王冠 劉蘇賢 趙浩然 李波
摘? ?要:隨著電動(dòng)汽車(chē)的普及,大規(guī)模電動(dòng)汽車(chē)入網(wǎng)對(duì)配電網(wǎng)造成的影響愈加明顯. 在該背景下,提出了考慮電動(dòng)汽車(chē)充電樁無(wú)功響應(yīng)能力的充電站實(shí)時(shí)滾動(dòng)優(yōu)化調(diào)度策略,充分考慮電動(dòng)汽車(chē)的時(shí)空分布特性以及充電站與電網(wǎng)之間的有功無(wú)功交互能力,建立雙層模型分別從時(shí)間和空間上對(duì)充電站的有功無(wú)功進(jìn)行優(yōu)化調(diào)度. 分別采用二次規(guī)劃、二階錐規(guī)劃對(duì)上、下層模型進(jìn)行求解,最后以改進(jìn)的IEEE33節(jié)點(diǎn)配電網(wǎng)系統(tǒng)進(jìn)行仿真,仿真結(jié)果表明該策略可以有效降低系統(tǒng)負(fù)荷峰谷差,減小系統(tǒng)網(wǎng)損,改善系統(tǒng)電壓水平.
關(guān)鍵詞:電動(dòng)汽車(chē);無(wú)功響應(yīng);時(shí)空分布;實(shí)時(shí)滾動(dòng)優(yōu)化
中圖分類(lèi)號(hào):TM7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A
Optimal Dispatching Strategy Considering
Reactive Response of Electric Vehicle Charging Piles
WANG Guan LIU Suxian ZHAO Haoran LI Bo
(1. School of Electrical Engineering,Shandong University,Jinan 250061,China;
2. Shandong Provincial Key Laboratory of UHV Transmission Technology and Equipment,Shandong University,Jinan 250061,China;
3. State Grid Shandong Electric Power Company Zaozhuang Power Supply Company,Zaozhuang 277100,China;
4. Shandong Shanda Industry Group,Shandong University,Jinan 250061,China)
Abstract:With the popularity of electric vehicles,the impact of large-scale electric vehicles on the distribution grid will become more apparent. In this context,a real-time rolling optimization strategy for charging stations considering the reactive response capability of charging piles is proposed. The spatial and temporal distribution characteristics of electric vehicles and the active and reactive interaction capability between charging stations and power grids are fully considered. A two-layer model is established to optimize the active and reactive power of the charging station in time and space. The quadratic programming and the second-order cone programming are used to solve the upper and lower models. Finally,the simulation is carried out with the improved IEEE33 node distribution network system,and the simulation results show that the strategy can effectively reduce the load peak and valley difference as well as the active power loss of the system and improve the voltage level of the network.
Key words:electric vehicle;reactive power response;temporal and spatial distribution;real-time rolling optimization
近年來(lái),為應(yīng)對(duì)日益嚴(yán)峻的能源短缺與環(huán)境污染問(wèn)題,光伏發(fā)電以及電動(dòng)汽車(chē)受到廣泛關(guān)注[1-2]. 間歇性光伏發(fā)電的廣泛應(yīng)用導(dǎo)致電網(wǎng)等效負(fù)荷峰谷差變大,光伏電源滲透率過(guò)高產(chǎn)生的反向功率流導(dǎo)致電網(wǎng)電壓越限[3],增加了配電系統(tǒng)的運(yùn)行壓力;電動(dòng)汽車(chē)的大規(guī)模入網(wǎng)增加了系統(tǒng)的負(fù)荷,導(dǎo)致系統(tǒng)電壓下降,網(wǎng)絡(luò)損耗增加[4-5],也給電網(wǎng)的安全穩(wěn)定運(yùn)行帶來(lái)了巨大的挑戰(zhàn). 但如果能將電動(dòng)汽車(chē)作為配電網(wǎng)的可控資源進(jìn)行合理調(diào)度,不僅可以抑制無(wú)序充電對(duì)配網(wǎng)造成的負(fù)面影響,還能夠抑制光伏出力波動(dòng),豐富系統(tǒng)的控制手段[6-7].
