• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and thermoelectric properties of Bi-doped SnSe thin films?

    2021-11-23 07:29:48JunPang龐軍XiZhang張析LimengShen申笠蒙JiayinXu徐家胤YaNie聶婭andGangXiang向鋼
    Chinese Physics B 2021年11期
    關(guān)鍵詞:徐家

    Jun Pang(龐軍), Xi Zhang(張析), Limeng Shen(申笠蒙),Jiayin Xu(徐家胤), Ya Nie(聶婭), and Gang Xiang(向鋼)

    College of Physics,Sichuan University,Chengdu 610064,China

    Keywords: SnSe thin films,Bi doping,thermoelectric properties,Seebeck coefficient

    1. Introduction

    Thermoelectric (TE) materials, enabling energy conversion between heat and electricity,[1,2]offer a possibility for electricity generation and refrigeration.[3-7]The efficiency of TE materials is usually measured by power factor (σS2) and a dimensionless figure of merit, which is defined asZT=σS2T/κ, whereσis the electrical conductivity,Sis the Seebeck coefficient,Tis the absolute temperature, andκis the thermal conductivity,respectively.A highσS2or a lowκis required for excellent thermoelectric materials. There are three strategies to optimizeZTvalues. First, the Seebeck coefficient can be increased through carrier doping or energy filtering of charge carriers.[8,9]Second, the electrical conductivity can be increased by lowering the effective mass of the carriers or modulation doping in a quantum well.[10,11]Third, the thermal conductivity can be reduced by adding interfaces and phonon scattering centers in a nanowire, nanotube, superlattice,alloy or composite.[12,13]Such methods are typically used in the synthesis of excellent polycrystalline thermoelectric materials.

    As a new generation of thermoelectric materials with great potential, SnSe and its related thermoelectric materials have drawn extensive attention for its excellent thermoelectric properties.[14-20]For example,Zhaoet al. reported that p-type SnSe single crystals exhibited ultralow thermal conductivity and an outstandingZTvalue of 2.6 at 923 K.[15]Bi doped ntype SnSe single crystals also showed a highZTvalue of 2.2 at 733 K.[16]Geet al. found that Re and Cl co-doping could significantly enhance the electrical transport performance and reduce the thermal conductivity of n-type SnSe bulk samples,which results in aZTvalue of 1.5 at 793 K.[18]As we know,thin film fabrication is important for modern micro-and nanodevices since thin film materials can be easily incorporated into complex structures for various applications.[21]Because of this, SnSe thin films have been extensively investigated and shown great potentials in the fields of miniaturized optoelectronic,photovoltaic,and thermoelectric devices.[22-24]At the same time, researches have shown that the thermoelectric and optoelectronic properties of p-type SnSe thin films can be improved by doping suitable elements such as Ag, Co, Pb,and Zn.[25-27]At the same time, n-type Bi-doped SnSe bulk samples have been studied and exhibited good thermoelectric properties.[16,28]However,the report on the synthesis of n-type SnSe thin films,especially Bi-doped SnSe thin films,is rare.

    In this work, we synthesized Bi-doped n-type SnSe thin films by chemical vapor deposition and investigated the thermoelectric properties of Bi-doped SnSe thin films. Our data show that the Seebeck coefficient of the Bi-doped SnSe thin films reaches a maximum absolute value of?905.8 μV·K?1at 600 K.Further first-principles calculations indicate that appropriate Bi-doping can shift the Fermi level up in the energy band and improve the overall thermoelectric performance of the SnSe thin films. Our results suggest the potentials of ntype SnSe thin films in the thermoelectric application.

    2. Experimental and theoretical methods

    SnSe powder (purity 99.999%, 100 mg) was first evenly mixed with different amount of Bi powder (purity 99.999%,0, 2.5, 3, 4 mg), then the mixed powder was placed in the center of the high-temperature zone in the CVD system as the source. A piece of intrinsic Si (100) was placed in the lowtemperature zone as the substrate to grow continuous SnSe thin films. The mixed powder was heated to 1100 K at a rate of 20 K·min?1, and the low-temperature zone was heated to 900 K at a rate of 15 K·min?1. Ar (5% H2) gas with a flow ratio of 40-standard cubic centimeter per minute(SCCM)was introduced as the carrier gas. The pressure was adjusted to 10 Torr(1 Torr=1.33322×102Pa)during the film growth.After a growth duration of 40 min,the system was cooled to room temperature naturally.

    Density functional theory (DFT) was used to calculate electronic properties of the SnSe samples, which is implemented in Viennaab initiosimulation package(VASP)[29-31]with the projector augmented wave (PAW) method. The exchange-correlation functional was defined using a generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof(PBE).[32]A supercell with 48 Sn atoms and 48 Se atoms (3×2×2,Pnma) was built, and a Sn atom was randomly replaced with a Bi atom corresponding to a doping concentration of 2%.The plane wave cutoff was set to 520 eV,and a Monkhorst-Packk-mesh of 3×3×3 was used to sample the Brillouin zone(BZ)for integrations in reciprocal space. Both atomic positions and lattice constants were fully relaxed until the magnitude of the force acting on all atoms became less than 0.01 eV·?A?1and electronic convergence threshold for energy was set to be 10?5eV.

