• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Machine learning combined with Langmuir probe measurements for diagnosis of dusty plasma of a positive column

    2021-09-10 09:26:34ZheDING丁哲JingfengYAO姚靜鋒YingWANG王瑩ChengxunYUAN袁承勛ZhongxiangZHOU周忠祥AnatolyKUDRYAVTSEVRuilinGAO高瑞林andJieshuJIA賈潔姝
    Plasma Science and Technology 2021年9期
    關(guān)鍵詞:王瑩

    Zhe DING (丁哲),Jingfeng YAO (姚靜鋒),Ying WANG (王瑩),2,Chengxun YUAN (袁承勛),2,?,Zhongxiang ZHOU (周忠祥),2,Anatoly A KUDRYAVTSEV,2,3,Ruilin GAO (高瑞林) and Jieshu JIA (賈潔姝)

    1 School of Physics,Harbin Institute of Technology,Harbin 150001,People’s Republic of China

    2 Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology,Harbin 150001,People’s Republic of China

    3 Physics Department,Saint Petersburg State University,St.Petersburg 198504,Russia

    4 Shanghai Electro-Mechanical Engineering Institute,Shanghai 201109,People’s Republic of China

    5 Science and Technology on Electromagnetic Scattering Laboratory,Shanghai 200438,People’s Republic of China

    Abstract This paper reports the use of machine learning to enhance the diagnosis of a dusty plasma.Dust in a plasma has a large impact on the properties of the plasma.According to a probe diagnostic experiment on a dust-free plasma combined with machine learning,an experiment on a dusty plasma is designed and carried out.Using a specific experimental device,dusty plasma with a stable and controllable dust particle density is generated.A Langmuir probe is used to measure the electron density and electron temperature under different pressures,discharge currents,and dust particle densities.The diagnostic result is processed through a machine learning algorithm,and the error of the predicted results under different pressures and discharge currents is analyzed,from which the law of the machine learning results changing with the pressure and discharge current is obtained.Finally,the results are compared with theoretical simulations to further analyze the properties of the electron density and temperature of the dusty plasma.

    Keywords: dusty plasma,machine learning,Langmuir probe

    1.Introduction

    Dusty plasma is a plasma system formed by adding dust particles to a plasma [1].The dust particles become charged due to the nature of the plasma itself [2].Dusty plasmas are often not intentional but sometimes formed intentionally for certain applications.Because the properties of charged dust particles are different from those of electrons and ions,dusty plasma has many unique characteristics [3].It plays an important role in the field of space and engineering applications [4,5].In carrying out laboratory research on dusty plasma,it is important to understand the specific parameters of the dusty plasma [6,7],especially its electron density and electron temperature [8].The diagnostic method is therefore at the heart of experimental research on dusty plasma,so that improving the diagnostic method is of great significance [9].

    The very existence of the dust particles makes the diagnosis of dusty plasma in the laboratory a very challenging problem[10].Commonly used methods include spectrum diagnosis[11],microwave diagnosis[12],and probe diagnosis[13].In spectrum diagnosis,the fiber probe can usually diagnose only outside the plasma area[14].Dust particles in the dusty plasma interfere with the spectrum that the probe can receive,so that the measured spectrum cannot accurately reflect the real situation inside the dusty plasma.For microwave diagnosis,since the dust particles carry electric charges,they will,like electrons,interact with the electromagnetic waves passing through the plasma,causing attenuation of the waves and introducing errors in the measurement of parameters.For probe diagnosis [15],because the diagnostic system applies a voltage to the probe during the diagnostic process,the charged dust particles will adhere to the surface of the probe,preventing the probe from collecting the current in the plasma[10].Because the dust attachment process is relatively random,accurate corrections cannot be made during the diagnostic process and the probe data cannot be calculated correctly [16].So,the dust particles and especially the fact that they are charged prevent the accurate diagnosis of dusty plasma using conventional diagnostic methods.Therefore,improving the diagnostic methods is an important task in the study of dusty plasma [17].

    At the same time,machine learning methods have been used to solve the Boltzmann equation of weakly ionized plasma[18].In plasma diagnosis,Jonathan Chalaturnyk[19]studied the feasibility of machine learning to enhance the diagnosis of dust-free plasma probes.In previous experiments,machine learning has also been successfully implemented to enhance the diagnosis of plasma probes [20].We conclude that improvement in diagnosing dusty plasma is feasible.Since the amount of dust in the dusty plasma has a direct influence on the diagnostic result,the use of machine learning to process the data obtained from the diagnosis and thereby to reduce the error of the result has great research value.At the same time,considering that in common probe diagnostic methods dust particles have relatively little influence,probe diagnosis can be used as the data source for machine learning in order to study parameters such as the electron density and temperature of the dusty plasma.