目前,學(xué)者就電動(dòng)汽車(chē)充放電調(diào)度策略開(kāi)展了大量的研究,大多數(shù)集中在控制有功功率上. 文獻(xiàn)[8-10]從電動(dòng)汽車(chē)的角度分析,根據(jù)各時(shí)段的預(yù)測(cè)充電量,通過(guò)實(shí)行實(shí)時(shí)電價(jià)的方式引導(dǎo)用戶錯(cuò)峰充電,降低用戶充電成本. 文獻(xiàn)[11-15]從微電網(wǎng)的角度分析,通過(guò)優(yōu)化電動(dòng)汽車(chē)各時(shí)段有功功率的方式來(lái)削峰填谷和降低系統(tǒng)的網(wǎng)損. 新的研究證明通過(guò)逆變器控制可以實(shí)現(xiàn)電動(dòng)汽車(chē)與電網(wǎng)之間的有功及無(wú)功交互[16-19]. 已有學(xué)者就電動(dòng)汽車(chē)到配電網(wǎng)(Vehicle-to-grid,V2G)的無(wú)功功率進(jìn)行了研究,通過(guò)優(yōu)化各時(shí)段電動(dòng)汽車(chē)的有功及無(wú)功或是建立電壓無(wú)功優(yōu)化模型來(lái)達(dá)到降低網(wǎng)絡(luò)損耗的目的[20-21]. 但是,文獻(xiàn)[20-21]未充分考慮電動(dòng)汽車(chē)的充電需求和不確定性,忽視了用戶特性. 文獻(xiàn)[22]綜合考慮實(shí)際因素,建立了電壓無(wú)功優(yōu)化模型,用于充電協(xié)調(diào)和V2G無(wú)功調(diào)度. 文獻(xiàn)[23-24]采用求解速度快的線性規(guī)劃和非線性規(guī)劃方法求解模型,以應(yīng)對(duì)快速變化的充電場(chǎng)景. 文獻(xiàn)[25]采用錐優(yōu)化的方法進(jìn)行求解,求解速度快、效果好. 然而,已有的有關(guān)V2G無(wú)功方面的研究?jī)H考慮了電動(dòng)汽車(chē)在無(wú)功優(yōu)化方面的作用,卻沒(méi)有把電動(dòng)汽車(chē)作為儲(chǔ)能方面的作用(削峰填谷、促進(jìn)可再生能源消納等)與之結(jié)合起來(lái).
本文考慮了電動(dòng)汽車(chē)充電樁的無(wú)功響應(yīng)能力,充分發(fā)揮V2G有功及無(wú)功的作用,對(duì)多個(gè)充電站的有功無(wú)功充放進(jìn)行優(yōu)化調(diào)度. 首先以負(fù)荷峰谷差率最低為目標(biāo),利用二次規(guī)劃方法求取各時(shí)段電動(dòng)汽車(chē)的最優(yōu)充放電功率;在此基礎(chǔ)上,以系統(tǒng)網(wǎng)損最低為目標(biāo),利用二階錐規(guī)劃對(duì)本時(shí)段各充電站的有功及無(wú)功進(jìn)行優(yōu)化,并采用滾動(dòng)優(yōu)化的方法,加入反饋校正環(huán)節(jié),以應(yīng)對(duì)光伏出力及電動(dòng)汽車(chē)充放電的不確定性.
1? ?充電樁無(wú)功響應(yīng)原理
2? ?優(yōu)化調(diào)度架構(gòu)
3? ?優(yōu)化調(diào)度策略
3.1? ?雙層模型
3.1.1? ?實(shí)時(shí)調(diào)度層
在當(dāng)前時(shí)段起始時(shí)刻,結(jié)合超短期預(yù)測(cè)數(shù)據(jù)對(duì)日等效負(fù)荷曲線進(jìn)行校正,基于校正后的等效負(fù)荷曲線,以降低等效負(fù)荷峰谷差為目標(biāo),對(duì)未來(lái)各時(shí)段電動(dòng)汽車(chē)的充放電功率進(jìn)行優(yōu)化. 以每小時(shí)為單位將一天分成24個(gè)時(shí)段,實(shí)時(shí)調(diào)度層優(yōu)化目標(biāo)表示如下.