    The crystal structures were analyzed by x-ray diffraction(XRD,Fangyuan,DX-2500)with a CuKα(λ=0.15418 nm)radiation source. X-ray photoelectron spectroscopy (XPS,Thermo Scientific Escalab 250Xi) measurement was carried out to study the chemical state of the sample. The morphologies of the Bi-doped SnSe thin films were characterized by scanning electron microscopy (SEM, Thermo Scientific, Apreo-S). The elementary compositions of the SnSe film were investigated by energy dispersive x-ray spectrometry(EDS,Oxford, X-MaxN 80). The microstructures were characterized by high resolution transmission electron microscope(HRTEM, FEI Tecnai, G2 F20). The electrical properties of the samples were measured using a van der Pauw method in an east changing magneto-transport equipment (ET9007).The Seebeck coefficient was measured by an SB1000 Seebeck measurement system with K2000 digital temperature controller. Owing to its high resistivity, the intrinsic silicon substrate can be viewed as an insulator that has little effect on the electrical conductivities of our samples.

    3. Results and discussion

    The structures of the synthsized SnSe thin films were first studied. The XRD patterns of undoped and Bi-doped SnSe thin films with different Bi concentrationx(x=0,0.005,0.01,0.02) were shown in Fig. 1(a). The actual elemental compositions of the samples were obtained from energy dispersive x-ray spectrometry. The major diffraction peaks can be well indexed to the orthorhombic SnSe (JCPDS: 48-1224). The obvious difference in relative diffraction intensity in(400)and(111)planes indicates the existence of anisotropy of the samples. Owing to the substitution of a smaller atom Sn by a bigger atom Bi, the peak positions of the Sn0.99Bi0.01Se sample shift a little bit to smaller angles with respect to that of the undoped sample. However,the peak positions of Sn0.98Bi0.02Se sample shift toward bigger angles, which indicates that some of Bi ions may be incorporated into the lattice interstitial of SnSe,which were also observed in other studies.[28,33]

    Fig.1. (a)XRD of undoped and Bi-doped SnSe thin films. (b)SEM image and the inset shows the cross-section SEM image of Sn0.99Bi0.01Se thin film. (c)HRTEM image and the inset shows the corresponding SAED of Sn0.99Bi0.01Se thin film. (d)-(f)EDS mapping images of Sn,Se,and Bi from Sn0.99Bi0.01Se thin film.

    Fig.2. XPS of Sn0.99Bi0.01Se thin film. (a)Survey scans and high-resolution scans of(b)Sn 3d,(c)Se 3d,and(d)Bi 4f in Sn0.99Bi0.01Se thin film.

    In Fig. 1(b), the SEM image shows that our film is uniform except some dots formed on it. EDS mapping shows that the Bi concentration of white dots is same as that of the thin film (not shown). The total thickness of our thin film was also measured and estimated as 90 nm as shown in the cross-section SEM image. Further structural characterizations were performed by using high-resolution transmission electron microscope. Figure 1(c) reveals that the layer distance is 0.316 nm, corresponding to that of the(011)face of SnSe.The corresponding selected area electron diffraction (SAED)data exhibit a clear orthogonally symmetric spot pattern, as shown in the inset of Fig. 1(c), indicating the high phase purity and high crystallinity of the SnSe thin film. Figures 1(d)-1(f) show the EDS mapping images of Sn, Se, and Bi from Sn0.99Bi0.01Se film, we can see that the elementary distribution of the Bi-doped SnSe film is uniform.

    The composition and the chemical states of Bi-doped SnSe thin films were then studied by x-ray photoelectron spectroscopy(XPS).In Fig.2(a),the XPS survey scan of the sample shows the presence of Sn, Se, Bi, C, and O in a typical Bi-doped thin film (Sn0.99Bi0.01Se). In Fig. 2(b), the Sn 3d spin-orbit doublet peaks appear at 486.42 eV and 494.81 eV with splitting of 8.4 eV,which can be assigned to Sn 3d5/2and Sn 3d3/2,[34]respectively. Figure 2(c) shows the broad peak of Se can be deconvoluted as Se 3d5/2and Se 3d3/2peaks at binding energies of 53.10 eV and 53.96 eV, respectively.[35]In Fig. 2(d), the presence of Bi 4f7/2and Bi 4f5/2peaks at 157.6 eV and 162.9 eV can be attributed to Bi3+states in Bidoped SnSe sample,[28,34]while the peaks at 159.48 eV and 164.76 eV belong to the Bi5+ions.[36]Considering the facts the XRD patterns show peak shifting owing to the Bi-doping and EDS mappings indicate that Bi elements were evenly distributed in the sample,the XPS results agree with the previous analysis.