    Here we present the results of a study in which diagnosing dusty plasma is combined with machine learning and probe diagnosis.The diagnostic result of a smaller dust density is input into the machine learning algorithm; then the result for a larger dust density is predicted,and the predicted result is analyzed.By comparing the results of machine learning with that of fluid model,the reliability of the machine learning algorithm is further verified,and the properties of electron density and temperature of the dust plasma are further analyzed by an improved probe diagnosis method.In section 2,the formulas and principles used in the simulation are introduced,and the machine learning algorithm is applied.In section 3,the experimental device and the process of carrying out the experiment are explained in detail,along with the specific research methods.In section 4,the results of the experiment are analyzed in detail and are compared with the results of a dust-free plasma.Finally,in section 5,conclusions are presented.

    Figure 1.Schematic diagram of discharge device: (a) anode,(b) cathode,(c) dust particle,(d) Langmuir probe.

    2.Setting up the experiment

    In this section,the plasma generator,parameter selection,and some early data processing methods are introduced.

    2.1.Dusty plasma generator and parameter selection

    In order to obtain results of the initial dusty plasma probe diagnosis,the dusty plasma generator used by Ding [21] is adopted,as shown in figure 1.The experimental device can completely trap the dust particles in the curved part of the tube and thereby control the distribution of dust particles in the plasma.Because the density of dust particlesndis difficult to control accurately in the experiment,it is impossible to analyze accurately the influence of dust density on the experimental results.But by injecting a known amount of dust particles in this experimental device,the density of local dust particles can be changed regularly with changing the pressure and voltage,although the density of dust cannot be accurately known.Furthermore,accurate collection of probe data is realized,which provides better data for the prediction of the algorithm.

    Figure 1 gives the overall structure of the plasma generator.It is bent 40 cm glass tube with an inside diameter of 3 cm.The electrode spacing is 25 cm.Some dust particles are placed in the glass tube,and after the discharge starts,they become suspended in the plasma to form a dusty plasma.The dust particles are made of aluminum oxide,there are about 200–300 dust particles in the bend.The dust particles are spherical and have a diameter of 5 μm.The plasma gas is helium,and DC glow discharge is used as the plasma environment in which the dust is suspended.The probe is at the curved part of the glass tube to measure the dusty plasma density and temperature in the positive column in that area.The probe used for measurement is the Impedans commercial probe system.By using high temperature to soften the wall of the glass tube,and passing the probe through the wall,the air tightness of the device is not affected.The plasma powersupply is a CE 1500 005T programed power-supply,which can directly read the power-supply current and voltage and continuously adjust its output parameters.The maximum power-supply voltage is 1500 V,and enough data can be obtained for machine learning training and verification.A 100 kW resistor is connected in series in the circuit.

    In the probe diagnosis of plasma [22],due to the difficulty in measuring discharge current,the pressure and the total voltage of the circuit were selected as the input parameters of the algorithm for analysis.When diagnosing dusty plasma,by improving the accuracy of discharge current diagnosis,more basic discharge current can be selected as the input parameter.Therefore,discharge current and gas pressure are used as input parameters,and electron temperature and electron density are used as output parameters.The diagnostic results at a specific dust particle density are used to train the machine learning algorithms,in order to obtain diagnostic results at other dust particle densities.

    2.2.Implementation details of machine learning

    Because of its scalability and data-fitting ability,the multilayer perceptron (MLP) algorithm,with excellent performance in machine learning,was selected.The number of input nodes of the multilayer perceptron,=d2,corresponds to the pressure and voltage of the plasma.Similarly,the number of nodes in the output layer,=q2,corresponds to the electron temperature and electron density.Through a large number of experimental measurements,the model achieves the best performance when the number of network layers is =l1.The optimal number of nodes in each hidden layer ish1=20,h2=40,h3=40,andh4=20.The code is implemented by Pytorch 1.0 in Python,and the computing device is a desktop computer with Intel(R) Core(TM) i5-6500 CPU @ 3.20 GHz and NVIDIA GeForce GTX 1060 3 GB.To achieve better convergence of the model and avoid gradient disappearance,Gaussian regularization is adopted for both input and output data.We take the electron density data measured by experiments as the true value as the standard to evaluate the accuracy of data prediction.

    The treatment method is as follows:

    wherexis the data vector to be regularized,xregis the result of regularization,andTis the length of the vector.To measure the accuracy of the predicted results,an accuracy calculation method Ac is designed:

    where(R∈0),1 is the maximum acceptable threshold,is the number of predicted data meeting condition equation(2)in the test phase.Ois the predicted result on the test set and is explained in detail in section 3.2.?Ois the true value of test data,andPtotalis the number of test data,while ?OandOare all the original values which are not regularized by equation (1).

    3.Theories of dusty plasma and machine learning

    After choosing the device to be used in the experiment and the selected parameters,the data obtained through the experiment need to be input into the machine learning algorithm for learning and training,and the predicted result needs to be compared with the simulation result of COMSOL Multiphysics software.In this section,the formulas for dusty plasma simulation and the machine learning algorithm that we used are introduced.

    3.1.Model formulation of dusty plasma

    We used Liang’s improved plasma fluid model [23] with the addition of the dust-charging process,and used helium as the gas.Simulations were performed using the finite element method in COMSOL Multiphysics software,which allows relatively simple solutions to complex problems in various fields.Below we briefly introduce the equations of the dusty plasma fluid model system.

