• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improvement of Upland Rice Variety by Pyramiding Drought Tolerance QTL with Two Major Blast Resistance Genes for Sustainable Rice Production

    2021-08-31 02:19:56VishalakshiBalijaUmakanthBangaleSenguttuvelPonnuvelKalyaniMakarandBarbadikarSrinivasPrasadMadamshettySanjeevaRaoDurbhaHariYadlaSheshuMadhavMaganti
    Rice Science 2021年5期

    Vishalakshi BalijaUmakanth Bangale Senguttuvel PonnuvelKalyani Makarand Barbadikar Srinivas Prasad MadamshettySanjeeva Rao DurbhaHari YadlaSheshu Madhav Maganti

    Research Paper

    Improvement of Upland Rice Variety by Pyramiding Drought Tolerance QTL with Two Major Blast Resistance Genes for Sustainable Rice Production

    Vishalakshi Balija1,6,#, Umakanth Bangale1,#, Senguttuvel Ponnuvel2, Kalyani Makarand Barbadikar1, Srinivas Prasad Madamshetty3, Sanjeeva Rao Durbha4, Hari Yadla5, Sheshu Madhav Maganti1

    (Biotechnology Division, ICAR-Indian Institute of Rice Research, Rajendra Nagar, Hyderabad 500030, India; Hybrid Rice Division, ICAR-Indian Institute of Rice Research, Rajendra Nagar, Hyderabad 500030, India; Plant Pathology Division, ICAR-Indian Institute of Rice Research, Rajendra Nagar, Hyderabad 500030, India; Plant Physiology Division, ICAR-Indian Institute of Rice Research, Rajendra Nagar, Hyderabad 500030, India; Regional Agricultural Research Station, Professor Jayashankar Telangana State Agricultural University, Warangal 506006, India; Department of Biotechnology, Acharya Nagarjuna University, Guntur 522510, India; These authors contributed equally to this work)

    Varalu is an early maturing rice variety widely grown in the rainfed ecosystem preferred for its grain type and cooking quality. However, the yield of Varalu is substantially low since it is being affected by reproductive drought stress along with the blast disease. The genetic improvement of Varalu was done by introgressing a major yield QTL,qDTY, along with two major blast resistance genes i.e.andthrough marker-assisted backcross breeding. Both traits were transferred till BC2generation and intercrossing was followed to pyramid the two traits. Stringent foreground selection was carried out using linked markers as well as peak markers (RM28099, RM28130, RM511 and RM28163) for the targeted QTL (qDTY), RM206 forand RM224 forExtensive background selection was done using genome-wide SSR markers. Six best lines (MSM-36, MSM-49, MSM-53, MSM-57, MSM-60 and MSM-63) havingqDTYand two blast resistance genes in homozygous condition with recurrent parent genome of 95.0%?96.5% having minimal linkage drag of about 0.1 to 0.7 Mb were identified. These lines showed yield advantage under drought stress as well as irrigated conditions. MSM-36 showed better performance in the national coordinated trials conducted across India, which indicated that improved lines of Varalu expected to replace Varalu and may have an important role in sustaining rice production. The present study demonstrated the successful marker-assisted pyramiding strategy for introgression of genes/QTLs conferring biotic stress resistance and yield under abiotic stress in rice.

    blast resistance; drought stress; marker-assisted gene pyramiding; rainfed ecosystem; upland rice

    Rice (L.) is a primary source of nutrition for more than half of the world’s population. Despite the saturation in genetic yield, demand for rice is increasing with the ever increasing population. Rice is also cultivated in around 23 million hectares of rainfed ecosystem where yields are significantly affected due to frequent occurrence of drought (Serraj et al, 2011), and blast (Dean et al, 2012), and global climate changecan further increase the drought stress (Wassmann et al,2009). Also, yield is affected due to drought spells in irrigated conditions (Bernier et al, 2009a).

    Among many QTLs identified for drought stress tolerance,qDTYoffers significant yield potential under reproductive-stage drought stress by contributing 51% genetic variance (Bernier et al, 2007). Blast disease caused by(anamorph) is another production constraint commonly observed in the rainfed ecosystem (Dean et al, 2012). So far, above 100 genes have been reported to aid in blast resistance (Devi et al, 2020). Among them, two significant blast resistance genesandconfer broad-spectrum resistance against predominant races of the pathogen in India (Mackill and Bonman, 1992; Sharma et al, 2005). Marker-assisted gene pyramiding (MAGP) is a precise, rapid and efficient method to pyramid desired genes/QTLs along with maximum recovery of recurrent parent genome within two to three backcrosses (Jamaloddin et al, 2020).

    Varalu is a popular variety cultivated in major upland areas of India. It is affected by reproductive drought stress and blast disease. Hence, this study aimed to genetic improvement of Varalu by introgressing a major yield QTL (qDTY) along with two major blast resistance genes (and) through MAGP.

    Results

    Introgression of qDTY12.1 into Varalu

    Through foreground selection, 13 F1plants from Cross-I [Varalu × Vandana near-isogenic line (NIL)], 40 BC1F1, 25 BC2F1and 26BC2F2plants were found positive forqDTY(Fig. 1). Polymorphic assay between Varalu and Vandana NIL identified 200 SSR markers, which were uniformly spread across the rice genome. Two best BC1F1plants possessing the maximum recurrent parent genome recovery (RPGR, 76.0%) andqDTYwere backcrossed to produce BC2F1, and two best BC2F1plants were used to produce BC2F2population (= 422). Finally, five BC2F2plants displaying homozygousqDTYgenomic region and high grain yield under reproductive drought stress portraying 82.0%?85.0% of RPGR were identified. The recombinant selection was performed among five BC2F2plants to minimize the linkage drag atqDTYlocus and found the recombination breakpoints (RBP) ranged from 3.6 to 4.3Mb at the proximal and distal ends, respectively (Fig. S1-A). Among them, one plant (VVN-117-34-26) with the maximum RPGR of nearly 85.0% was used for intercrossing.

    Fig. 1. Schematic representation of marker-assisted gene pyramiding followed for introgression ofqDTYfor improvement of grain yield under reproductive stage drought stress and blast resistance genes (and) in Varalu variety.