    Then the thermoelectric properties of the Bi-doped SnSe thin films were characterized in Fig. 3. Figure 3(a)shows the temperature-dependent Seebeck coefficients(S)for Sn1?xBixSe (x= 0, 0.005, 0.01, 0.02) thin films. The undoped SnSe shows positiveSvalues but three Bi-doped SnSe show negativeSvalues. The reason for positiveSvalue in undoped SnSe is that undoped SnSe samples often have Sn vacancy defects unavoidably generated during growth,and exhibit p-type characteristics.[16,37,38]The reason for negativeSvalue in Bi-doped SnSe is that the Bi-dopants are donors and will generate electrons in SnSe, which makes SnSe change from p-type to n-type. If one look at the absoluteSvalues,the temperature dependencies of the absoluteSvalues of Bi doped SnSe are similar to that of the undoped SnSe,in which the absoluteSvalues decrease as the temperature increases above 600 K due to the so called bipolar transport.[15,39]The maximalSvalue is achieved as?905.8 μV·K?1at 600 K in Sn0.99Bi0.01Se thin film, which is better than previously reported values of?400 μV·K?1to?900 μV·K?1in highquality Bi-doped SnSe crystalline bulks at 300 K-700 K.[16,28]Since the lattice mismatchε=(asi?aSnSe)/asibetween the SnSe thin film and Si substrate is negative and n-type Seebeck coefficient can be increased by compressive strain,[40]the higherSvalue of our n-type SnSe thin films is probably owing to the compressive strain between the SnSe thin films and the Si substrate. As shown in Fig. 3(b), the electrical conductivity (σ) of undoped SnSe and Bi-doped SnSe shows different trends. The explanations are as follows. As to the undoped SnSe,theσvalue first increases with increasing temperature up to 450 K owing to the thermal excitation of minority carriers, and then starts to decrease from 450 K owing to the formation of deep level defects,[41]which is like those observed in undoped SnSe bulks.[28,42]Theσvalues of all the Bi-doped SnSe samples show increasing trends as the temperature increases up to 700 K,since Bi dopants decrease the deep level defect concentration by suppressing the formation of traps.[43,44]Doping n-type dopant Bi into p-type SnSe will decrease the electrical conductivity first,which is accompanied by the decreased Hall carrier concentration, as shown in Fig. 3(d). The carrier type changes from hole to electron and carrier concentration decreases from 6.14×1017cm?3to 1.36×1017cm?3when the undoped SnSe (more accurately,p-type unintentionally doped) is doped and become n-type Sn0.995Bi0.005Se with 0.5%Bi dopants,owing to the electrons generated by Bi dopants. After that, the carrier type remain electron and carrier concentration keep increasing as Bi doping concentration increases. Meanwhile, the Hall mobility of carrier first increases owing to less carrier scattering resulted from the neutralization effect between n-type Bi dopants and unintentionally doped p-type defects, and then decreases owing to more and more carrier scattering when the Bi doping concentration increases. It is noted that the mobility of the SnSe thin film is lower than that of bulk materials,[28,45]which is probably caused by the phonon scattering at the surface and grain boundary in the thin films.

    Fig. 3. Temperature-dependent (a) Seebeck coefficient, (b) electrical conductivity, (c) power factor (σS2), and (d) room-temperature Hall carrier concentration and Hall mobility of Sn1?xBixSe(x=0,0.005,0.01,0.02)thin films.

    Figure 3(c) shows the temperature-dependent PF of different SnSe thin films. Low PF values with small variations are obtained in undoped SnSe and Sn0.995Bi0.005Se thin films due to their low Seebeck coefficients. Owing to the significant increase of Seebeck coefficient, the higher PF values are obtained in Sn0.99Bi0.01Se and Sn0.98Bi0.02Se thin films. Specifically,the PF value reaches a maximum of 0.6μW·cm?1·K?2at 700 K when Bi doping concentration is 2%.

    In fact, the measurement of thermal conductivity of thin films is notoriously difficult.[46-48]As other groups have pointed out, thin films are usually expected to have lower thermal conductivity than their bulk counterparts due to the phonon scattering at the surface and grain boundary,and hence many of them have used the thermal conductivity of the corresponding bulk materials to estimate the lower bound ofZTs of the thin films.[46-48]At the same time, previous studies have shown that the thermal conductivity of Bi-doped SnSe bulk samples is comparable to or even lower than that of bulk SnSe.[16,49,50]Therefore,we use the thermal conductivity of the bulk polycrystalline SnSe reported in the literature[51]to estimate the lower bound ofZTs of our Bi-doped SnSe films. Temperature dependence of the thermal conductivity of the bulk polycrystalline SnSe is shown in Fig. 4, owing to the fact that phonon scattering increases gradually with increasing temperature,κdecreases with increasing temperature. The conservatively estimateZTvalues as a function of temperature for all samples are shown in Fig. 4. TheZTvalues of Sn0.99Bi0.01Se and Sn0.98Bi0.02Se are significantly improved compared to that of pristine SnSe,which can be attributed to enhanced PF values. The obtained maximumZTof Sn0.98Bi0.02Se is 0.074 at 700 K.As discussed earlier,the actualZTof our SnSe thin film may be higher than the estimated value here.