3.1.2? ?功率分配層
根據(jù)實(shí)時(shí)調(diào)度層的優(yōu)化結(jié)果可以獲取本時(shí)段全系統(tǒng)電動(dòng)汽車(chē)的最優(yōu)充放電功率,以此為約束,在功率分配層對(duì)本時(shí)段各充電站有功與無(wú)功的輸入輸出進(jìn)行優(yōu)化. 功率分配層的優(yōu)化目標(biāo)表示如下.
3.2? ?滾動(dòng)優(yōu)化
一方面,可再生能源出力以及負(fù)荷的預(yù)測(cè)值與實(shí)際值存在偏差;另一方面,該策略中對(duì)電動(dòng)汽車(chē)進(jìn)行分群調(diào)度,未考慮每一輛電動(dòng)汽車(chē)具體的申請(qǐng)信息,電動(dòng)汽車(chē)實(shí)際充放電情況可能偏離調(diào)度計(jì)劃,此外,車(chē)主的充放電行為具有主觀性,申請(qǐng)信息可能臨時(shí)出現(xiàn)變動(dòng). 因此,本文采用滾動(dòng)優(yōu)化調(diào)度的方法,加入反饋校正環(huán)節(jié),具體流程如圖4所示.
1)當(dāng)前時(shí)段,結(jié)合本日可再生能源出力及負(fù)荷需求之前時(shí)段、超短期預(yù)測(cè)及日前預(yù)測(cè)數(shù)據(jù),以及所有車(chē)主的預(yù)約信息,在實(shí)時(shí)調(diào)度層對(duì)本日未來(lái)各時(shí)段電動(dòng)汽車(chē)的充放電功率進(jìn)行優(yōu)化,從而獲取全系統(tǒng)當(dāng)前時(shí)段的最優(yōu)充放電功率.
2)在功率分配層,結(jié)合當(dāng)前各充電站車(chē)主預(yù)約信息,以實(shí)時(shí)調(diào)度層的優(yōu)化結(jié)果為約束,合理分配各充電站電動(dòng)汽車(chē)充放電功率,同時(shí)結(jié)合雙向變換器的容量限制,對(duì)各充電站的無(wú)功大小及方向進(jìn)行優(yōu)化.
3)下一時(shí)段,更新之前時(shí)段、超短期預(yù)測(cè)、日前預(yù)測(cè)數(shù)據(jù);更新各充電站車(chē)主預(yù)約信息. 重復(fù)上述步驟,直到本日所有時(shí)段調(diào)度完成.
4? ?仿真實(shí)例
本文利用MATLAB進(jìn)行編程,選取IEEE33節(jié)點(diǎn)配電系統(tǒng)進(jìn)行測(cè)試仿真,并對(duì)該系統(tǒng)進(jìn)行改進(jìn),系統(tǒng)拓?fù)淙鐖D5所示. 光伏電站安裝在節(jié)點(diǎn)5、18、31,裝機(jī)容量分別為2.5、2、2.5 MVA,采用恒功率因數(shù)控制并網(wǎng),功率因數(shù)為0.95. 充電站建立在節(jié)點(diǎn)15、23、26,各充電站選用集中式變流器并網(wǎng),雙向變流器最大視在容量為0.6 MVA,充放電效率均為95%. 系統(tǒng)基準(zhǔn)電壓為12.66 kV,基準(zhǔn)容量為10 MVA,根節(jié)點(diǎn)電壓為 pu,可以通過(guò)改變變壓器變比進(jìn)行調(diào)節(jié),其余節(jié)點(diǎn)電壓允許變化范圍為[0.95~1.05]pu,支路最大允許電流為500 A.