    NIL, Near-isogenic line; BPT-LT, Elite rice line with the genetic background of Samba Mahsuri containing two blast resistance genesand; RPGR, Recurrent parent genome recovery; IC, Intercross.

    Introgression of blast resistance genes into Varalu

    Ten F1plants derived from Cross-II [Varalu × BPT-LT (an elite rice line with the genetic background of Samba Mahsuri containing two blast resistance genesand)], 25 BC1F1, 20 BC2F1and 34 BC2F2plants were found positive for bothand(Fig. 1). A total of 180 markers showed polymorphism betweenVaralu and BPT-LT were used for background analysis. Three best BC1F1plants possessing a maximum RPGR of 77.0% were used to generate BC2F1plants and two best BC2F1plants were used to produce BC2F2plants. Finally, six BC2F2plants showed a high resistant level to blast with 86.0%?90.0% of RPGR. The RBP of six plants atlocus was observed at 2.1 to 0.5 Mb of donor genome segment at proximal and distal ends, respectively (Fig. S1-B).In case oflocus, all the six plants showed RBP of 2.1 Mb at the proximal end, and ranged from 0.6 to 1.6 Mb at the distal end. Two BC2F2plants (VLT-175-13-10 and VLT-183-98-31) havingandin homozygous conditionwith the maximum RPGR of nearly 90.0% were forwarded for intercrossing (IC).

    Fig. 2. Graphical representation of selected pyramided lines of Varalu for donor genome introgression associated with blast resistance genesandon chromosome 11 andqDTYon chromosome 12.

    A, Atlocus, a donor segment introgression was limited to only about 0.3 Mb at the proximal end; atlocus, about 0.2 Mb donor genome was observed at the proximal end.

    B, AtqDTYlocus, a donor genomic region about 0.7 and 0.1 Mb at the proximal and distal ends, respectively, was observed in four lines on chromosome 12. Two lines (MSM-36 and MSM-60) showed limited donor segments in comparison with other lines.

    NIL, Near-isogenic line; BPT-LT, Elite rice line with the genetic background of Samba Mahsuri containing two blast resistance genesand.

    Pyramiding of qDTY12.1 and blast resistance genes into Varalu

    The best homozygous BC2F2plants obtained from the two crosses were intercrossed for pyramiding the target genes/QTL (qDTY,and). The best three ICF1plants having all the three genes were selfed to generate ICF2population. Among these, 20 ICF2plants were homozygous for all the three genes (qDTY,and). Six best pyramided lines (MSM-36, MSM-49, MSM-53, MSM-57, MSM-60 and MSM-63) were identified based on blast resistance and grain yield under reproductive stage drought stress (Fig. 1). Background analysis with 120 polymorphic SSR markers revealed 95.0%?96.5% of RPGR (Fig. S1-C). The recombinant selection among the six best lines revealed a segment of 0.3 and 0.2 Mb of donor genome segment at the distal and proximal ends ofandloci, respectively (Fig. 2-A). Moreover, at qDTYlocus, 0.7 and 0.1 Mb of donor genome segment was found at the proximal and distal ends, respectively (Fig. 2-B). Among the best six lines, MSM-36 and MSM-60 showed very less linkage drag in the three loci compared to the other four entries.

    Performance of improved lines for yield under drought and irrigated conditions

    Among the 422 BC2F2individuals of Cross-I, 26 homozygous plants containingqDTYwith higher yields ranging from 14.8 to 23.4 g/plant, which was chosen for intercrossing. Twenty of the 800 ICF2s displayed higher grain yield per plant (14.96 to 18.74 g) than the recurrent parent (RP) (11.6 g) under reproductive stage drought stress (Table 1). Most of theintercrossed lines had higher plant height except MSM-49, which was shorter than Varalu (Table 1 and Fig. S2-A). Interestingly, the measured yield contributing traits were also superior to RP in these lines (Table 1 and Fig. S2-B). However, there was little difference in the flag leaf length and days to 50% flowering among the improved lines (Table 1). Among these, six improved lines (MSM-36, MSM-49, MSM-53, MSM-57, MSM-60 and MSM-63) having superior yield characteristics and similar grain type like RP in reproductive stage drought stress conditions were selected and further assessed for yield under irrigated conditions (Table 1; Fig. S2-B and-C).

    Under irrigated conditions, three lines, MSM-36, MSM-49 and MSM-60, exhibited higher grain yield (22.84, 22.40 and 22.13 g, respectively) than the recurrent parent (20.72 g) (Table 1).

    Evaluation of disease reaction in improved lines of Varalu

    The six BC2F2plants of Cross-II and 20 homozygous pyramided lines ICF2to ICF5noted ‘0’ (Fig. S3) and ‘0?2’ blast scores, respectively (Table 1 and Fig. 3), indicating high level of blast resistance.

    Moreover, MSM-36 out yielded its RP in Zone VII ofAll India Coordinated Rice Improvement Programme(AICRIP, consisting of five states, Telangana, Andhra Pradesh, Karnataka, Tamil Nadu and Kerala) with yield advantage of 18.8% and 13.8% under drought and controlled conditions, respectively. The average blast disease susceptibility index of MSM-36 at multiple locations was 2.95 compared to Varalu of 6.20 (Table S2).

    Grain quality analysis of improved lines

    In addition to the brown hull colour, long slender grain type and cooking quality parameters of the six pyramided lines were assessed and found MSM-36 and MSM-60 were particularly similar to RP (Table 2).

    Discussion

    Several drought-tolerant QTLs detected from diverse sources (Kumar et al, 2007; Vikram et al, 2011) are less exploited in breeding programmes. There is a keen interest in selecting the progenies having higher yield even under the stress, which is offered by a few QTLs likeqDTY(Bernier et al, 2009b). The effectiveness ofqDTYwas evident from the introgressions of Vandana and Sabitri under drought and irrigated conditions (Mishra et al, 2013; Kumar et al, 2014). Severe incidence of blast disease was also seen in the upland ecosystem (Asibi et al, 2019), which can be addressed by pyramiding major blast resistance genes.