    Fig. 4. Temperature-dependent figure of merit (ZT) for the Sn1?xBixSe(x=0, 0.005, 0.01, 0.02)thin films. The bottom curve is the total thermal conductivity of the reported bulk SnSe,[51] which is used to conservatively estimate the ZT of our SnSe thin films.

    Since the Seebeck coefficients of Sn0.99Bi0.01Se and Sn0.98Bi0.02Se are improved dramatically compared to that of undoped SnSe,we calculated their electronic structures to understand the effect of Bi-doping on the thermoelectric properties of the SnSe samples. Figure 5 shows the comparison between the pristine SnSe sample and a typical Bi-doped SnSe sample (Sn0.98Bi0.02Se). The density of states (DOSs) near the Fermi level are mainly composed of the s-orbitals and porbitals of Sn, and the p-orbitals of Se. After doping Bi into SnSe, the Fermi level is shifted up into the conduction band,and hence the DOSs near the Fermi level is increased and Bidoped SnSe become n-type, as shown Fig. 5. According to Mott expression,[52]the increase in the local DOSs near the Fermi level can enhance the Seebeck coefficient. The band structure of Sn0.98Bi0.02Se is shown in Fig. 5(d) where four conduction bands named CB1, CB2, CB3, and CB4 are near theΓpoint in the Brillouin zone. The differences between the four band energies are on the order ofkBT, suggesting that doping Bi into SnSe will introduce some carrier pockets near the Fermi level. Previous studies have shown that the increase of carrier pockets near the Fermi level will also improve the Seebeck coefficient.[53-55]Therefore, doping Bi into SnSe is indeed an effective way to improve the thermoelectric properties of SnSe. The results of theoretical calculations agree well with the experimental results.

    Fig.5. [(a)and(b)]DOSs and[(c)and(d)]electronic band structures of the undoped SnSe and Sn0.98Bi0.02Se samples.

    4. Conclusion

    In this work, Bi-doped SnSe thin films were prepared on Si substrate by CVD and their structures and thermoelectric properties were studied. TheZTvalues of Sn0.99Bi0.01Se and Sn0.98Bi0.02Se thin films are significantly improved compared to that of pristine SnSe, which can be attributed to the enhanced PF values. The obtained maximumZTof Sn0.98Bi0.02Se thin film is 0.074 at 700 K.The enhancement of the thermoelectric properties is related to the Fermi level lifting and the carrier pockets increasing near the Fermi level due to Bi doping in the SnSe samples. Our results thus provide an effective way to improve the thermoelectric properties of SnSe thin films.

    Acknowledgements

    We are very grateful to the help from the Analytical and Testing Center of Sichuan University.

