。本研究中,3種改良劑處理后連作大黃土壤的C∶N、C∶P和N∶P的變化范圍分別為7.77~8.11(低于全國(guó)平均值12.3)(Tian et al.,2010)、14.35~15.62(低于全國(guó)平均值52.7)(王玉婷等,2020)和1.88~2.00(低于全國(guó)平均值5.2)(曹小玉等,2019),表明連作大黃的生長(zhǎng)不受磷元素限制。研究表明,當(dāng)N∶K>2.1,P∶K>0.29時(shí)植物生長(zhǎng)主要受鉀元素限制(Venterinkolde et al.,2003;盤(pán)金文等,2020),本研究中C∶K、N∶K及P∶K的變化范圍在1.26~1.42、0.16~0.18(<2.1)及0.08~0.09(<0.29),表明大黃的生長(zhǎng)不受鉀元素的限制。相關(guān)分析結(jié)果表明,大黃的產(chǎn)量與土壤的N∶K呈極顯著正相關(guān),說(shuō)明大黃產(chǎn)量主要受氮素影響。本研究中不同改良劑處理下,連作大黃土壤肥力綜合指數(shù)排序?yàn)殁}鎂磷肥(1.36)>有機(jī)肥(1.19)>生石灰(-0.99)>對(duì)照(-1.56)??梢?jiàn),3種改良劑能不同程度地緩解大黃的連作障礙,提高大黃產(chǎn)量。但大黃是多年生藥用植物,連作障礙也主要是表現(xiàn)在生長(zhǎng)后期,而本研究只是施用一年改良劑的初步試驗(yàn)結(jié)果,且實(shí)踐中通常需要多種改良劑混施才能更好地緩解作物的連作障礙,因此改良劑的真正效果還有待于后續(xù)進(jìn)一步的實(shí)踐和驗(yàn)證。
4 結(jié)論
3種改良劑均能有效提高連作大黃的產(chǎn)量,其中有機(jī)肥的提產(chǎn)效果最佳,其次是鈣鎂磷肥;施用有機(jī)肥及生石灰能顯著提高大黃根際土壤的pH,3種改良劑能有效提高大黃根際土壤養(yǎng)分含量,改善連作大黃的根際土壤理化性質(zhì)。3種改良劑對(duì)連作大黃土壤的改良效果依次為鈣鎂磷肥>有機(jī)肥>生石灰。
參考文獻(xiàn):
鮑士旦. 2000. 土壤農(nóng)化分析[M]. 北京:中國(guó)農(nóng)業(yè)出版社.[Bao S D. 2000. Soil and agricultural chemistry analysis[M]. Beijing:China Agriculture Press.]
曹小玉,李際平,楊靜,閆文德. 2019. 不同齡組杉木林土壤碳、氮、磷的生態(tài)化學(xué)計(jì)量特征[J]. 土壤,51(2):290-296. doi:10.13758/j.cnki.tr.2019.02.012. [Cao X Y,Li J P,Yang J,Yan W D. 2019. Stoichiometric characterization of soil C,N,and P of different age-group Chinese fir plantations[J]. Soils,51(2):290-296.]
國(guó)家藥典委員會(huì). 2020. 中華人民共和國(guó)藥典(一部)[M]. 北京:中國(guó)醫(yī)藥科技出版社:24. [National Pharmacopoeia Commission. 2020. Pharmacopoeia of the Peoples Republic of China:Part I[M]. Beijing:China Medical Scien-ce and Technology Press:24.]
何志貴,應(yīng)浩,董娟娥,馬小奇,梁宗鎖. 2019. 小麥與半夏輪作對(duì)減輕半夏連作障礙的效應(yīng)[J]. 西北農(nóng)業(yè)學(xué)報(bào),28(3):440-445. doi:10.7606/j.issn.1004-1389.2019.03.016. [He Z G,Ying H,Dong J E,Ma X Q,Liang Z S. 2019. Effects of wheat rotation on obstacle alleviation in conti-nuous cropping of Pinellia ternatal(Thunb.) Breit[J]. Acta Agriculturae Boreali-Occidentalis Sinica,28(3):440-445.]
侯翠紅,苗俊艷,谷守玉,王好斌,王艷語(yǔ),許秀成. 2019. 以鈣鎂磷肥產(chǎn)品創(chuàng)新促進(jìn)產(chǎn)業(yè)發(fā)展[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),25(12):2162-2169. doi:10.11674/zwyf.19172. [Hou C H,Miao J Y,Gu S Y,Wang H B,Wang Y Y,Xu X C. 2019. Innovation of fused calcium magnesium phosphate products to promote industry development[J]. Journal of Plant Nutrition and Fertilizers,25(12):2162-2169.]