    The absorption term of each charged particle by dust particles is added to the plasma particle continuity equation:

    where

    k=(e,i) represents electrons or ions,nkis the density of electrons or ions,Skrepresents the sources and sinks caused by the plasma chemical processes,Ikis the corresponding electron or ion charging current,Γkis the flux density,μkandDkare,respectively,the corresponding mobility and diffusion coefficients,andEis the electric field,zkis the number of charges of the charged particles in the plasma.

    Maxwellian electron energy distribution function was used for the calculation of rate constants in this work.The electron energy balance equation is written as

    where

    Hereneis the electron energy density and Γεis the heat flux density,εDis the electron energy diffusion coefficient.The first term on the right side of equation (6) expresses the thermal conductivity and the second term describes heat transfer due to electron drift in the electric fieldE.In equation (5),εSis the electron energy change due to the elastic and inelastic collisions.Energy loss of a single electron to a dust particle is assumed to beeφd.

    The spatial distribution of the electric field is determined by the electric potential,obtained from the modified Poisson equation

    whereε0is the vacuum dielectric constant.

    The dust particle radiusrd=5μm.Assuming that at the center of the dust particle area,the electron density isne=4.01×1015m?3,the ion density isni=4.03×1015m?3,and the concentration of neutral molecules isng=1.56×1022m?3.

    We use the above formula to simulate dusty plasmas with different pressures,different discharge currents,and different dust particle densities,and compare the results obtained with the results obtained by the algorithm to further illustrate the feasibility of the algorithm and analyze the properties of electron density and temperature of the dusty plasma.

    3.2.Theories of machine learning

    MLP,also known as artificial neural network,is a neural network composed of fully connected layers with at least one hidden layer.The output of each hidden layer of the multilayer perceptron is transformed by the activation function so that the neural network can acquire the ability to fit a nonlinear function.Specifically,a small batch of sampleX∈Rn×dis given,with batch sizenand number of inputsd.For a MLP ofllayers,the number of hidden layers is ?l1,and the number of neurons in each hidden layer ishi.We let the output of each hidden layer beHi∈Rn×hi,and the weight and bias parameters of a hidden layer be,respectively,Wi∈Rhi?1×hiandbi∈Rn×hi,so the output of the networkO∈Rn×qcan be written

    whereqis the number of neurons in the output layer andφis the activation function.In our experiment,LeakyRelu [24] is selected as the activation function to avoid the problem of a vanishing gradient.This is expressed as

    whereais hyperparameters,we follow the original value of LeakyRelu[24],which is set to 0.01 in the experiment.Mean square error (MSE) is the most commonly used loss function in regression problems.It is the mean of the sum of squares of the difference between the predicted value and the target value,and can be expressed as:

    whereLis the loss function and ?Ois the true value of training data.In order to avoid falling into a local optimum in the training process,momentum parameters are added into the batch gradient descent,and the parameter update rule of the network is whereη> 0 is the learning rate,μis the hyperparameter of momentum,and ?Lmse(θt)is the gradient at the tunable hyperparameterθt(includingWandB).

    Figure 2.Distribution of probe measurement data.

    4.Result

    In the experiment,the plasma parameters under different dust injection volume,discharge currents,and pressures were measured.Regarding the distribution of pressure and discharge current in the probe data,as shown in figure 2,repeated measurements were made for different dust injection volumes,and 10%of the data were selected as the test set,the rest of the data being the training set.In the end,the machine learning algorithm was used to predict the electron temperature and electron density in a larger parameter range.The specific results are shown in figure 3.By fixing the volume of dust injected,the parameters of voltage and pressure will affect the dust density.Although it is difficult to directly control the dust density,the effect of the continuously changing dust density on the experimental results can clearly be seen and the machine learning algorithm allows the dust density to be simply used as an input parameter in subsequent applications.

    Figure 4 shows the loss rate and accuracy rate of the machine learning algorithm as functions of the number of iterations.In figure 4(a),under the 10% standard,the accuracy rate of the electron density is finally stable at 92.23%,and under the 30% standard,the final accuracy can reach 100%,indicating that all data errors are less than 30%,according to the probe equation,the electron density can be calculated:

    whereAis the surface area of the probe,andIesis the electron saturation current.

    Figure 3.Distribution of predicted data: (a) electron density,(b) electron temperature.

    Figure 4.Various results as functions of the number of iterations.(a)Accuracy of electron density,(b)accuracy of electron temperature,(c)loss rates of electron density and electron temperature.

    In the diagnosis of dust plasma,due to the adhesion of dust particles to the surface of the probe,Awill be reduced,but the originalAis still used in the calculation process,which causes the calculated electron density to be less than the true value.This is the reason why the accuracy rate of the electron density cannot reach 100%.As shown in figure 5,in the dust plasma,the electron saturation current measured by the probe decreases slightly,and the voltage that reaches the saturation current increases.The accuracy of parameters is corresponding to the situation of the probe surface influenced by dust.

    For the electron temperature,according to the equation of the probe,the electron temperature can be calculated

    whereIpis the probe current,VBis the probe potential,and ΦPis the plasma space potential.

    Figure 5.I–V characteristic curve of the probe with free-dust and dust.