    猜你喜歡
    徐家
    Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
    The existence and blow-up of the radial solutions of a (k1, k2)-Hessian system involving a nonlinear operator and gradient
    Broadband low-frequency acoustic absorber based on metaporous composite
    徐家玨作品
    美術(shù)界(2022年4期)2022-04-26 11:07:00
    STABILITY ANALYSIS OF CAUSAL INTEGRAL EVOLUTION IMPULSIVE SYSTEMS ON TIME SCALES?
    南京市棲霞區(qū)徐家村M4 出土器物
    南京市棲霞區(qū)徐家村M1 出土器物
    徐家柱 用愛(ài)喚醒沉睡12年的妻子
    “多多益善”的政協(xié)主席
    徐家河尾礦庫(kù)潰壩分析
    美女脱内裤让男人舔精品视频| 精品久久久久久久久亚洲| 一本—道久久a久久精品蜜桃钙片| 观看美女的网站| 亚洲欧美中文字幕日韩二区| 蜜桃久久精品国产亚洲av| 亚洲性久久影院| 三级国产精品欧美在线观看| 一级毛片 在线播放| 高清不卡的av网站| 欧美丝袜亚洲另类| 亚洲av中文字字幕乱码综合| 亚洲国产高清在线一区二区三| 又大又黄又爽视频免费| 亚洲精品久久午夜乱码| 青春草国产在线视频| 国产亚洲av片在线观看秒播厂| 少妇高潮的动态图| 哪个播放器可以免费观看大片| 日韩强制内射视频| 国产黄色视频一区二区在线观看| 蜜桃亚洲精品一区二区三区| av在线播放精品| 久久久久网色| 一级爰片在线观看| 亚洲国产高清在线一区二区三| 久久久久久久久大av| 高清不卡的av网站| 亚洲国产成人一精品久久久| 日韩国内少妇激情av| 欧美亚洲 丝袜 人妻 在线| 国产精品三级大全| 亚洲国产色片| av在线app专区| 亚洲av二区三区四区| av免费观看日本| 欧美一区二区亚洲| 麻豆乱淫一区二区| 欧美高清成人免费视频www| 中文天堂在线官网| 九色成人免费人妻av| 国内精品宾馆在线| 国产日韩欧美在线精品| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美成人综合另类久久久| 超碰av人人做人人爽久久| 少妇熟女欧美另类| 中国美白少妇内射xxxbb| 中文字幕av成人在线电影| 一边亲一边摸免费视频| av女优亚洲男人天堂| 乱码一卡2卡4卡精品| 99精国产麻豆久久婷婷| 美女国产视频在线观看| 久久午夜福利片| 晚上一个人看的免费电影| 亚洲久久久国产精品| 国产黄频视频在线观看| 青青草视频在线视频观看| 日本黄色片子视频| 80岁老熟妇乱子伦牲交| freevideosex欧美| 精品国产乱码久久久久久小说| 午夜免费鲁丝| 干丝袜人妻中文字幕| 国产精品不卡视频一区二区| 男女免费视频国产| 黑人高潮一二区| 一级毛片我不卡| videos熟女内射| 99视频精品全部免费 在线| 五月伊人婷婷丁香| 国精品久久久久久国模美| 纯流量卡能插随身wifi吗| 在线精品无人区一区二区三 | 久久精品夜色国产| 亚洲欧美成人精品一区二区| 这个男人来自地球电影免费观看 | 免费播放大片免费观看视频在线观看| 高清不卡的av网站| 免费黄网站久久成人精品| 国产成人freesex在线| 国产 一区精品| 欧美性感艳星| 男人狂女人下面高潮的视频| 人人妻人人看人人澡| 日韩人妻高清精品专区| 欧美另类一区| 久久精品久久久久久久性| 国产伦精品一区二区三区四那| 边亲边吃奶的免费视频| 欧美少妇被猛烈插入视频| av女优亚洲男人天堂| h视频一区二区三区| 男的添女的下面高潮视频| 一边亲一边摸免费视频| 国产淫片久久久久久久久| 亚洲图色成人| 尾随美女入室| 91狼人影院| 亚洲成色77777| 国产高潮美女av| 亚洲一区二区三区欧美精品| 哪个播放器可以免费观看大片| 五月伊人婷婷丁香| 亚洲精品色激情综合| 高清av免费在线| a级毛片免费高清观看在线播放| 91久久精品国产一区二区成人| 亚洲av免费高清在线观看| 国产乱来视频区| 亚洲精品一区蜜桃| 亚洲精品一二三| .