李小萌,陳效民,曲成闖,張志龍,張俊,黃春燕,劉云梅. 2020. 生物有機(jī)肥與減量配施化肥對(duì)連作黃瓜養(yǎng)分利用率及產(chǎn)量的影響[J]. 水土保持學(xué)報(bào),34(2):309-317. doi:10.13870/j.cnki.stbcxb.2020.02.044. [Li X M,Chen X M,Qu C C,Zhang Z L,Zhang J,Huang C Y,Liu Y M. 2020. Effects of bio-organic fertilizer combined with reduced fertilizer on nutrient utilization and yield of continuous cropping cumber[J]. Journal of Soil and Water Conservation,34(2):309-317.]
劉海嬌,蘇應(yīng)威,方嵐,羅麗芬,王羅濤,張子龍,朱書(shū)生,楊敏. 2020. 茴香輪作調(diào)控土壤細(xì)菌群落緩解三七連作障礙的效應(yīng)及機(jī)制[J]. 中國(guó)生物防治學(xué)報(bào),36(6):139-149. doi:10.16409/j.cnki.2095-039x.2020.06.004. [Liu H J,Su Y W,F(xiàn)ang L,Luo L F,Wang L T,Zhang Z L,Zhu S S,Yang M. 2020. The effect and mechanism of fennel crop rotation on soil bacterial community to alleviate replant failure of Panax notoginseng[J]. Chinese Journal of Biological Control,36(6):139-149.]
劉濤,沃林峰,趙麗,楊麗娜,房明華,毛文龍,胡淵淵. 2019. 不同連作土壤處理對(duì)再植水蜜桃苗生長(zhǎng)狀況及光合特性的影響[J]. 經(jīng)濟(jì)林研究,37(1):173-180. doi:10.14067/ j.cnki.1003-8981.2019.01.025. [Liu T,Wo L F,Zhao L,Yang L N,F(xiàn)ang M H,Mao W L,Hu Y Y. 2019. Effects of different continuous cropping soil treatments on growth status and photosynthetic characteristics of replanted honey peach seedlings[J]. Non-wood Forest Research,37(1):173-180.]
呂波,王宇函,夏浩,姚子涵,姜存?zhèn)}. 2018. 不同改良劑對(duì)黃棕壤和紅壤上白菜生長(zhǎng)及土壤肥力影響的差異[J]. 中國(guó)農(nóng)業(yè)科學(xué),51(22):4306-4315. doi:10.3864/j.issn. 0578-1752.2018.22.009. [Lü B,Wang Y H,Xia H,Yao Z H,Jiang C C. 2018. Effects of biochar and other amendments on the cabbage growth and soil fertility in yellow-brown soil and red soil[J]. Scientia Agricultura Sinica,51(22):4306-4315.]
馬怡茹,魏飛,馬子豪,王超凡,孫新展,劉建國(guó). 2019. 連作棉田間作洋蔥、孜然對(duì)棉花光合特性及根系生長(zhǎng)的影響[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),36(6):792-797. doi:10.13254/ j.jare.2018.0288. [Ma Y R,Wei F,Ma Z H,Wang C F,Sun X Z,Liu J G. 2019. Effects of continuous cropping cotton intercropping onion and cumin on photosynthetic characteristics and root growth of cotton[J]. Journal of Agricultural Resources and Environment,36(6):792-797.]
盤(pán)金文,郭其強(qiáng),孫學(xué)廣,高超. 2020. 不同林齡馬尾松人工林碳、氮、磷、鉀養(yǎng)分含量及其生態(tài)化學(xué)計(jì)量特征[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào). 26(4):746-756. doi:10.11674/zwyf. 19272. [Pan J W,Guo Q Q,Sun X G,Gao C. 2020. Contents and stoichiometric characteristics of C,N,P and K under different stand ages of Pinus massoniana plantations[J]. Journal of Plant Nutrition and Fertilizers,26(4):746-756.]
喬鈜元,盛月凡,王海燕,沈向,陳學(xué)森,尹承苗,毛志泉. 2020. 生石灰與過(guò)磷酸鈣混施對(duì)連作土壤的改良效果及平邑甜茶幼苗生長(zhǎng)的影響[J]. 中國(guó)果樹(shù),(3):16-22. doi:10.16626/j.cnki.issn1000-8047.2020.03.004. [Qiao H Y,Sheng Y F,Wang H Y,Shen X,Chen X S,Yin C M,Mao Z Q. 2020. Effects of the mixture of quicklime and superphosphate on improve continuous cropping soil and growth of Malus hupeheusis Rehd. seedling[J]. China Fruits,(3):16-22.]