    Figure 6.Error of each group of verification data: (a) electron density,(b) electron temperature.

    There is noAterm in this equation,and it can be considered that the electron temperature diagnosis process is less affected by dust particles.Therefore,the machine learning algorithm can get good prediction results.One can see the expected results in figure 4(b).At the same time,for the same reason,the loss rate of electron temperature is also significantly lower than that of the electron density(figure 4(c)).

    To get the error of the test set,we divide the data into two parts.The detailed error of the data of the test set is shown in figure 6.Due to the influence of dust on the probe,the error of the electron temperature is significantly less than that of the electron density.But as can be seen in figure 7,for large-scale prediction data,the distribution of the prediction results in figures 7(b) and (d) is well summarized and reflects the distribution of training data in figures 7(a)and(c).Especially for the electron temperature,the distribution of exploration data in the training set is relatively insignificant,and machine learning algorithms can also achieve good prediction results.In the experimental results,the law of electron density and temperature changing with pressure and discharge current is not clear.At the same time,due to the random nature of dust pollution,the law is difficult to formulate.But machine learning algorithms can reproduce this law well and make it more obvious.At the same time,figure 6(a) shows the obvious periodic distribution of the error distribution in the test set.

    In order to study the periodic distribution of errors in detail,when the pressure is 120 Pa,discharge current is selected as the variable for studying the prediction data,and compared with the test set.Figure 8 shows that the difference between the predicted value and the measured value of the electron density gradually decreases when the discharge current increases.Combining with the experimental phenomenon shown in figure 8(c),it can be seen that when the discharge current increases,the dust density of the measuring part decreases.From equation (13) it can be concluded that when the dust density decreases,the surface area of the probe is less affected during the measurement,so the deviation between the measured value and the predicted value is also reduced.In the same way,the error of the electron temperature in figure 8(b) should remain stable(equation(14)),and the law of the prediction error changing with the discharge current is in good agreement with the experimental phenomenon and theory.One can compare the results of the modified plasma fluid model with the probe results after the machine learning correction.As shown in figure 9,compared with the predicted data and the simulated data,a better match is achieved.Evidently,machine learning has achieved a good prediction of electron density and electron temperature,and successfully demonstrated the influence of dust particles on the plasma diagnostic results.

    Figure 7.Comparison of predicted data and training data: (a) training data of electron density,(b) predicted data of electron density,(c) training data of electron temperature,(d) predicted data of electron temperature.

    5.Conclusions

    In the traditional probe diagnosis method,when diagnosing dust plasma,dust particles will be adsorbed on the surface of the probe during the diagnostic process,which causes the diagnostic result of the probe to deviate from the true value.The adsorption process of dust particles is random,so this effect cannot be corrected physically.For this reason,we extended the machine learning algorithm applied to the traditional probe theory to the probe diagnosis of dust plasma.

    Our probe diagnosis used dusty plasma and processed the measurements using machine learning algorithms.The results show that for the electron density,under the 10% standard,a high accuracy rate cannot be achieved,while the electron temperature has a better accuracy rate.Through the analysis of the principle of probe diagnosis,we believe that such a result conforms to the rule governing the influence of dust particles on the probe.When comparing the predicted results and the measured results in detail,we found that the error showed a periodic distribution.In order to try to understand the reason,the change of the error was observed in detail,with the discharge current as the independent variable.By comparing with the dust density in the dusty plasma experiment,the law of change of the error and the law of change of the dust density were in good agreement.Finally,the results are compared with the results of the fluid mechanics model,and better results are obtained than for the data measured by the probe.We conclude that the machine learning algorithm shows great advantages in the diagnosis of dusty plasma.While revealing the dust’s influence on plasma,it can also correct this influence to a certain extent,achieving a good correction effect on the probe.

    Figure 8.Differences in data:(a)electron density,(b)electron temperature.Image dust particle of different discharge currents:(c)5.9 mA,(d)8.8 mA.

    Figure 9.Comparisons of predictions and simulations.

    Acknowledgments

    The research has been financially supported by National Natural Science Foundation of China (Nos.11775062,11805130 and 11905125) and the Shanghai Sailing Program (Nos.19YF1420900 and 18YF1422200).