国产精品久久| 亚洲一区二区三区欧美精品| 一区二区av电影网| 久久久精品94久久精品| 大片免费播放器 马上看| 99热这里只有是精品在线观看| 久久久久久久久久久丰满| 久久亚洲国产成人精品v| 肉色欧美久久久久久久蜜桃| 精品午夜福利在线看| 亚洲精品日本国产第一区| 男人添女人高潮全过程视频| 午夜福利在线在线| 国产高清有码在线观看视频| 九九爱精品视频在线观看| 亚洲成色77777| 亚洲怡红院男人天堂| 精品久久久久久久末码| 少妇精品久久久久久久| 欧美精品一区二区大全| 久久ye,这里只有精品| 性色av一级| 亚洲欧美成人精品一区二区| 3wmmmm亚洲av在线观看| 午夜老司机福利剧场| 国产日韩欧美亚洲二区| 制服丝袜香蕉在线| 欧美国产精品一级二级三级 | 蜜桃在线观看..| 国产精品偷伦视频观看了| 偷拍熟女少妇极品色| 干丝袜人妻中文字幕| 久久久久国产网址| 22中文网久久字幕| 国产 精品1| 人人妻人人看人人澡| 国产黄频视频在线观看| 久久97久久精品| 亚洲精品国产av蜜桃| av天堂中文字幕网| 亚州av有码| 国产精品久久久久久精品电影小说 | 国产男女超爽视频在线观看| 18禁裸乳无遮挡动漫免费视频| 热99国产精品久久久久久7| 联通29元200g的流量卡| 午夜福利在线在线| 久久国产亚洲av麻豆专区| 亚洲不卡免费看| 成人亚洲欧美一区二区av| 国产成人免费观看mmmm| 在现免费观看毛片| 国产在线男女| 欧美日韩视频精品一区| av卡一久久| 精品亚洲成a人片在线观看 | 成人二区视频| 黄色日韩在线| 国产一区亚洲一区在线观看| 好男人视频免费观看在线| 国产视频内射| 老熟女久久久| 人人妻人人爽人人添夜夜欢视频 | 美女视频免费永久观看网站| 国产高清三级在线| 伊人久久精品亚洲午夜| 91午夜精品亚洲一区二区三区| 日韩不卡一区二区三区视频在线| 亚洲精品国产成人久久av| 国产在视频线精品| 91精品国产九色| 国产午夜精品一二区理论片| 一级毛片黄色毛片免费观看视频| 观看av在线不卡| 精品一区在线观看国产| 一级毛片我不卡| 成年av动漫网址| 99国产精品免费福利视频| 国产精品福利在线免费观看| 午夜老司机福利剧场| 国产伦精品一区二区三区四那| 黄片wwwwww| 日韩欧美精品免费久久| 97超碰精品成人国产| 精品久久久久久久久亚洲| 国产精品久久久久成人av| 国产精品人妻久久久久久| 哪个播放器可以免费观看大片| 亚洲va在线va天堂va国产| 国产午夜精品一二区理论片| 少妇被粗大猛烈的视频| 国产淫片久久久久久久久| 99re6热这里在线精品视频| 色婷婷av一区二区三区视频| 亚洲精品成人av观看孕妇| 九草在线视频观看| 一级片'在线观看视频| 国产精品一二三区在线看| 国产黄片美女视频| 少妇的逼好多水| 如何舔出高潮| 人妻夜夜爽99麻豆av| 少妇裸体淫交视频免费看高清| 久久精品国产a三级三级三级| 男的添女的下面高潮视频| 国产免费视频播放在线视频| 秋霞伦理黄片| 日韩精品有码人妻一区| 久久精品夜色国产| 黑丝袜美女国产一区| 激情 狠狠 欧美| 直男gayav资源| 国产爱豆传媒在线观看| 国产免费视频播放在线视频| 97超碰精品成人国产| 精品久久久久久电影网| 欧美精品亚洲一区二区| 亚洲经典国产精华液单| 一本—道久久a久久精品蜜桃钙片| 韩国av在线不卡| 国产男女超爽视频在线观看| 国产精品精品国产色婷婷| 久久久a久久爽久久v久久| 免费人妻精品一区二区三区视频| 午夜福利影视在线免费观看| 99re6热这里在线精品视频| 中文精品一卡2卡3卡4更新| 欧美丝袜亚洲另类| 午夜福利在线观看免费完整高清在| 校园人妻丝袜中文字幕| 一级毛片aaaaaa免费看小| 少妇丰满av| 简卡轻食公司| .国产精品久久| 日韩强制内射视频| av在线老鸭窝| 日韩中字成人| 青春草国产在线视频| 夜夜看夜夜爽夜夜摸| 中国国产av一级| 免费黄频网站在线观看国产| 最新中文字幕久久久久| 狂野欧美白嫩少妇大欣赏| 黄色日韩在线| 久久久久久久精品精品| 大又大粗又爽又黄少妇毛片口| 哪个播放器可以免费观看大片| 国产精品嫩草影院av在线观看| 内射极品少妇av片p| 亚洲国产欧美在线一区| 中文字幕亚洲精品专区| av在线观看视频网站免费| 一本久久精品| 国产在线视频一区二区| 黑人猛操日本美女一级片| 欧美高清性xxxxhd video| 高清午夜精品一区二区三区| 黄色怎么调成土黄色| 国产成人精品一,二区| 日韩中字成人| 国产乱来视频区| 在线天堂最新版资源| 久久综合国产亚洲精品| 成人综合一区亚洲| 日韩制服骚丝袜av| 女的被弄到高潮叫床怎么办| 久久久亚洲精品成人影院| 在线观看免费高清a一片| 久热这里只有精品99| 色婷婷av一区二区三区视频| 成人二区视频| 久久久久久九九精品二区国产| 美女福利国产在线 | 精品久久久久久电影网| 