    Fig. 3. Phenotypic screening of pyramided lines (Pi54 + Pi1 + qDTY) against blast disease.

    A, All the intercross derived lines and donor parent BPT-LT (an elite rice line with the genetic background of Samba Mahsuri containing two blast resistance genesand)were highly resistant whereas the recurrent parent Varalu showed susceptible against blast.

    B, Lesions were observed on the leaf surface of the recurrent parent Varalu while the pyramided lines and donor parent showed no lesion on the leaf surface.

    Table 2. Grain and cooking quality of selected pyramided lines of Varalu.

    HRR, Head rice recovery; GL, Grain length; GW, Grain width; GL/GW, Ratio of grain length to width; VOC, Very occasionally; ASV, Alkali spreading value; AC, Amylose content; GC, Gel consistency; LS, Long slender; MB, Medium bold.

    Marker-assisted breeding strategy has been employed to improve rice varieties for resistance against biotic and biotic stresses independently (Dixit et al, 2020). But few reports exist on the development of combined resistant versions to biotic and abiotic stress resistant varieties (Dixit et al, 2014, 2020; Muthu et al, 2020).

    RPGRs of the two backcrosses (Cross-I and Cross-II) and intercross were 82.0%?85.0%, 86.0%?90.0% and 95.0%?96.5%, respectively, which were higher than the reported introgression studies (Khan et al, 2018; Chukwu et al, 2019; Swathi et al, 2019). Moreover, the improved lines displayed very close recombination breakpoints at both ends of the three loci, indicating less donor genome introgression. Anyaohaet al (2019) improved the rainfed rice variety FUNAABOR-2 for grain yield under drought stress by introgressingqDTYandqDTYusing marker-assisted selection with the minimum linkage drag of about 0.8 Mb.Likeandpyramided Tellahamsa lines (Jamaloddin et al, 2020), individuals of backcross population having both the genes noted higher resistance score of 0 than the individuals with only(0?2) or(2?3). Thus,might provide broad spectrum resistance than(Patroti et al, 2019). The NILs possessing two genes or single gene can be used as donors for the deployment in the rice improvement programme. Like Sabitri linesunder lowland reproductive stage drought stress (Mishra et al, 2013), the backcross population having properly delimitedqDTYregion of Dixit et al (2012) showed higher grain yield than the lines possessing either one.

    Due to proper phenotypic selection, the mean grain yields of pyramided lines under drought (16.53 g) and irrigated (20.71 g) conditions were higher than the RP (11.60 g and 20.72 g) (Table 1).The results indicated that agro-morphological and cooking quality characters of the improved lines of Varalu were similar to RP except MSM-49 with shorter plant height and lower alkali spreading value. Under the reproductive stage drought stress and irrigated conditions, MSM-36 and MSM-60 were identified as the best lines with high grain yield and desirable cooking quality (Table 2), and MSM-36 noted superior performance in the Zone VII of AICRIP trial.

    The present study combined a major drought QTL (qDTY) and two major blast resistance genes (and) into the genetic background of upland rice variety Varalu. Two best improved Varalu lines, MSM-36 and MSM-60 possessing high yield under drought stress and blast resistance along with > 96% RPGR are expected to replace Varalu. These lines did not show any yield penalty under irrigated condition and can be disseminated for cultivation in drought- prone niches of India.

    methods

    Rice materials

    The long slender and early maturing (90?95 d) elite rice variety, Varalu (WGL-20471 × CR-544-1-2), was used as the recurrent parent. Vandana NIL and BPT-LT were used as donors for drought (qDTY) (Bernier et al, 2007) and blast (two resistance genesand), respectively. Two independent crosses. Varalu × Vandana NIL (Cross-I) and Varalu × BPT-LT (Cross-II) were made followed by selection of positive lines and backcrossing with Varalu up to BC2F2and intercrossing at BC2F2for pyramiding both traits. The selected lines possessingqDTY +were advanced through the pedigree method from ICF3to ICF5for field evaluation of agronomical traits against blast and reproductive stage drought stress (Fig. 1).

    DNA extraction and genotyping

    Genomic DNA was isolated from 21-day-old seedlings of the parents, F1, backcross and intercross generations (Murray and Thompson, 1980). Devi et al (2015) procedure was used for PCR amplification. The foreground selection ofqDTYwas done using peak marker as well as linked markers RM511, RM28099 (forqDTY), RM28130 and RM28163 (forqDTY), while RM206 for, RM224 for(Dixit et al, 2012; Patroti et al, 2019) (Table S1). A set of 635 SSR markers covering every 2?5 Mb interval were selected (http://rice. plantbiology.msu.edu/) for background selection. The identified polymorphic markers between the donors and the recurrent parent were utilized for background selection in backcross and intercross populations. The assessment of RPGR was done based on the SSR marker data using the Graphical Genotypes (GGTs) V2.0 software.

    Screening of derived lines under reproductive stage drought stress

    Backcross and intercross derived populations were screened for reproductive stage drought stress (Venuprasad et al, 2007) at the research farm, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India, in a random block design with 20 cm × 20 cm row spacing. Agro-morphological traits like plant height, number of tillers per plant, number of panicles per plant, flag leaf length, days to 50% flowering, 1000-grain weight and grain yield were measured.

    Screening for blast

    The blast screening of all the backcross and intercross lines of Varalu was done in a uniform blast nursery at ICAR-IIRR (Umakanth et al, 2017) using Standard Evaluation System with 0?9 scales (IRRI, 2002).

    Screening of improved lines under irrigated conditions

    Twenty-five-day-old seedlings of selected lines along with the parents were transplanted in the lowland irrigated plot in a random block design with 150 cm × 20 cm row spacing. Irrigation was given twice a week and all the agro- morphological traits measured in drought plot were also recorded. Further, two best lines (MSM-36 and MSM-60) were also screened across 10 different AICRIP locations under reproductive stage drought stress and irrigated conditions (http://www.icar-iirr.org/aicrip.htm).