    ORCID iDs

    猜你喜歡
    王瑩
    Valley-dependent topological edge states in plasma photonic crystals
    鋼琴性能對音樂創(chuàng)作風(fēng)格的影響
    音樂探索(2022年2期)2022-05-30 21:01:37
    巧用比較策略,突破學(xué)生的學(xué)習(xí)難點
    王瑩作品
    王瑩作品賞析
    王瑩作品
    王瑩作品賞析
    萊儷青年藝術(shù)獎獲獎?wù)?王瑩:《租賃一平方米》的力量
    Theoretical research on the transport and ionization rate coefficients in glow discharge dusty plasma
    王瑩作品
    av在线老鸭窝| 久久亚洲国产成人精品v| 亚洲成人av在线免费| 狠狠精品人妻久久久久久综合| av在线播放精品| av又黄又爽大尺度在线免费看| 最黄视频免费看| 精品一区二区三区四区五区乱码 | 欧美日韩视频精品一区| 一区二区av电影网| 777米奇影视久久| 男女高潮啪啪啪动态图| 成人影院久久| 观看美女的网站| 啦啦啦中文免费视频观看日本| 美国免费a级毛片| 久久人人爽人人片av| 亚洲国产精品国产精品| 日韩视频在线欧美| 一级片免费观看大全| 啦啦啦在线观看免费高清www| av国产久精品久网站免费入址| 青春草国产在线视频| 亚洲三级黄色毛片| 一级片免费观看大全| 国产亚洲欧美精品永久| 国内精品宾馆在线| 成年动漫av网址| 欧美xxⅹ黑人| 精品午夜福利在线看| 丰满少妇做爰视频| 亚洲国产毛片av蜜桃av| 亚洲人成77777在线视频| 少妇被粗大猛烈的视频| 丝袜美足系列| 老女人水多毛片| 国产成人精品在线电影| 一级毛片 在线播放| 美女内射精品一级片tv| 日本91视频免费播放| 夫妻性生交免费视频一级片| 一本色道久久久久久精品综合| 成人无遮挡网站| 18禁观看日本| 五月开心婷婷网| 一区二区三区精品91| 自拍欧美九色日韩亚洲蝌蚪91| 视频中文字幕在线观看| 亚洲婷婷狠狠爱综合网| 老熟女久久久| 美女脱内裤让男人舔精品视频| 男人操女人黄网站| 亚洲,一卡二卡三卡| 欧美精品亚洲一区二区| 80岁老熟妇乱子伦牲交| 九九在线视频观看精品| 精品一区二区三区四区五区乱码 | 伦理电影免费视频| 人妻系列 视频| 精品视频人人做人人爽| 午夜日本视频在线| 久久午夜综合久久蜜桃| 久久久精品区二区三区| 久久精品国产亚洲av涩爱| 精品人妻偷拍中文字幕| 精品午夜福利在线看| 亚洲精品国产av成人精品| 精品亚洲乱码少妇综合久久| 精品国产一区二区三区久久久樱花| 成人国产麻豆网| 色5月婷婷丁香| 国产黄色免费在线视频| 青青草视频在线视频观看| 黄色视频在线播放观看不卡| 赤兔流量卡办理| 精品人妻偷拍中文字幕| 视频中文字幕在线观看| 亚洲精品国产av蜜桃| 高清视频免费观看一区二区| 日本午夜av视频| 两个人看的免费小视频| 欧美xxxx性猛交bbbb| 男女无遮挡免费网站观看| 最近中文字幕2019免费版| 26uuu在线亚洲综合色| 啦啦啦中文免费视频观看日本| 另类精品久久| 免费大片黄手机在线观看| 中文欧美无线码| 成人影院久久| 激情视频va一区二区三区| 亚洲国产精品999| 男人操女人黄网站| 日日爽夜夜爽网站| 日本欧美视频一区| 超色免费av| 色视频在线一区二区三区| 亚洲av综合色区一区| 成年人免费黄色播放视频| 免费在线观看黄色视频的| 午夜福利视频精品| 国产又爽黄色视频| 天天躁夜夜躁狠狠久久av| 欧美精品av麻豆av| 内地一区二区视频在线| 在线看a的网站| 精品久久国产蜜桃| 欧美 日韩 精品 国产| 亚洲经典国产精华液单| 一边亲一边摸免费视频| 飞空精品影院首页| 天堂中文最新版在线下载| 日韩av免费高清视频| 一级黄片播放器| 欧美激情国产日韩精品一区| 美女国产视频在线观看| a级毛片黄视频| 国产成人午夜福利电影在线观看| 又大又黄又爽视频免费| 中文乱码字字幕精品一区二区三区| 秋霞伦理黄片| 久久久久精品久久久久真实原创| 人妻人人澡人人爽人人| 国产av一区二区精品久久| 成人手机av| 国产av国产精品国产| 国产深夜福利视频在线观看| 高清黄色对白视频在线免费看| 亚洲伊人久久精品综合| 男女高潮啪啪啪动态图| 午夜免费鲁丝| videossex国产| 国产精品久久久久久精品电影小说| 国产欧美日韩一区二区三区在线| 热99久久久久精品小说推荐| 