日本黄色片子视频| 国产精品一区二区性色av| 亚洲色图综合在线观看| 精品一区二区三卡| 各种免费的搞黄视频| 国产69精品久久久久777片| 在线天堂最新版资源| 免费观看a级毛片全部| 亚洲国产最新在线播放| 熟女av电影| 亚洲av.av天堂| 超碰97精品在线观看| 国产成人精品久久久久久| 欧美zozozo另类| 男女无遮挡免费网站观看| 五月伊人婷婷丁香| 51国产日韩欧美| 亚洲成人av在线免费| 免费大片18禁| 久久精品熟女亚洲av麻豆精品| 亚洲伊人久久精品综合| 蜜桃亚洲精品一区二区三区| 亚洲精品亚洲一区二区| 久久 成人 亚洲| 80岁老熟妇乱子伦牲交| 国产欧美另类精品又又久久亚洲欧美| 中文字幕免费在线视频6| 天天躁夜夜躁狠狠久久av| 亚洲婷婷狠狠爱综合网| 欧美一级a爱片免费观看看| 精品人妻视频免费看| 日本一二三区视频观看| 大香蕉久久网| 成人特级av手机在线观看| 老师上课跳d突然被开到最大视频| 亚洲真实伦在线观看| 一级毛片我不卡| 日韩,欧美,国产一区二区三区| 国产精品欧美亚洲77777| 丝瓜视频免费看黄片| 国产精品偷伦视频观看了| 下体分泌物呈黄色| 欧美三级亚洲精品| 午夜福利影视在线免费观看| 插逼视频在线观看| 久久韩国三级中文字幕| 成人高潮视频无遮挡免费网站| 一级毛片电影观看| 日本欧美视频一区| 看非洲黑人一级黄片| 热99国产精品久久久久久7| kizo精华| 草草在线视频免费看| 大片免费播放器 马上看| 97在线人人人人妻| 国产永久视频网站| 大片电影免费在线观看免费| 国产v大片淫在线免费观看| 内射极品少妇av片p| 99热国产这里只有精品6| 精品久久久精品久久久| 久热这里只有精品99| 日本色播在线视频| 国产免费视频播放在线视频| 精品亚洲成a人片在线观看 | 亚洲欧美中文字幕日韩二区| 欧美日本视频| 一区二区av电影网| 亚洲av免费高清在线观看| 欧美激情国产日韩精品一区| 各种免费的搞黄视频| 在线免费观看不下载黄p国产| 夜夜骑夜夜射夜夜干| 人人妻人人看人人澡| 久久99热这里只有精品18| 国产成人aa在线观看| 亚洲成人av在线免费| 丰满乱子伦码专区| 美女视频免费永久观看网站| 日本黄色日本黄色录像| 又粗又硬又长又爽又黄的视频| 免费黄色在线免费观看| 国产精品.久久久| 精品久久久久久电影网| 99久国产av精品国产电影| 国产精品人妻久久久久久| www.色视频.com| a级毛色黄片| 免费av不卡在线播放| 国国产精品蜜臀av免费| 妹子高潮喷水视频| 成人亚洲欧美一区二区av| 日本猛色少妇xxxxx猛交久久| 国产无遮挡羞羞视频在线观看| 一级毛片黄色毛片免费观看视频| 国产亚洲最大av| 久久精品国产亚洲av天美| 日本黄大片高清| 久久久久久久精品精品| 精品久久久噜噜| 在线观看免费日韩欧美大片 | 日本-黄色视频高清免费观看| 在线观看美女被高潮喷水网站| 新久久久久国产一级毛片| 国产黄频视频在线观看| 婷婷色av中文字幕| av免费观看日本| 亚洲精品国产av蜜桃| 久久精品国产自在天天线| 国产v大片淫在线免费观看| 最黄视频免费看| 久热久热在线精品观看| 久久精品国产自在天天线| 亚洲国产成人一精品久久久| 国产成人91sexporn| 老熟女久久久| 一本色道久久久久久精品综合| 成人美女网站在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91 | 日本免费在线观看一区| 亚洲欧美清纯卡通| 亚洲av欧美aⅴ国产| 精品人妻熟女av久视频| 这个男人来自地球电影免费观看 | 精品人妻熟女av久视频| 久久久午夜欧美精品| 成年免费大片在线观看| 国产 一区精品| 欧美 日韩 精品 国产| 亚洲成人中文字幕在线播放| 国产一级毛片在线| 精品国产三级普通话版| 中文字幕人妻熟人妻熟丝袜美| 中国三级夫妇交换| 男女无遮挡免费网站观看| 色哟哟·www| 日韩一区二区视频免费看| 男女边吃奶边做爰视频| 欧美老熟妇乱子伦牲交| 免费大片18禁| 波野结衣二区三区在线| 美女cb高潮喷水在线观看| 亚洲av日韩在线播放| 国产人妻一区二区三区在| 欧美精品一区二区大全| 人妻系列 视频| 免费人妻精品一区二区三区视频| 国产v大片淫在线免费观看| 日本wwww免费看| 亚洲国产精品国产精品| 大码成人一级视频| 久久毛片免费看一区二区三区| 精品一区在线观看国产| 中文资源天堂在线| 免费观看性生交大片5| 亚洲中文av在线| 毛片一级片免费看久久久久| 人体艺术视频欧美日本| 国产成人aa在线观看| 久久久午夜欧美精品| 久久99热6这里只有精品| 91aial.com中文字幕在线观看| 免费看日本二区| 黄片wwwwww| 蜜桃久久精品国产亚洲av| 九九久久精品国产亚洲av麻豆| 观看免费一级毛片| 国产精品免费大片| 一个人看视频在线观看www免费| 视频中文字幕在线观看| 五月开心婷婷网| 好男人视频免费观看在线| 国产熟女欧美一区二区| 国产精品熟女久久久久浪| 在线看a的网站| 成年人午夜在线观看视频| 日韩国内少妇激情av| 成人18禁高潮啪啪吃奶动态图 | 麻豆乱淫一区二区| 亚洲熟女精品中文字幕| 久久精品国产鲁丝片午夜精品| 免费不卡的大黄色大毛片视频在线观看| 又黄又爽又刺激的免费视频.