孫薇,錢(qián)勛,付青霞,胡婷,谷潔,王小娟,高華. 2013. 生物有機(jī)肥對(duì)秦巴山區(qū)核桃園土壤微生物群落和酶活性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),19(5):1224-1233. doi:10. 11674/zwyf.2013.0523. [Sun W,Qian X,F(xiàn)u Q X,Hu T,Gu J,Wang X J,Gao H. 2013. Effects of bio-organic fertilizer on soil microbial community and enzymes activities in walnut orchards of the Qinling-Bashan region[J]. Journal of Plant Nutrition and Fertilizer,19(5):1224-1233.]
陶冶,張?jiān)?,周曉? 2016. 伊犁野果林淺層土壤養(yǎng)分生態(tài)化學(xué)計(jì)量特征及其影響因素[J]. 應(yīng)用生態(tài)學(xué)報(bào),27(7):2239-2248. doi:10.13287/j.1001-9332.201607.002. [Tao Y,Zhang Y M,Zhou X B. 2016. Ecological stoichiometry of surface soil nutrient and its influencing factors in the wild fruit forest in Yili region,Xinjiang,China[J]. Chinese Journal of Applied Ecology,27(7):2239-2248.]
王建偉,劉少敏,羅漢東,朱叢飛,郭曉敏,牛德奎,胡冬南,李碧霞. 2019. 不同類(lèi)型肥料對(duì)油茶林地土壤氮庫(kù)的影響[J]. 福建農(nóng)業(yè)學(xué)報(bào),34(5):606-612. doi:10.19303/j.issn. 1008-0384.2019.05.015. [Wang J W,Liu S M,Luo H D,Zhu C F,Guo X M,Niu D K,Hu D N,Li B X. 2019. Effects of fertilizer type on nitrogen in plantation soil and Camellia olei fera plants[J]. Fujian Journal of Agricultu-ral Sciences,34(5):606-612.]
王靜. 2019. 不同土壤改良物質(zhì)對(duì)燕麥生長(zhǎng)發(fā)育及土壤理化性狀的影響[D]. 呼和浩特:內(nèi)蒙古大學(xué). [Wang J. 2019. Effects of different soil important subsrtances on the soil physuc and chemical properties and growing develoment of oats[D]. Hohhot:Inner Mongolia University.]
王梅,蔣先軍. 2017. 施用石灰與鈣蒙脫石對(duì)酸性土壤硝化動(dòng)力學(xué)過(guò)程的影響[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),34(1):47-53. doi:10.13254/j.jare.2016.0226. [Wang M,Jiang X J. 2017. Effects of applying lime and calcium montmorillonite on nitrification dynamics in acidic soil[J]. Journal of Agricultural Resources and Environment,34(1):47-53.]
王棋,徐傳濤,王昌全,楊梅,李冰,顧勇. 2020. 烤煙連作對(duì)土壤生態(tài)化學(xué)計(jì)量特征的影響[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),37(5):702-708. doi:10.13254/j.jare.2019.0163. [Wang Q,Xu C T,Wang C Q,Yang M,Li B,Gu Y. 2020. Effects of continuous cultivated flue-cured tobacco on soil eco-stoichiometric characteristics[J]. Journal of Agricultural Resources and Environment,37(5):702-708.]
王廷峰,趙密珍,關(guān)玲,龐夫花,于紅梅,蔡偉建. 2019. 玉米套作及秸稈還田對(duì)草莓連作土壤養(yǎng)分及微生物區(qū)系的影響[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),35(6):1421-1427. doi:10.3969/j. issn.1000-4440.2019.06.022. [Wang T F,Zhao M Z,Guan L,Pang F H,Yu H M,Cai W J. 2019. Effects of intercropping with corn and straw returning on nutrients and microflora in strawberry continuous cropping soil[J]. Jiangsu Journal of Agricultural Sciences,35(6):1421-1427.]
王玉婷,查軒,陳世發(fā),白永會(huì),毛蘭花,常松濤. 2020. 紅壤侵蝕退化馬尾松林下不同治理模式土壤化學(xué)計(jì)量特征[J]. 應(yīng)用生態(tài)學(xué)報(bào),(1):17-24. doi:10.13287/j.1001-9332. 202001.007. [Wang Y T,Zha X,Chen S F,Bai Y H,Mao L H,Chang S T. 2020. Soil stoichiometry of Pinus massoniana forest in red soil erosion area under different ma-nagement patterns[J]. Chinese Journal of Applied Eco-logy,(1):17-24.]
王鈺瑩,孫嬌,劉政鴻,喬亞玲,張梟將,李鳳姣,郝文芳. 2016. 陜南秦巴山區(qū)厚樸群落土壤肥力評(píng)價(jià)[J]. 生態(tài)學(xué)報(bào),36(16):5133-5141. doi:10.5846/stxb201502020266.[Wang Y Y,Sun J,Liu Z H,Qiao Y L,Zhang X J,Li F J,Hao W F. 2016. Soil fertility quality assessment of Magnolia officinalis communities in Qinba mountains[J]. Acta Ecologica Sinica,36(16):5133-5141.]