4.1? ?負(fù)荷谷時(shí)段
在10:00,開(kāi)始第一輪的調(diào)度,實(shí)時(shí)調(diào)度層的優(yōu)化調(diào)度結(jié)果如圖7所示,得到10:00-11:00電動(dòng)汽車(chē)的最優(yōu)充電功率為0,功率分配層所求得的各充電站的最優(yōu)充電功率自然也均為0. 對(duì)比圖中兩條曲線也可以看出,通過(guò)合理控制電動(dòng)汽車(chē)的充放電功率能夠達(dá)到“削峰填谷”的效果,明顯改善了系統(tǒng)負(fù)荷的峰谷差.
倘若存在申請(qǐng)時(shí)段為10:00-11:00的用戶,為了滿足其充電要求,10:00-11:00各充電站實(shí)際充電功率分別為50、80、70 kW,進(jìn)入下一時(shí)段后,對(duì)本時(shí)段負(fù)荷的實(shí)際數(shù)據(jù)進(jìn)行校正,如圖8中第11個(gè)時(shí)段(10:00-11:00)所示. 在第12個(gè)時(shí)段(11:00-12:00),原始負(fù)荷等于基礎(chǔ)負(fù)荷減去光伏出力,光伏出力的超短期預(yù)測(cè)平均功率比日前預(yù)測(cè)增加了100 kW,因此原始負(fù)荷減少100 kW. 對(duì)該時(shí)段的負(fù)荷曲線校正后重新優(yōu)化的結(jié)果如圖8中帶有方框的實(shí)線所示,優(yōu)化充電功率為原始負(fù)荷加上充電負(fù)荷,由此得到本時(shí)段最優(yōu)充電功率為700 kW.
與方案1相比,方案2中充電站的有功優(yōu)化可以顯著改善系統(tǒng)節(jié)點(diǎn)電壓水平,但在降低系統(tǒng)網(wǎng)損方面取得的效果不明顯;方案3考慮充電樁的無(wú)功響應(yīng)對(duì)充電站進(jìn)行有功無(wú)功優(yōu)化可以顯著降低系統(tǒng)網(wǎng)損,并進(jìn)一步減小了系統(tǒng)節(jié)點(diǎn)電壓偏差. 圖9顯示了按照方案1~3對(duì)EV進(jìn)行調(diào)度后,IEEE33節(jié)點(diǎn)配電系統(tǒng)各節(jié)點(diǎn)電壓幅值變化情況. 從該圖可以看出,初始情況下,由于光伏滲透率過(guò)高出現(xiàn)功率倒送,引起光伏電站附近節(jié)點(diǎn)電壓過(guò)高,若光伏出力進(jìn)一步增加,很容易造成節(jié)點(diǎn)電壓越限[28];在方案2中,通過(guò)對(duì)電動(dòng)汽車(chē)進(jìn)行充電吸收部分光伏的過(guò)剩出力,能夠有效降低各節(jié)點(diǎn)電壓幅值. 通過(guò)對(duì)比,可以發(fā)現(xiàn)方案3在調(diào)節(jié)節(jié)點(diǎn)電壓偏移方面具有更好的優(yōu)化效果.
4.2? ?負(fù)荷峰時(shí)段
假設(shè)第19個(gè)時(shí)段(18:00-19:00),實(shí)時(shí)調(diào)度層的優(yōu)化結(jié)果與圖7相同. 電動(dòng)汽車(chē)最優(yōu)放電功率為937.5 kW.