    Quality analysis

    The harvested seeds of the selected lines in triplicate and their parents were shade dried up to 12%?14% moisture content. Intact milled grains were used to determine grain type by length to width ratio (IRRI, 2004) and alkali spreading value (Juliano et al, 1990). Milled grains ground to 100 mesh powders were analyzed for gel consistency (Cagampang, 1973) and amylose content (Juliano, 1971).

    Statistical analysis

    The Duncan’s multiple range test was carried out to compare significant difference of improved lines with recurrent parent for agro-morphological traits using XLSTAT (Version 2020.5).The coefficient of variation, standard deviation and standard error of the mean were calculated by using the MS Excel package to determine the significant variation between the lines.

    AcknowledgEment

    The authors acknowledge the Department of Biotechnology, New Delhi, India for providing funds for carrying out the research work.

    Supplemental DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://www.ricescience.org.

    Fig. S1. Graphical representation of BC2F2selected lines.

    Fig. S2. Phenotypes of improved lines.

    Fig. S3. Blast phenotypic screening of BC2F2selected lines of Cross-II (Varalu × BPT-LT) and their parents.

    Table S1. Details of SSR markers used for foreground selection.

    Table S2. Performance of best pyramided lines under drought and controlled conditions in national trials (Zone VII).

    Anyaoha C O, Fofana M, Gracen V, Tongoona P, Mande S. 2019. Introgression of two drought QTLs into FUNAABOR-2 early generation backcross progenies under drought stress at reproductivestage., 26(1): 32?41.

    Asibi A E,ChaiQ,Coulter J A. 2019. Rice blast: A disease with implications for global food security.,9(8): 451.

    Bernier J, Kumar A, Venuprasad R, Spaner D, Atlin G N. 2007. A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice., 47(2): 507?516.

    Bernier J,Serraj R,Kumar A,Venuprasad R,Impa S,Gowda V R, Oane R, Spaner D, Atlin G. 2009a. The large-effect drought- resistance QTLincreases water uptake in upland rice.,110: 139?146.

    Bernier J, Kumar A, Venuprasad R, Spaner D, Verlukar S, Mandal N P, Sinha P K, Peeraju P, Dongre P R, Mahto R N, Atlin G. 2009b. Characterization of the effect of a QTL for drought resistance in rice,over a range of environments in the Philippines and eastern India., 166(2): 207?217.

    Cagampang G B, Perez C M, Juliano B O. 1973. A gel consistency test for eating quality of rice., 24(12):1589?1594.

    Chukwu S C, Rafii Y M, Ramlee S I, Ismail S I, Oladosu Y, Okporie E, Onyishi G, Utobo E, Ekwu L, Swaray S, Jalloh M. 2019. Marker-assisted selection and gene pyramiding for resistance to bacterial leaf blight disease of rice (L.)., 33(1): 440?455.

    Dean R, van Kan J A L, Pretorius Z A, Hammond-Kosack K E, Di Pietro A, Spanu P D, Rudd J J,Dickman M, Kahmann R, Ellis J, Foster G D. 2012. The Top 10 fungal pathogens in molecular plant pathology.,13(4): 414?430.

    Devi S J S R, Kuldeep S, Umakanth B, Vishalakshi B, Renuka P, Sudhakar K V, Prasad M S,Viraktamath B C, Ravindrababu V, Madhav M S. 2015. Development and identification of novel rice blast resistant sources and their characterization using molecular markers., 22(6): 300?308.

    Devi S J S R, Singh K, Umakanth B, Vishalakshi B, Rao K V S, Suneel B, Sharma S K, Kadambari G K M, Prasad M S, Senguttvel P, Divya P S, Madhav M S. 2020. Identification and characterization of a large effect QTL fromrevealed(t) as putative candidate gene for rice blast resistance., 13:17.

    Dixit S, Swamy B M,Vikram P, AhmedH U, Cruz M S, AmanteM,Atri D, Leung H, Kumar A. 2012. Fine mapping of QTLs for rice grain yield under drought reveals sub-QTLs conferring a response to variable drought severities.,125(1): 155?169.

    Dixit S, Huang B E, Sta Cruz M T, Maturan P T, Ontoy J C E, Kumar A. 2014. QTLs for tolerance of drought and breeding for tolerance of abiotic and biotic stress: An integrated approach., 9(10):e109574.

    DixitS, SinghU M, SinghA K, AlamS, VenkateshwarluC, NachimuthuV V, YadavS, AbbaiR, SelvarajR, DeviM N, RamayyaP J, BadriJ, Ram T, LakshmiJ, LakshmideviG, Vidhya L R KJ, PadmakumariA P, LahaG S, PrasadM S, SeetalamM, Singh V K,Kumar A. 2020. Marker assisted forwardbreeding to combine multiple biotic-abiotic stress resistance/tolerance in rice., 13:29.

    IRRI. 2002. Standard Evaluation System for Rice. Los Banos, Manila, the Philippine: International Rice Research Institute.

    IRRI. 2004. Standard Evaluation System for Rice. Los Banos, Manila, the Philippine: International Rice Research Institute.

    Jamaloddin M, Durga Rani C V, Swathi G, Anuradha C, Vanisri S, Rajan C P D, Krishnam Raju S, Bhuvaneshwari V, Jagadeeswar R, Laha G S, Prasad M S, Satyanarayana P V, Cheralu C, Rajani G, Ramprasad E, Sravanthi P, Arun Prem Kumar N, Aruna Kumari K, Yamini K N, Mahesh D, Sanjeev Rao D, Sundaram R M, Sheshu MadhavM. 2020. Marker assisted gene pyramiding (MAGP) for bacterial blight and blast resistance into mega rice variety ‘Tellahamsa’., 15(6): e0234088.

    Juliano B O. 1971. A simplified assay for milled rice amylose., 16(11): 334?360.

    Juliano B O, Perez C M, Kaushik R, Khush G S. 1990. Some grain properties of IR36-based starch mutants., 42(7): 256?260.

    Khan G H, Shikari A B, Vaishnavi R, Najeeb S, Padder B A, Bhat Z A, ParrayG A, BhatA M, Kumar R, Singh N K. 2018. Marker-assisted introgression of three dominant blast resistance genes into an aromatic rice cultivar Mushk Budji., 8(1):4091.