日本-黄色视频高清免费观看| 久久精品国产自在天天线| av一本久久久久| 国产亚洲精品久久久com| 国产爽快片一区二区三区| 人妻一区二区av| 欧美精品人与动牲交sv欧美| 中国三级夫妇交换| 毛片一级片免费看久久久久| 亚洲av综合色区一区| 国产成人午夜福利电影在线观看| 精品人妻偷拍中文字幕| 又粗又硬又长又爽又黄的视频| 国产黄色视频一区二区在线观看| 亚洲成色77777| 又粗又硬又长又爽又黄的视频| 三级国产精品片| 女性生殖器流出的白浆| 国国产精品蜜臀av免费| 久久精品国产a三级三级三级| 大话2 男鬼变身卡| 久久97久久精品| 国产成人精品一,二区| 一级,二级,三级黄色视频| 视频中文字幕在线观看| 男人添女人高潮全过程视频| 最黄视频免费看| 欧美 亚洲 国产 日韩一| 国产午夜精品一二区理论片| 人人妻人人澡人人看| 热99国产精品久久久久久7| 亚洲精品一二三| 国产极品粉嫩免费观看在线| 97精品久久久久久久久久精品| 精品人妻熟女毛片av久久网站| 久久这里只有精品19| 老司机影院成人| 欧美人与善性xxx| 搡女人真爽免费视频火全软件| 五月天丁香电影| 99re6热这里在线精品视频| 国产精品秋霞免费鲁丝片| 国产精品嫩草影院av在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 美女主播在线视频| 国产成人aa在线观看| www.av在线官网国产| 18禁裸乳无遮挡动漫免费视频| 亚洲精品第二区| 日韩熟女老妇一区二区性免费视频| 亚洲国产欧美在线一区| 欧美成人午夜精品| 大话2 男鬼变身卡| 亚洲高清免费不卡视频| 亚洲成av片中文字幕在线观看 | 国产片内射在线| 久久久久久久国产电影| 1024视频免费在线观看| 中文字幕精品免费在线观看视频 | 国产精品久久久久久av不卡| 久热这里只有精品99| 观看av在线不卡| 老司机影院成人| 捣出白浆h1v1| 激情五月婷婷亚洲| 国产成人精品一,二区| 久久99蜜桃精品久久| 最后的刺客免费高清国语| 日韩在线高清观看一区二区三区| 久久久久视频综合| 中文字幕免费在线视频6| 精品福利永久在线观看| 99九九在线精品视频| 国产又色又爽无遮挡免| 中文精品一卡2卡3卡4更新| 999精品在线视频| 寂寞人妻少妇视频99o| 欧美成人午夜精品| 99视频精品全部免费 在线| av一本久久久久| 亚洲国产精品国产精品| 婷婷色综合大香蕉| 一边摸一边做爽爽视频免费| 国产免费福利视频在线观看| 亚洲婷婷狠狠爱综合网| 国产在线视频一区二区| 亚洲国产欧美在线一区| av黄色大香蕉| 国产欧美日韩综合在线一区二区| a级毛色黄片| 欧美日韩一区二区视频在线观看视频在线| 91在线精品国自产拍蜜月| 亚洲三级黄色毛片| 日韩大片免费观看网站| 日韩制服丝袜自拍偷拍| 制服诱惑二区| 久久久久国产精品人妻一区二区| 久久人妻熟女aⅴ| 国产成人av激情在线播放| 国产精品麻豆人妻色哟哟久久| 中文欧美无线码| 免费日韩欧美在线观看| 精品国产露脸久久av麻豆| 在线观看国产h片| 男女午夜视频在线观看 | 欧美日韩亚洲高清精品| 亚洲av国产av综合av卡| 亚洲欧美中文字幕日韩二区| 日本免费在线观看一区| 91精品伊人久久大香线蕉| 亚洲人成网站在线观看播放| 国产国拍精品亚洲av在线观看| 久久久久久久大尺度免费视频| 人成视频在线观看免费观看| av天堂久久9| 国产乱人偷精品视频| 久久99蜜桃精品久久| 女性被躁到高潮视频| 国产在线免费精品| 久久综合国产亚洲精品| 午夜视频国产福利| 国产国拍精品亚洲av在线观看| 韩国精品一区二区三区 | 国产在线一区二区三区精| 超色免费av| 亚洲精品日本国产第一区| 久久久久久久久久久免费av| 看免费av毛片| 亚洲成av片中文字幕在线观看 | 亚洲婷婷狠狠爱综合网| 国产成人精品福利久久| 黄色怎么调成土黄色| 久久精品熟女亚洲av麻豆精品| 国产一区二区在线观看av| 青春草国产在线视频| 满18在线观看网站| 一本久久精品| 国产高清不卡午夜福利| 热re99久久国产66热| 高清视频免费观看一区二区| 在线观看国产h片| 涩涩av久久男人的天堂| 最近中文字幕2019免费版| 日韩伦理黄色片| 久久影院123| 国产一级毛片在线| 亚洲精品美女久久av网站| 观看av在线不卡| 18禁在线无遮挡免费观看视频| tube8黄色片| 亚洲激情五月婷婷啪啪| 综合色丁香网| 亚洲精品一区蜜桃| 国产成人精品久久久久久| 精品一区在线观看国产| 在线亚洲精品国产二区图片欧美| 国产av码专区亚洲av| 少妇的逼好多水| 妹子高潮喷水视频| 国产精品一区二区在线观看99| 