余小蘭,楊福鎖,周丹,劉琴,戚志強(qiáng),李曉亮. 2018. 鈣鎂磷肥對(duì)水稻土和磚紅壤土壤化學(xué)性狀的動(dòng)態(tài)影響[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),34(5):1042-1047. doi:10.3969/j.issn.1000-4440.2018.05.011. [Yu X L,Yang F S,Zhou D,Liu Q,Qi Z Q,Li X L. 2018. Dynamic effect of calcium-magnesia phosphate fertilizer on chemical properties of paddy soil and laterite[J]. Jiangsu Journal of Agricultural Scien-ces,34(5):1042-1047.]
張世標(biāo),韋壽蓮,劉永,周開(kāi). 2016. 有機(jī)肥與磷鉀肥配施對(duì)辣椒產(chǎn)量及土壤肥力的影響[J]. 南方農(nóng)業(yè)學(xué)報(bào),47(7):1105-1109. doi:10.3969/j:issn.2095-1191.2016.07.1105 [Zhang S B,Wei S L,Liu Y,Zhou K. 2016. Effects of combined application of organic fertilizer and phosphate potassium fertilizer on pepper yield and soil fertility[J]. Journal of Southern Agriculture,47(7):1105-1109.]
中國(guó)科學(xué)院中國(guó)植物志編輯委員會(huì). 1993. 中國(guó)植物志[M]. 北京:科學(xué)出版社. [Chinese Botanical Journal Editorial Committee,Chinese Academy of Sciences. 1993. Flora of China[M]. Beijing:Science Press.]
周武先,何銀生,朱盈徽,張美德,段媛媛,黃大野,徐大兵,艾倫強(qiáng). 2019. 生石灰和鈣鎂磷肥對(duì)酸化川黨參土壤的改良效果[J]. 應(yīng)用生態(tài)學(xué)報(bào),30(9):3224-3232. doi:10. 13287/j.1001-9332.201909.008. [Zhou W X,He Y S,Zhu Y H,Zhang M D,Duan Y Y,Huang D Y,Xu D B,Ai L Q. 2019. Improvement effects of quicklime and calcium magnesium phosphate fertilizer on acidified soil cultivating Codonopsis tangshen[J]. Chinese Journal of App-lied Ecology,30(9):3224-3232.]
周武先,劉翠君,何銀生,吳海棠,段媛媛,魏海英,艾倫強(qiáng),張美德. 2021. 3種改良劑對(duì)連作川黨參生長(zhǎng)及土壤生化性質(zhì)的影響[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),38(1):43-52. doi:10.13254/j.jare.2020.0201. [Zhou W X,Liu C J,He Y S,Wu H T,Duan Y Y,Wei H Y,Ai L Q,Zhang M D. 2021. Effects of three amendments on the growth of Codonopsis tangshen and soil biochemical properties in a continuous cropping system[J]. Journal of Agricultural Resources and Environment,38(1):43-52.]
Jin Z Z,Lei J Q,Xu X W,Li S Y,Zhao S F,Qiu Y Z,Xu B. 2008. Evaluation of soil fertility of the shelter-forest land along the Tarim Desert Highway[J]. Chinese Science Bulletin,53(S2):125-136. doi:0.1007/s11434- 008-6015-2.
Liu M Q,Hu F,Chen X Y,Huang Q R,Jiao J G,Zhang B,Li H X. 2009. Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field:The influence of quantity,type and application time of organic amendments[J]. Applied Soil Ecology,42(2):166-175. doi:10. 1016/j.apsoil.2009.03.006.
Ren C J,Zhao F Z,Kang D,Yang G H,Han X H,Tong X G,F(xiàn)eng Y Z,Ren G X. 2016. Linkages of C∶N∶P stoichiometry and bacterial community in soil following afforestation of former farmland[J]. Forest Ecology and Mana-gement,376:59-66. doi:10.1016/j.foreco.2016.06.004.
Tian H Q,Chen G S,Zhang C,Melillo J M,Hall C A S. 2010. Pattern and variation of C∶N∶P ratios in Chinas soils:A synthesis of observational data[J]. Biogeochemistry,98(1-3):139-151. doi:10.2307/40647956.
Venterinkolde H,Wassen M J,Verkroostm A W M,Rutter D. 2003. Speices richness-productivity patterns differ between N-,P-,and K-limited wetlands[J]. Ecology,84(8):2191-2199.
(責(zé)任編輯 王 暉)