    Kumar A, Dixit S, Ram T, Yadaw R B, Mishra K K, Mandal N P. 2014. Breeding high-yielding drought-tolerant rice: Genetic variations and conventional and molecular approaches., 65(21): 6265–6278.

    Kumar R, Venuprasad R, Atlin G N. 2007. Genetic analysis of rainfed lowland rice drought tolerance under naturally occurring stress in eastern India: Heritability and QTL effects., 103(1): 42–52.

    Mackill D J, Bonman J M. 1992. Inheritance of blast resistance in near isogenic lines of rice., 82(7): 746–749.

    MishraK K, VikramP,YadawR B,Swamy B P M,DixitS,StaruzM T G,MarkerS, Kumar A. 2013.: A locus with a consistent effect on grain yield under drought in rice.,14:12.

    Murray H G, Thompson W F. 1980. Rapid isolation of high molecular weight DNA., 8(19): 4321–4325.

    Muthu V, Abbai R, Nallathambi J, Rahman H, Ramasamy S, Kambale R, Thulasinathan T, Ayyenar B, Muthurajan R. 2020. Pyramiding QTLs controlling tolerance against drought, salinity, and submergence in rice through marker assisted breeding., 15(1): e0227421.

    Patroti P, Vishalakshi B, Umakanth B, Suresh J, Senguttuvel P, Madhav M S. 2019. Marker-assisted pyramiding of major blast resistance genes in Swarna-Sub1, an elite rice variety (L.)., 215(11): 179.

    Serraj R, McNally K L, Slamet-Loedin I, Kohli A, Haefele S M, Atlin G, Kumar A. 2011. Drought resistance improvement in rice: An integrated genetic and resource management strategy., 14(1): 1?14.

    Sharma T R, Madhav M S, Singh B K, Shanker P, Jana T K, Dalal V, Pandit A, SinghA, GaikwadK, UpretiH C, Singh N K. 2005. High-resolution mapping, cloning and molecular characterization of thePi-kgene of rice, which confers resistance to., 274(6): 569–578.

    Swathi G, Durga Rani C V, Jamaloddin M, Sheshu Madhav M, Vanisree S, Anuradha C, Ranjit Kumar N, Aruna Prem Kumar N, Aruna Kumari K, Bhogadhi S C, Ramprasad E, Sravanthi P, Krishinam Raju S, Bhuvaneswari V, Rajan C P D, Jagadeeswar R. 2019. Marker-assisted introgression of the major bacterial blight resistance genes,and, and blast resistance gene,, into the popular rice variety, JGL1798., 39:58.

    Venuprasad R, Lafitte H R, Atlin G N. 2007. Response to direct selection for grain yield under drought stress in rice., 47:285–293.

    Vikram P, Swamy B P M, Dixit S, Ahmed H U, Sta Cruz M T, Singh A K, Kumar A. 2011., a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds., 12:89.

    Wassmann R, Jagadish S V K, Sumfleth K, Pathak H, Howell G, Ismail A, Serraj R, Redona E, Singh R K, Heuer S. 2009. Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation., 102: 91?133.

    14 August 2020;

    8 January 2021

    Sheshu Madhav Maganti (sheshu24@gmail.com; sheshu_24@yahoo.com)

    Copyright ? 2021, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2021.07.009

    (Managing Editor: Wu Yawen)