亚洲精品色激情综合| 亚洲欧美一区二区三区国产| 欧美人与善性xxx| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美日韩另类电影网站| 国产在线视频一区二区| 99热网站在线观看| 中文字幕制服av| 在线观看免费日韩欧美大片| 黄色视频在线播放观看不卡| 狠狠婷婷综合久久久久久88av| 国产1区2区3区精品| 欧美+日韩+精品| 91久久精品国产一区二区三区| 国产又爽黄色视频| 久久久久久伊人网av| 中文字幕制服av| 国产精品无大码| 亚洲五月色婷婷综合| 满18在线观看网站| 夜夜骑夜夜射夜夜干| 免费av不卡在线播放| 亚洲,一卡二卡三卡| 伦精品一区二区三区| av一本久久久久| 精品一品国产午夜福利视频| 亚洲一级一片aⅴ在线观看| 老熟女久久久| 国产欧美日韩综合在线一区二区| 婷婷成人精品国产| 免费高清在线观看视频在线观看| 国产成人aa在线观看| 午夜福利网站1000一区二区三区| 精品久久久精品久久久| 久久久国产精品麻豆| 亚洲精品久久午夜乱码| 熟女av电影| 男女高潮啪啪啪动态图| 成年动漫av网址| 自拍欧美九色日韩亚洲蝌蚪91| 免费黄频网站在线观看国产| 草草在线视频免费看| 欧美成人精品欧美一级黄| 这个男人来自地球电影免费观看 | 精品久久久精品久久久| 90打野战视频偷拍视频| 卡戴珊不雅视频在线播放| 看免费成人av毛片| 国产成人av激情在线播放| 欧美激情 高清一区二区三区| 久久久精品94久久精品| 精品一品国产午夜福利视频| 在线观看三级黄色| av在线老鸭窝| 色吧在线观看| 男女午夜视频在线观看 | 久久精品aⅴ一区二区三区四区 | 免费观看性生交大片5| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 综合色丁香网| 午夜福利,免费看| 青春草亚洲视频在线观看| 蜜桃在线观看..| av一本久久久久| 考比视频在线观看| 97在线视频观看| av视频免费观看在线观看| 夫妻午夜视频| 成人午夜精彩视频在线观看| 色哟哟·www| 久久国产精品男人的天堂亚洲 | 久久精品国产鲁丝片午夜精品| 精品国产一区二区久久| 熟妇人妻不卡中文字幕| 日韩中字成人| 亚洲国产成人一精品久久久| 日韩中字成人| 在线亚洲精品国产二区图片欧美| 欧美日韩视频高清一区二区三区二| 18禁国产床啪视频网站| 伦理电影免费视频| 日韩在线高清观看一区二区三区| 丰满乱子伦码专区| 国产成人午夜福利电影在线观看| 欧美精品av麻豆av| 蜜桃在线观看..| 久久午夜综合久久蜜桃| 国产伦理片在线播放av一区| 欧美性感艳星| 在线精品无人区一区二区三| 色视频在线一区二区三区| 精品人妻熟女毛片av久久网站| 久久久久久久精品精品| 国产一区二区三区综合在线观看 | 国产免费福利视频在线观看| 在现免费观看毛片| 国产免费福利视频在线观看| 亚洲精品日本国产第一区| 亚洲精品aⅴ在线观看| 亚洲国产精品成人久久小说| 久久免费观看电影| 亚洲欧美日韩另类电影网站| 免费高清在线观看视频在线观看| 在线观看www视频免费| 国产一区二区三区av在线| 美女视频免费永久观看网站| 99香蕉大伊视频| 国产爽快片一区二区三区| 亚洲av成人精品一二三区| 国产爽快片一区二区三区| 日本色播在线视频| 亚洲国产成人一精品久久久| 精品国产一区二区久久| 新久久久久国产一级毛片| 久久久久视频综合| 久久狼人影院| 精品一区在线观看国产| 亚洲国产精品999| 久久青草综合色| 看十八女毛片水多多多| 最后的刺客免费高清国语| 成年美女黄网站色视频大全免费| 女性被躁到高潮视频| 国产精品 国内视频| 99热全是精品| 国产 一区精品| 免费黄网站久久成人精品| 亚洲av.av天堂| 国产xxxxx性猛交| 欧美另类一区| 久久久久久久久久成人| 亚洲精品av麻豆狂野| 亚洲人成77777在线视频| 一本大道久久a久久精品| 边亲边吃奶的免费视频| 少妇 在线观看| 日本与韩国留学比较| 欧美 日韩 精品 国产| 精品一区二区三区四区五区乱码 | 菩萨蛮人人尽说江南好唐韦庄| 国产高清三级在线| 九色成人免费人妻av| 18+在线观看网站| 久久久久久久精品精品| 国产成人精品在线电影| 久久国内精品自在自线图片| 天天躁夜夜躁狠狠久久av| 人妻系列 视频| 观看av在线不卡| 国产乱人偷精品视频| 亚洲国产欧美在线一区| 国产午夜精品一二区理论片| 天美传媒精品一区二区| 国产白丝娇喘喷水9色精品| 夜夜骑夜夜射夜夜干| 久久久久久久久久久久大奶| 性色av一级| 久久精品久久久久久噜噜老黄| av在线app专区| 