分別按照前述方案1~3進(jìn)行求解,EV調(diào)度方案和相應(yīng)的評(píng)價(jià)函數(shù)值如表4所示. 對(duì)比表3表4數(shù)據(jù),可以發(fā)現(xiàn)在負(fù)荷峰時(shí)段,系統(tǒng)有功網(wǎng)損及節(jié)點(diǎn)電壓偏移都要比谷時(shí)段更加嚴(yán)重. 與初始情況相比,電動(dòng)汽車(chē)有序放電可以減小節(jié)點(diǎn)電壓偏差和網(wǎng)絡(luò)有功損耗,若考慮電動(dòng)汽車(chē)充電樁的無(wú)功響應(yīng)能力,則可以進(jìn)一步降低節(jié)點(diǎn)電壓偏差及系統(tǒng)網(wǎng)損. 圖10顯示了按照方案1~3對(duì)EV進(jìn)行調(diào)度后,IEEE 33節(jié)點(diǎn)配電系統(tǒng)各節(jié)點(diǎn)電壓幅值的變化情況. 由圖可知,初始情況下,由于負(fù)荷過(guò)重,多個(gè)節(jié)點(diǎn)出現(xiàn)了不同程度的越限,電動(dòng)汽車(chē)儲(chǔ)能的接入可以有效提高電壓質(zhì)量較差節(jié)點(diǎn)處電壓的幅值. 對(duì)比方案2與方案3可以看出,當(dāng)考慮充電樁的無(wú)功響應(yīng)時(shí),通過(guò)無(wú)功優(yōu)化即可以降低系統(tǒng)有功網(wǎng)損,也能夠有效減少電壓幅值變化范圍,從而使得系統(tǒng)各節(jié)點(diǎn)電壓幅值更接近根節(jié)點(diǎn)電壓,系統(tǒng)電壓分布更加均勻.
5? ?結(jié)? ?論
本文考慮了電動(dòng)汽車(chē)充電樁的無(wú)功響應(yīng)能力,提出了電動(dòng)汽車(chē)充電站的有功及無(wú)功調(diào)度策略;充分考慮了電動(dòng)汽車(chē)的充放電需求及不確定性,采用了實(shí)時(shí)滾動(dòng)優(yōu)化調(diào)度方法,同時(shí)考慮了電動(dòng)汽車(chē)充放電的時(shí)空分布特性,建立了雙層優(yōu)化模型,并分別采用二次規(guī)劃、二階錐規(guī)劃求解模型. 仿真結(jié)果表明,本文所采用的算法可以快速獲得全局最優(yōu)解,所提調(diào)度策略可以有效降低負(fù)荷峰谷差,降低系統(tǒng)網(wǎng)損,減小節(jié)點(diǎn)電壓偏差等.
參考文獻(xiàn)
[1]? ? 孟軍,徐先勇,方璐,等. 光伏發(fā)電逆變并網(wǎng)系統(tǒng)復(fù)合控制策略[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,44(4):87—93.MENG J,XU X Y,F(xiàn)ANG L,et al. Hybrid control strategy of photovoltaic generation inverter grid-connected operating system[J]. Journal of Hunan University(Natural Sciences),2017,44(4):87—93. (In Chinese)
[2]? ? 李萬(wàn)路,汪泉弟,李景紅,等. 無(wú)線充電系統(tǒng)耦合器自感與互感的非線性研究[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,47(10):76—85.LI W L,WANG Q D,LI J H,et al. Study on nonlinearity of self-inductance and mutual inductance for couplers of wireless charging systems[J]. Journal of Hunan University(Natural Sciences),2020,47(10):76—85. (In Chinese)
[3]? ? 許曉艷,黃越輝,劉純,等. 分布式光伏發(fā)電對(duì)配電網(wǎng)電壓的影響及電壓越限的解決方案[J]. 電網(wǎng)技術(shù),2010,34(10):140—146.XU X Y,HUANG Y H,LIU C,et al. Influence of distributed photovoltaic generation on voltage in distribution network and solution of voltage beyond limits[J]. Power System Technology,2010,34 (10):140—146. (In Chinese)
[4]? ? 趙俊華,文福拴,楊?lèi)?ài)民,等. 電動(dòng)汽車(chē)對(duì)電力系統(tǒng)的影響及其調(diào)度與控制問(wèn)題[J]. 電力系統(tǒng)自動(dòng)化,2011,35(14):2—10,29.ZHAO J H,WEN F S,YANG A M,et al. Impacts of electric vehicles on power systems as well as the associated dispatching and control problem[J]. Automation of Electric Power Systems,2011,35(14):2—10,29. (In Chinese)
[5]? ? CLEMENT-NYNS K,HAESEN E,DRIESEN J. The impact of charging plug-In hybrid electric vehicles on a residential distribution grid[J]. IEEE Transactions on Power Systems,2010,25(1):371—380.