    一级a爱视频在线免费观看| 午夜福利在线观看吧| 在线看三级毛片| 观看免费一级毛片| 亚洲中文字幕日韩| 国产私拍福利视频在线观看| 色精品久久人妻99蜜桃| √禁漫天堂资源中文www| 欧美乱色亚洲激情| 国产精品久久久av美女十八| 香蕉丝袜av| 人人妻人人澡人人看| 久久午夜综合久久蜜桃| 精品国产亚洲在线| 十八禁网站免费在线| 老鸭窝网址在线观看| 99久久综合精品五月天人人| 婷婷亚洲欧美| 久久狼人影院| 日日干狠狠操夜夜爽| 99久久国产精品久久久| 看黄色毛片网站| 日韩欧美 国产精品| 国产精品,欧美在线| 欧美黑人巨大hd| 亚洲欧美精品综合久久99| 美国免费a级毛片| 韩国精品一区二区三区| 国产精品精品国产色婷婷| 人人妻人人澡人人看| 99精品在免费线老司机午夜| 天天躁夜夜躁狠狠躁躁| 久久香蕉国产精品| av片东京热男人的天堂| 国产熟女xx| 男人舔奶头视频| 亚洲精品国产精品久久久不卡| tocl精华| 成人欧美大片| av天堂在线播放| 国产精品爽爽va在线观看网站 | 亚洲av中文字字幕乱码综合 | e午夜精品久久久久久久| 亚洲中文日韩欧美视频| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成人性av电影在线观看| 校园春色视频在线观看| 精品福利观看| 宅男免费午夜| 91国产中文字幕| 九色国产91popny在线| 精品不卡国产一区二区三区| 国产精品,欧美在线| 俺也久久电影网| 伦理电影免费视频| 亚洲中文字幕一区二区三区有码在线看 | 欧美乱码精品一区二区三区| 国产av在哪里看| or卡值多少钱| 夜夜夜夜夜久久久久| 91九色精品人成在线观看| 日韩欧美 国产精品| 99在线人妻在线中文字幕| 国产欧美日韩一区二区精品| 人人妻人人看人人澡| www.自偷自拍.com| 国产伦人伦偷精品视频| 亚洲第一欧美日韩一区二区三区| 久久国产精品影院| 变态另类丝袜制服| x7x7x7水蜜桃| 女性被躁到高潮视频| 美女免费视频网站| 中国美女看黄片| 亚洲天堂国产精品一区在线| 国产高清视频在线播放一区| 成在线人永久免费视频| 成人亚洲精品av一区二区| 日韩精品中文字幕看吧| 亚洲av美国av| 久久久精品国产亚洲av高清涩受| 两性午夜刺激爽爽歪歪视频在线观看 | 久热这里只有精品99| 色播亚洲综合网| 国内久久婷婷六月综合欲色啪| av免费在线观看网站| 午夜福利一区二区在线看| 中国美女看黄片| 久久热在线av| www.自偷自拍.com| 久久人妻福利社区极品人妻图片| 久久久久久亚洲精品国产蜜桃av| 免费无遮挡裸体视频| 草草在线视频免费看| 免费人成视频x8x8入口观看| 色尼玛亚洲综合影院| 久久久久国产精品人妻aⅴ院| 一a级毛片在线观看| 狠狠狠狠99中文字幕| 色av中文字幕| 亚洲电影在线观看av| 波多野结衣高清作品| 99精品久久久久人妻精品| 麻豆一二三区av精品| 人人妻,人人澡人人爽秒播| av在线天堂中文字幕| 女人被狂操c到高潮| 搞女人的毛片| 久久久久久久久久黄片| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲最大成人中文| 深夜精品福利| 国产97色在线日韩免费| 国产精品98久久久久久宅男小说| 宅男免费午夜| 99久久精品国产亚洲精品| 亚洲自偷自拍图片 自拍| 日韩 欧美 亚洲 中文字幕| a级毛片在线看网站| 色尼玛亚洲综合影院| 国产一级毛片七仙女欲春2 | 亚洲av五月六月丁香网| 长腿黑丝高跟| 欧美中文日本在线观看视频| 国产视频一区二区在线看| 天堂动漫精品| 中出人妻视频一区二区| 妹子高潮喷水视频| 欧美性猛交╳xxx乱大交人| 91麻豆av在线| 成人av一区二区三区在线看| 亚洲七黄色美女视频| 亚洲国产精品久久男人天堂| ponron亚洲| 欧美性猛交╳xxx乱大交人| 午夜福利成人在线免费观看| 国产成人欧美| 国产高清有码在线观看视频 | 成人一区二区视频在线观看| 久久久久亚洲av毛片大全| 午夜亚洲福利在线播放| 日韩大尺度精品在线看网址| 欧美日本亚洲视频在线播放| 俺也久久电影网| 一级毛片精品| 村上凉子中文字幕在线| 在线观看午夜福利视频| netflix在线观看网站| 在线观看一区二区三区| 一级作爱视频免费观看| 国产精品亚洲美女久久久| 男女做爰动态图高潮gif福利片| 一区二区三区精品91| 男男h啪啪无遮挡| 国产成人系列免费观看| 成年人黄色毛片网站| 色综合婷婷激情| 亚洲国产看品久久| 别揉我奶头~嗯~啊~动态视频| 精品国产国语对白av| avwww免费| 在线观看免费日韩欧美大片| 成人永久免费在线观看视频| 亚洲国产欧洲综合997久久, | 久久99热这里只有精品18| 1024手机看黄色片| 欧美精品啪啪一区二区三区| 亚洲熟妇熟女久久| 国产单亲对白刺激| 亚洲熟女毛片儿| videosex国产| 高清在线国产一区| 女人高潮潮喷娇喘18禁视频| 给我免费播放毛片高清在线观看| 99国产精品一区二区三区| 国产精品久久久久久精品电影 | 亚洲国产精品999在线| 日本 欧美在线| 国产激情欧美一区二区| 久久婷婷人人爽人人干人人爱| 最近在线观看免费完整版| 一本综合久久免费| 十八禁网站免费在线| 首页视频小说图片口味搜索| 国产成人欧美| 母亲3免费完整高清在线观看| 黄色a级毛片大全视频| 人人妻人人澡欧美一区二区| tocl精华| 久热爱精品视频在线9| 国产三级黄色录像| 国产精品永久免费网站| 最好的美女福利视频网| 一边摸一边抽搐一进一小说| 色综合婷婷激情| 一区二区日韩欧美中文字幕| 日韩有码中文字幕| 一级黄色大片毛片| 香蕉丝袜av| 国产又黄又爽又无遮挡在线| 亚洲国产看品久久| 99久久精品国产亚洲精品| 一级黄色大片毛片| 国产真实乱freesex| 淫秽高清视频在线观看| 91国产中文字幕| 可以在线观看毛片的网站| 2021天堂中文幕一二区在线观 | 欧美日韩一级在线毛片| 9191精品国产免费久久| 