大片电影免费在线观看免费| 亚洲精品色激情综合| 另类精品久久| 日韩人妻精品一区2区三区| 亚洲精品国产av成人精品| 波野结衣二区三区在线| 精品少妇内射三级| 黄色配什么色好看| 亚洲精品av麻豆狂野| 国产在线免费精品| 最近中文字幕高清免费大全6| 亚洲,欧美,日韩| 国产成人av激情在线播放| 亚洲在久久综合| 中文字幕最新亚洲高清| 国产精品国产av在线观看| 国产精品人妻久久久影院| 一个人免费看片子| 亚洲国产av新网站| 天天躁夜夜躁狠狠躁躁| 久久精品国产自在天天线| 久久久久久久大尺度免费视频| 亚洲色图 男人天堂 中文字幕 | 久久久久久久国产电影| 亚洲一区二区三区欧美精品| 97人妻天天添夜夜摸| 欧美精品人与动牲交sv欧美| 国产精品嫩草影院av在线观看| 国产av码专区亚洲av| 精品国产国语对白av| 久久久国产精品麻豆| 91精品国产国语对白视频| 捣出白浆h1v1| 久久久久久久精品精品| 99re6热这里在线精品视频| 青青草视频在线视频观看| 熟女av电影| 制服人妻中文乱码| 精品人妻在线不人妻| 国产亚洲午夜精品一区二区久久| 午夜福利乱码中文字幕| 国产国拍精品亚洲av在线观看| 精品视频人人做人人爽| 免费久久久久久久精品成人欧美视频 | 欧美丝袜亚洲另类| 国产成人91sexporn| 在线观看免费视频网站a站| 日韩成人av中文字幕在线观看| 亚洲成人av在线免费| 亚洲人与动物交配视频| 亚洲av成人精品一二三区| 精品视频人人做人人爽| 亚洲色图综合在线观看| 高清黄色对白视频在线免费看| 另类精品久久| 国产欧美另类精品又又久久亚洲欧美| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 春色校园在线视频观看| 蜜臀久久99精品久久宅男| 国产在线一区二区三区精| 欧美另类一区| 人人妻人人澡人人爽人人夜夜| 欧美日韩av久久| 久久精品国产自在天天线| 成人综合一区亚洲| 综合色丁香网| 国产免费福利视频在线观看| 成人二区视频| 久久久久视频综合| 精品少妇黑人巨大在线播放| 欧美国产精品va在线观看不卡| 国产一区二区三区av在线| 亚洲国产毛片av蜜桃av| 天美传媒精品一区二区| 亚洲av日韩在线播放| 美女视频免费永久观看网站| 欧美精品国产亚洲| 国产成人一区二区在线| 2021少妇久久久久久久久久久| 亚洲精品,欧美精品| 丁香六月天网| 黄片播放在线免费| 免费观看av网站的网址| 国产精品久久久久久精品古装| 爱豆传媒免费全集在线观看| 伦精品一区二区三区| 国产亚洲精品久久久com| 日本av免费视频播放| 一级爰片在线观看| xxxhd国产人妻xxx| 纵有疾风起免费观看全集完整版| 在线亚洲精品国产二区图片欧美| 亚洲欧洲日产国产| 日韩熟女老妇一区二区性免费视频| 97人妻天天添夜夜摸| 人人妻人人澡人人看| 少妇的逼水好多| 欧美日韩国产mv在线观看视频| 超色免费av| 国产高清三级在线| 91在线精品国自产拍蜜月| 国产免费一级a男人的天堂| 18禁动态无遮挡网站| 一级a做视频免费观看| 色94色欧美一区二区| 97人妻天天添夜夜摸| 在线观看免费日韩欧美大片| 国产欧美日韩一区二区三区在线| 在线观看三级黄色| 亚洲国产日韩一区二区| 亚洲国产色片| 久久这里只有精品19| a级片在线免费高清观看视频| 一级毛片我不卡| 午夜福利网站1000一区二区三区| 久久人人爽人人片av| 少妇被粗大猛烈的视频| 久久精品国产综合久久久 | 久久久久久人妻| 一级毛片电影观看| 人体艺术视频欧美日本| 国产无遮挡羞羞视频在线观看| 中文精品一卡2卡3卡4更新| www.av在线官网国产| 一二三四在线观看免费中文在 | 中文字幕制服av| 男女高潮啪啪啪动态图| 香蕉丝袜av| 丝袜在线中文字幕| 色哟哟·www| 色网站视频免费| 999精品在线视频| 色哟哟·www| 色网站视频免费| 极品少妇高潮喷水抽搐| 国产亚洲午夜精品一区二区久久| 久久久久久久久久人人人人人人| 久久久精品区二区三区| 一级片'在线观看视频| 90打野战视频偷拍视频| 久久久精品区二区三区| 一级片'在线观看视频| 亚洲成色77777| 久久精品久久久久久久性| 欧美精品国产亚洲| 亚洲成色77777| 欧美3d第一页| 2018国产大陆天天弄谢| 国产男女超爽视频在线观看| 久久精品久久久久久久性| 亚洲内射少妇av| 精品国产一区二区三区久久久樱花| 妹子高潮喷水视频| 亚洲欧洲日产国产| 熟女电影av网| 纯流量卡能插随身wifi吗| 国产片内射在线| 亚洲欧美精品自产自拍| 中文字幕制服av| 国产精品一区二区在线不卡| 亚洲av日韩在线播放|