[6]? ? 王錫凡,邵成成,王秀麗,等. 電動(dòng)汽車(chē)充電負(fù)荷與調(diào)度控制策略綜述[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2013,33(1):1—10.WANG X F,SHAO C C,WANG X L,et al. Survey of electric vehicle charging load and dispatch control strategies[J]. Proceedings of the CSEE,2013,33(1):1—10. (In Chinese)
[7]? ? 孔祥玉,呂鑫鵬,董旭柱,等. 基于負(fù)荷分類(lèi)評(píng)估的配電網(wǎng)可靠性分析方法[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,45(4):104—111.KONG X Y,L?譈 X P,DONG X Z,et al. Reliability analysis method of distribution network based on load classification evaluation[J]. Journal of Hunan University(Natural Sciences),2018,45(4):104—111. (In Chinese)
[8]? ? 佟晶晶,溫俊強(qiáng),王丹,等. 基于分時(shí)電價(jià)的電動(dòng)汽車(chē)多目標(biāo)優(yōu)化充電策略[J]. 電力系統(tǒng)保護(hù)與控制,2016,44(1):17—23.TONG J J,WEN J Q,WANG D,et al. Multi-objective optimization charging strategy for plug-in electric vehicles based on time-of-use price[J]. Power System Protection and Control,2016,44 (1):17—23. (In Chinese)
[9]? ? 顏湘武,李艷艷,張合川,等. 基于變權(quán)分析方法的電動(dòng)汽車(chē)充電設(shè)備性能綜合評(píng)價(jià)[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,41(5):86—93.YAN X W,LI Y Y,ZHANG H C,et al. Comprehensive evaluation of EV charging equipment performance based on variable weights analysis method[J]. Journal of Hunan University( Natural Sciences),2014,41(5):86—93. (In Chinese)
[10]? 趙玉,徐天奇,李琰,等. 基于分時(shí)電價(jià)的電動(dòng)汽車(chē)調(diào)度策略研究[J]. 電力系統(tǒng)保護(hù)與控制,2020,48(11):92—101.ZHAO Y,XU T Q,LI Y,et al. Research on electric vehicle scheduling strategy based on time-shared electricity price[J]. Power System Protection and Control,2020,48(11):92—101. (In Chinese)
[11]? 許翔泰,張仰飛,陳光宇,等. 計(jì)及光伏發(fā)電的電動(dòng)汽車(chē)充電優(yōu)化調(diào)度研究[J]. 智慧電力,2019,47(10):44—50.XU X T,ZHANG Y F,CHEN G Y,et al. Optimal scheduling of charging for electric vehicle considering photovoltaic power generation[J]. New Energy,2019,47(10):44—50. (In Chinese)
[12]? 李媛媛,葛愿,徐正偉,等. 計(jì)及電動(dòng)汽車(chē)充電排隊(duì)的微電網(wǎng)優(yōu)化調(diào)度研究[J]. 安徽工程大學(xué)學(xué)報(bào),2020,35(6):26—32.LI Y Y,GE Y,XU Z W,et al. Research on optimal dispatching of electric vehicles charging queue in microgrid[J]. Journal of Anhui Polytechnic University,2020,35(6):26—32. (In Chinese)
[13]? 占愷嶠,宋永華,胡澤春,等. 以降損為目標(biāo)的電動(dòng)汽車(chē)有序充電優(yōu)化[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2012,32(31):11—18,213.ZHAN K Q,SONG Y H,HU Z C,et al. Coordination of electric vehicle charging to minimize active power losses[J]. Proceedings of the CSEE,2012,32(31):11—18,213. (In Chinese)
[14]? MASOUM A S,DEILAMI S,MOSES P S,et al. Smart load management of plug-in electric vehicles in distribution and residential networks with charging stations for peak shaving and loss minimization considering voltage regulation[J]. IET Generation Transmission & Distribution,2011,5(8):877—888.