巨乳人妻的诱惑在线观看| 99国产综合亚洲精品| 无人区码免费观看不卡| 一区二区三区国产精品乱码| 久久人人精品亚洲av| 日本 欧美在线| 国产成人av激情在线播放| 精品人妻1区二区| 日本 欧美在线| 国产高清videossex| 一二三四在线观看免费中文在| 男女下面进入的视频免费午夜 | 日日爽夜夜爽网站| 精品电影一区二区在线| 亚洲精品美女久久av网站| 欧美色视频一区免费| 99国产精品99久久久久| 男人舔奶头视频| 99在线人妻在线中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 美国免费a级毛片| 欧美av亚洲av综合av国产av| 国产精品久久久久久人妻精品电影| 精品久久蜜臀av无| 精品少妇一区二区三区视频日本电影| 亚洲熟妇中文字幕五十中出| 男人操女人黄网站| 久久热在线av| 国产野战对白在线观看| 视频在线观看一区二区三区| 九色国产91popny在线| 国产精品亚洲一级av第二区| 亚洲国产欧洲综合997久久, | 国产一区二区三区视频了| 亚洲成人国产一区在线观看| 真人一进一出gif抽搐免费| 两个人看的免费小视频| 一级黄色大片毛片| 啦啦啦 在线观看视频| 十分钟在线观看高清视频www| 777久久人妻少妇嫩草av网站| 男女床上黄色一级片免费看| 亚洲成国产人片在线观看| 老熟妇乱子伦视频在线观看| 色综合亚洲欧美另类图片| 99在线视频只有这里精品首页| 国产激情偷乱视频一区二区| 国产精品1区2区在线观看.| 日韩欧美一区二区三区在线观看| 欧美色视频一区免费| 国产成人av激情在线播放| 12—13女人毛片做爰片一| 色综合站精品国产| 国产成人欧美在线观看| 黄网站色视频无遮挡免费观看| 视频区欧美日本亚洲| 亚洲男人的天堂狠狠| 少妇粗大呻吟视频| 淫秽高清视频在线观看| 亚洲人成伊人成综合网2020| 欧美激情久久久久久爽电影| 亚洲精品美女久久av网站| 欧美色欧美亚洲另类二区| 欧美久久黑人一区二区| 一边摸一边做爽爽视频免费| 村上凉子中文字幕在线| 中文字幕另类日韩欧美亚洲嫩草| 十分钟在线观看高清视频www| 美女国产高潮福利片在线看| av在线播放免费不卡| av超薄肉色丝袜交足视频| 久久久久精品国产欧美久久久| 亚洲专区国产一区二区| 亚洲av美国av| 操出白浆在线播放| 久久精品国产综合久久久| 久久人人精品亚洲av| 人成视频在线观看免费观看| 校园春色视频在线观看| 波多野结衣av一区二区av| 在线观看日韩欧美| 亚洲三区欧美一区| 亚洲五月天丁香| 亚洲一区二区三区不卡视频| 一个人免费在线观看的高清视频| 国产激情偷乱视频一区二区| 国产午夜精品久久久久久| 国产又黄又爽又无遮挡在线| 国产91精品成人一区二区三区| 99久久综合精品五月天人人| 搡老岳熟女国产| 午夜激情福利司机影院| 国内少妇人妻偷人精品xxx网站 | 国产黄色小视频在线观看| 亚洲精品av麻豆狂野| 欧美激情 高清一区二区三区| 亚洲avbb在线观看| 国产真人三级小视频在线观看| 国产日本99.免费观看| 麻豆久久精品国产亚洲av| 男女视频在线观看网站免费 | 精品国产一区二区三区四区第35| 特大巨黑吊av在线直播 | 丰满人妻熟妇乱又伦精品不卡| 18禁黄网站禁片免费观看直播| 免费在线观看成人毛片| 久久久久亚洲av毛片大全| 久9热在线精品视频| 日本黄色视频三级网站网址| 国产精华一区二区三区| 夜夜看夜夜爽夜夜摸| 国产精品 国内视频| 欧美绝顶高潮抽搐喷水| 精品国产乱码久久久久久男人| 久久久久久久久中文| 国产黄a三级三级三级人| 亚洲人成网站高清观看| 免费在线观看完整版高清| 国产成人啪精品午夜网站| 久久国产精品男人的天堂亚洲| 中文字幕久久专区| 欧美黄色片欧美黄色片| 黄色a级毛片大全视频| 国产精品,欧美在线| 亚洲第一电影网av| 巨乳人妻的诱惑在线观看| bbb黄色大片| 一区二区三区高清视频在线| 亚洲一卡2卡3卡4卡5卡精品中文| ponron亚洲| 99在线视频只有这里精品首页| 精品一区二区三区视频在线观看免费| 国产色视频综合| 中文亚洲av片在线观看爽| 男女视频在线观看网站免费 | 亚洲第一av免费看| 色av中文字幕| 日韩欧美一区视频在线观看| 国产精品 欧美亚洲| av欧美777| 校园春色视频在线观看| 男女做爰动态图高潮gif福利片| 一卡2卡三卡四卡精品乱码亚洲| 久久国产精品男人的天堂亚洲| 狂野欧美激情性xxxx| 亚洲真实伦在线观看| 国产成人av教育| 91字幕亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 男人舔女人的私密视频| 免费在线观看成人毛片| 久久国产乱子伦精品免费另类| 桃色一区二区三区在线观看| 日韩成人在线观看一区二区三区| 国产亚洲欧美98| 最好的美女福利视频网| 可以免费在线观看a视频的电影网站| 人人妻人人澡欧美一区二区| 可以免费在线观看a视频的电影网站| 无遮挡黄片免费观看| 99久久精品国产亚洲精品| 国产av在哪里看| 99久久精品国产亚洲精品| 日本五十路高清| 亚洲欧美激情综合另类| 亚洲国产毛片av蜜桃av| 色综合欧美亚洲国产小说| 一级a爱片免费观看的视频| 国产v大片淫在线免费观看| 国产在线观看jvid| 国产成人啪精品午夜网站| 一区二区日韩欧美中文字幕| 一本精品99久久精品77| 深夜精品福利| 看片在线看免费视频| 91成年电影在线观看| netflix在线观看网站| 叶爱在线成人免费视频播放| 亚洲国产精品合色在线| 亚洲国产欧美一区二区综合| 一区二区三区激情视频| 久9热在线精品视频| 久久久久久人人人人人| 欧美色欧美亚洲另类二区| 91成人精品电影| 国产97色在线日韩免费| 97人妻精品一区二区三区麻豆 | 午夜福利在线在线| 欧美黄色淫秽网站| 在线视频色国产色| 欧洲精品卡2卡3卡4卡5卡区| 国产精品,欧美在线| 亚洲人成网站高清观看| 国产精品日韩av在线免费观看| 成人精品一区二区免费| 国产亚洲精品久久久久5区| 