| 少妇人妻久久综合中文| 老女人水多毛片| 黑人高潮一二区| 精品一品国产午夜福利视频| 国产精品一区二区在线不卡| 免费看光身美女| 欧美xxxx黑人xx丫x性爽| 男女免费视频国产| 国产视频内射| 男女下面进入的视频免费午夜| 中文字幕人妻熟人妻熟丝袜美| 国产国拍精品亚洲av在线观看| 欧美变态另类bdsm刘玥| 国产黄片视频在线免费观看| 亚洲电影在线观看av| 最近2019中文字幕mv第一页| 深夜a级毛片| 国产在线一区二区三区精| 日韩av免费高清视频| 亚洲精华国产精华液的使用体验| 久久青草综合色| 高清午夜精品一区二区三区| 最近的中文字幕免费完整| 亚洲精品日韩av片在线观看| 国产大屁股一区二区在线视频| 一级a做视频免费观看| 亚洲欧美成人精品一区二区| 亚洲婷婷狠狠爱综合网| 1000部很黄的大片| 欧美丝袜亚洲另类| 亚洲综合色惰| 成年女人在线观看亚洲视频| 偷拍熟女少妇极品色| 色网站视频免费| 亚洲精品日本国产第一区| 久久99精品国语久久久| 又爽又黄a免费视频| 一级a做视频免费观看| 欧美激情国产日韩精品一区| 我要看黄色一级片免费的| 亚洲精品亚洲一区二区| 亚洲图色成人| 国产精品三级大全| 人妻制服诱惑在线中文字幕| 成年人午夜在线观看视频| av播播在线观看一区| av在线app专区| 97在线视频观看| 国产欧美亚洲国产| 国产精品熟女久久久久浪| 久久99精品国语久久久| 久久精品国产鲁丝片午夜精品| 国产精品欧美亚洲77777| 亚洲精品一二三| 我要看日韩黄色一级片| 老师上课跳d突然被开到最大视频| 久久这里有精品视频免费| 26uuu在线亚洲综合色| 国产乱来视频区| 亚洲一区二区三区欧美精品| 麻豆成人午夜福利视频| 亚洲成人av在线免费| 男男h啪啪无遮挡| 免费看光身美女| 校园人妻丝袜中文字幕| 高清视频免费观看一区二区| 精品久久国产蜜桃| 日韩电影二区| 亚洲精品色激情综合| 男女无遮挡免费网站观看| 麻豆国产97在线/欧美| 久久久久久久亚洲中文字幕| 七月丁香在线播放| 一个人免费看片子| 一本—道久久a久久精品蜜桃钙片| 极品少妇高潮喷水抽搐| 免费不卡的大黄色大毛片视频在线观看| 极品少妇高潮喷水抽搐| 一级毛片 在线播放| 亚洲国产毛片av蜜桃av| 国产男人的电影天堂91| 美女中出高潮动态图| 日本猛色少妇xxxxx猛交久久| 成人美女网站在线观看视频| 亚洲自偷自拍三级| 一个人免费看片子| 99九九线精品视频在线观看视频| av福利片在线观看| 国产中年淑女户外野战色| 99久久精品热视频| 少妇的逼水好多| 久久韩国三级中文字幕| 我的老师免费观看完整版| 免费看av在线观看网站| 国产一区亚洲一区在线观看| 十八禁网站网址无遮挡 | 国产69精品久久久久777片| 十分钟在线观看高清视频www | 内射极品少妇av片p| 欧美成人a在线观看| 久久人妻熟女aⅴ| 国产精品久久久久久精品电影小说 | 亚洲欧美清纯卡通| 亚洲精品乱码久久久久久按摩| 18禁动态无遮挡网站| 777米奇影视久久| 亚洲中文av在线| 五月天丁香电影| 中文欧美无线码| 亚洲av在线观看美女高潮| 麻豆国产97在线/欧美| 久久久久久久久久久免费av| 国产精品国产三级国产专区5o| 国产精品一及| 成人午夜精彩视频在线观看| 国产高清有码在线观看视频| 成人毛片a级毛片在线播放| 欧美3d第一页| 亚洲精品乱久久久久久| 久久精品国产亚洲av涩爱| 亚洲精品日本国产第一区| 亚洲美女视频黄频| 秋霞伦理黄片| 好男人视频免费观看在线| 亚洲精品自拍成人| 国产爽快片一区二区三区| 亚洲国产欧美人成| 人人妻人人澡人人爽人人夜夜| 五月天丁香电影| 亚洲天堂av无毛| h视频一区二区三区| 亚洲精品久久午夜乱码| 亚洲av日韩在线播放| 国内精品宾馆在线| 日日啪夜夜撸| 色视频www国产| 亚洲精品日韩在线中文字幕| 男男h啪啪无遮挡| 精品亚洲乱码少妇综合久久| 久久人妻熟女aⅴ| 一本久久精品| 国产av精品麻豆| 99久国产av精品国产电影| av网站免费在线观看视频| 99热全是精品|