[15]? 張謙,劉超,周林,等. 計(jì)及可入網(wǎng)電動(dòng)汽車(chē)最優(yōu)時(shí)空分布的雙層經(jīng)濟(jì)調(diào)度模型[J]. 電力系統(tǒng)自動(dòng)化,2014,38(20):40—45.ZHANG Q,LIU C,ZHOU L,et al. A bi-level economy dispatch model considering temporal and spatial optimal distribution of electric vehicles[J]. Automation of Electric Power Systems,2014,38(20):40—45. (In Chinese)
[16]? KISACIKOGLU M C,OZPINECI B,TOLBERT L M. Reactive power operation analysis of a single-phase EV/PHEV bidirectional battery charger[C]// 8th International Conference on Power Electronics - ECCE. Korea (South):IEEE,2011:585—592.
[17]? KISACIKOGLU M C,OZPINECI B,TOLBERT L M. Examination of a PHEV bidirectional charger system for V2G reactive power compensation[C]// 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). Palm Springs,CA,USA:IEEE,2010:458—465.
[18]? FASUGBA M A,KREIN P T. Gaining vehicle-to-grid benefits with unidirectional electric and plug-in hybrid vehicle chargers[C]// 2011 IEEE Vehicle Power and Propulsion Conference. Chicago,IL,USA:IEEE 2011:1—6.
[19]? EHSANI M,F(xiàn)ALAHI M,LOTFIFARD S. Vehicle to grid services:potential and applications[J]. Energies,2012,5(10):4076—4090.
[20]? NAFISI H,AGAH S M M,ASKARIAN ABYANEH H,et al. Two-stage optimization method for energy loss minimization in microgrid based on smart power management scheme of PHEVs[J].IEEE Transactions on Smart Grid,2016,7(3):1268—1276.
[21]? MANBACHI M,F(xiàn)ARHANGI H,PALIZBAN A,et al. A novel volt-var optimization engine for smart distribution networks utilizing vehicle to grid dispatch[J]. International Journal of Electrical Power and Energy Systems,2016;74:238—251.
[22]? ZHANG W J,GANDHI O,QUAN H,et al. A multi-agent based integrated volt-var optimization engine for fast vehicle-to-grid reactive power dispatch and electric vehicle coordination[J]. Applied Energy,2018,229:96—110.
[23]? TAGHAVI R,SEIFIFI A R,SAMET H. Stochastic reactive power dispatch in hybrid power system with intermittent wind power generation[J]. Energy,2015,89:511—518.
[24]? SOLER E M,ASADA E N,DA COSTA G R. Penalty-based nonlinear solver for optimal reactive power dispatch with discrete controls[J]. IEEE Transaction Power System,2013;28(3):2174—2182.
[25]? JABR R A. Optimal placement of capacitors in a radial network using conic and mixed integer linear programming[J]. Electric Power Systems Research,2008,78(6):941—948.
[26]? 趙彪,于慶廣,王立雯,等. 用于電池儲(chǔ)能系統(tǒng)并網(wǎng)的雙向可拓展變流器及其分布式控制策略[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2011,31(S1):244—251.ZHAO B,YU Q G,WANG L W,et al. Bi-directional extensible converter and its distributed control strategy for battery energy storage grid-connected system[J]. Proceedings of the CSEE,2011,31(S1):244—251. (In Chinese)
[27]? 劉一兵,吳文傳,張伯明,等. 基于混合整數(shù)二階錐規(guī)劃的主動(dòng)配電網(wǎng)有功-無(wú)功協(xié)調(diào)多時(shí)段優(yōu)化運(yùn)行[J].中國(guó)電機(jī)工程學(xué)報(bào),2014,34(16):2575—2583.LIU Y B,WU W C,ZHANG B M,et al. A mixed integer second-order cone programming based active and reactive power[J]. Proceedings of the CSEE,2014,34(16):2575—2583. (In Chinese)
[28]? 柴園園,郭力,王成山,等. 含高滲透率光伏的配電網(wǎng)分布式電壓控制[J]. 電網(wǎng)技術(shù),2018,42(3):738—746.CHAI Y Y,GUO L,WANG C S,et al. Distributed voltage control in distribution networks with high penetration of PV[J]. Power System Technology,2018,42(3):738—746. (In Chinese)