日韩国内少妇激情av| 精品免费久久久久久久清纯| 亚洲色图av天堂| 中亚洲国语对白在线视频| 又紧又爽又黄一区二区| 99在线视频只有这里精品首页| 精品电影一区二区在线| 首页视频小说图片口味搜索| 日韩欧美一区视频在线观看| 日本一本二区三区精品| 国产午夜精品久久久久久| 人人妻人人看人人澡| 国内毛片毛片毛片毛片毛片| 日韩精品中文字幕看吧| 日韩大码丰满熟妇| 亚洲一区二区三区色噜噜| 亚洲人成电影免费在线| 村上凉子中文字幕在线| 午夜成年电影在线免费观看| 国产精品二区激情视频| 热re99久久国产66热| 欧美性猛交╳xxx乱大交人| 不卡av一区二区三区| 99久久无色码亚洲精品果冻| 亚洲国产高清在线一区二区三 | 精品不卡国产一区二区三区| 一本一本综合久久| 午夜免费成人在线视频| 精品午夜福利视频在线观看一区| 欧美午夜高清在线| 欧美最黄视频在线播放免费| 久久中文字幕一级| 亚洲专区国产一区二区| 波多野结衣av一区二区av| 免费在线观看亚洲国产| 国产不卡一卡二| 美女扒开内裤让男人捅视频| 亚洲精品色激情综合| 啦啦啦韩国在线观看视频| videosex国产| 岛国在线观看网站| 高清毛片免费观看视频网站| 好男人电影高清在线观看| 成人国语在线视频| 国产精品久久久人人做人人爽| 九色国产91popny在线| 国产精品九九99| 久久久久免费精品人妻一区二区 | 精品卡一卡二卡四卡免费| 男女之事视频高清在线观看| 久久国产精品影院| 国产真实乱freesex| 男女午夜视频在线观看| 午夜成年电影在线免费观看| АⅤ资源中文在线天堂| 一本综合久久免费| 午夜福利在线观看吧| 老汉色∧v一级毛片| 久久久精品国产亚洲av高清涩受| 国产不卡一卡二| 九色国产91popny在线| 久久久久久久午夜电影| 少妇熟女aⅴ在线视频| 18禁裸乳无遮挡免费网站照片 | 俺也久久电影网| 精品电影一区二区在线| 精品日产1卡2卡| 久久精品国产清高在天天线| 热re99久久国产66热| 亚洲一码二码三码区别大吗| 999久久久精品免费观看国产| 很黄的视频免费| 国产精品香港三级国产av潘金莲| 男女那种视频在线观看| 国产精品精品国产色婷婷| 国语自产精品视频在线第100页| 精品欧美国产一区二区三| 欧美又色又爽又黄视频| www.精华液| www.999成人在线观看| 在线观看舔阴道视频| 亚洲国产欧美一区二区综合| 欧美一区二区精品小视频在线| 欧美中文日本在线观看视频| 日韩欧美三级三区| 91在线观看av| av超薄肉色丝袜交足视频| 每晚都被弄得嗷嗷叫到高潮| 国产成人欧美在线观看| 免费在线观看完整版高清| 国产亚洲精品综合一区在线观看 | 国产高清videossex| 国产精品九九99| 国产精品乱码一区二三区的特点| 禁无遮挡网站| 欧美日本亚洲视频在线播放| 欧美大码av| 免费高清在线观看日韩| 久久国产精品影院| 非洲黑人性xxxx精品又粗又长| www日本黄色视频网| 久久热在线av| 91av网站免费观看| 久久精品91蜜桃| 桃色一区二区三区在线观看| 免费电影在线观看免费观看| 久久久久免费精品人妻一区二区 | 又黄又爽又免费观看的视频| 1024手机看黄色片| www日本黄色视频网| 午夜免费鲁丝| 久久精品国产亚洲av高清一级| 一区二区三区激情视频| 夜夜夜夜夜久久久久| 国产私拍福利视频在线观看| 搡老熟女国产l中国老女人| 亚洲精华国产精华精| 一进一出抽搐gif免费好疼| 可以免费在线观看a视频的电影网站| 99热只有精品国产| 好看av亚洲va欧美ⅴa在| 国产成人影院久久av| 欧美又色又爽又黄视频| 中文字幕最新亚洲高清| 99国产综合亚洲精品| 午夜两性在线视频| 国产97色在线日韩免费| 亚洲精品色激情综合| 亚洲专区字幕在线| 18禁黄网站禁片午夜丰满| 男女下面进入的视频免费午夜 | 免费在线观看完整版高清| 一本综合久久免费| 亚洲成av人片免费观看| 一级a爱片免费观看的视频| 高潮久久久久久久久久久不卡| 制服丝袜大香蕉在线| 亚洲精品国产区一区二| 亚洲成a人片在线一区二区| 欧美激情 高清一区二区三区| 亚洲一区二区三区不卡视频| 两性夫妻黄色片| 美女免费视频网站| 窝窝影院91人妻| 久久亚洲真实| 伊人久久大香线蕉亚洲五| 成人18禁在线播放| 听说在线观看完整版免费高清| 侵犯人妻中文字幕一二三四区| 午夜激情福利司机影院| 亚洲成人国产一区在线观看| 欧美绝顶高潮抽搐喷水| 亚洲一卡2卡3卡4卡5卡精品中文| 一区福利在线观看| 色播在线永久视频| 亚洲五月婷婷丁香| 精华霜和精华液先用哪个| 中文字幕久久专区| 男女视频在线观看网站免费 | 色综合站精品国产| 侵犯人妻中文字幕一二三四区| 97超级碰碰碰精品色视频在线观看| 亚洲,欧美精品.| 天天一区二区日本电影三级| 日韩有码中文字幕| 免费av毛片视频| 无限看片的www在线观看| 欧美色视频一区免费| 日本 av在线| 色播在线永久视频| 国产精华一区二区三区| 99re在线观看精品视频| 看黄色毛片网站| 久久久久国内视频| 久久国产乱子伦精品免费另类| 一级毛片女人18水好多| 免费搜索国产男女视频| 久久欧美精品欧美久久欧美| 观看免费一级毛片| 国产高清有码在线观看视频 | 日韩精品免费视频一区二区三区| 看黄色毛片网站| 国产亚洲av嫩草精品影院| 午夜福利欧美成人| 精品卡一卡二卡四卡免费| 成人手机av| 啦啦啦免费观看视频1| 日日爽夜夜爽网站| www.www免费av| 亚洲第一av免费看| 国产成人精品久久二区二区免费| 91国产中文字幕| 日韩精品免费视频一区二区三区| 黑人操中国人逼视频| 给我免费播放毛片高清在线观看| 国产不卡一卡二| 亚洲av成人一区二区三| 亚洲成av人片免费观看| 国产主播在线观看一区二区| 欧美日本视频| 久久香蕉激情| 午夜免费观看网址| 女性被躁到高潮视频| 免费在线观看亚洲国产| 亚洲精品美女久久久久99蜜臀| 国产精品一区二区精品视频观看| av片东京热男人的天堂| 在线天堂中文资源库| 一边摸一边做爽爽视频免费|