• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于改進(jìn)算法的空調(diào)冷負(fù)荷組合預(yù)測研究

      2021-12-08 13:46張晨晨叢意林田野郭安柱劉濤馬永志
      關(guān)鍵詞:修正粒子精度

      張晨晨 叢意林 田野 郭安柱 劉濤 馬永志

      摘要: ?針對單一的預(yù)測方法難以綜合描述冷負(fù)荷變化的規(guī)律性問題,本文以初投入使用的青島市某自習(xí)室空調(diào)系統(tǒng)為研究對象,對基于改進(jìn)算法的空調(diào)冷負(fù)荷組合預(yù)測進(jìn)行研究。為獲得動(dòng)態(tài)負(fù)荷數(shù)據(jù),搭建了TRNSYS模擬仿真平臺(tái),對擾動(dòng)因子經(jīng)平均影響值(mean impact value,MIV)和Spearman相關(guān)性分析及特征變量篩選后,對預(yù)測算法進(jìn)行優(yōu)化。通過引入隨機(jī)粒子和混沌算法,建立基于標(biāo)準(zhǔn)粒子群算法的組合粒子群算法(combined particle swarm optimization, CPSO),得到組合粒子群優(yōu)化后向傳播網(wǎng)絡(luò)(back propagation, BP)負(fù)荷預(yù)測模型CPSOBP,并引布谷鳥搜索(cuckoo search,CS),確立布谷鳥搜索支持向量回歸(support vector regression,SVR)負(fù)荷預(yù)測模型CSSVR,建立基于遺傳尋優(yōu)的灰色預(yù)測模型GAGM(1,N)。同時(shí),將各模型的負(fù)荷預(yù)測值帶入模糊系統(tǒng)中,建立實(shí)時(shí)模糊組合預(yù)測模型(fuzzy combination,F(xiàn)C),并采用Markov(M)對組合誤差進(jìn)行修正。結(jié)果表明,基于Markov的模糊組合預(yù)測算法FCM優(yōu)于CPSOBP、CSSVR和FC,組合精度與3個(gè)優(yōu)化模型相比分別提高了26.32%,62.16%,94.68%,說明基于馬爾可夫的模糊組合預(yù)測算法FCM可以彌補(bǔ)各算法的不足,降低了預(yù)測誤差,提高了預(yù)測準(zhǔn)確率。該研究為空調(diào)節(jié)能運(yùn)行策略的制定提供了理論參考。

      關(guān)鍵詞: ?模糊系統(tǒng); GAGM(1,N); CPSOBP; CSSVR; Markov

      中圖分類號: TP391.9; TU831.6 文獻(xiàn)標(biāo)識(shí)碼: A

      世界能源需求的增加帶來了能源消耗的激增[1]。由于建筑工程約占世界能源消耗的30%[2],而采暖、通風(fēng)和空調(diào)系統(tǒng)(heating ventilation and air conditioning,HVAC)在建筑能耗中所占比例最大[3],且與其他部分能源消耗相比,通過將能源供應(yīng)與實(shí)際負(fù)荷需求相匹配[4],減少能源消耗具有更大的潛力。因此,提高暖通空調(diào)的運(yùn)行效率對降低能耗至關(guān)重要,而準(zhǔn)確預(yù)測冷卻負(fù)荷在此意義重大[5]。全球氣候和人類生命行為的復(fù)雜性,導(dǎo)致空調(diào)負(fù)荷呈現(xiàn)非線性、多變性和動(dòng)態(tài)性的特點(diǎn)[3],這對空調(diào)負(fù)荷的預(yù)測精度提出了更高的要求。負(fù)荷預(yù)測的方法包括物理建模法、參數(shù)模型和非參數(shù)模型法。物理建模是利用傳熱機(jī)制搭建模擬平臺(tái),但是其無法保證實(shí)時(shí)性[6-9];參數(shù)模型是通過分析影響因素與冷負(fù)荷之間的關(guān)系,建立數(shù)學(xué)模型或統(tǒng)計(jì)模型,統(tǒng)計(jì)模型的方法主要包括統(tǒng)計(jì)回歸[10]和時(shí)間序列,統(tǒng)計(jì)回歸算法結(jié)構(gòu)簡單,但評價(jià)指標(biāo)難以確定,時(shí)間序列通過分析歷史負(fù)荷的規(guī)律性以預(yù)測冷負(fù)荷[11],其只用于負(fù)荷均勻變化的系統(tǒng)[12]。非參數(shù)模型因其囊括智能算法而受到廣泛關(guān)注,主要有決策樹[13]、灰色預(yù)測[14]、遺傳算法[15]、粒子群算法[16]、布谷鳥算法[17]、神經(jīng)網(wǎng)絡(luò)[18]和支持向量機(jī)[19]。決策樹算法又稱判定樹,是多分枝有向、無環(huán)的樹狀結(jié)構(gòu),算法效率高,計(jì)算量小,但處理不好時(shí)間序列與非線性數(shù)據(jù);灰色預(yù)測(Grey)在訓(xùn)練參數(shù)較少時(shí),可得到較為準(zhǔn)確的預(yù)測結(jié)果,但對隨機(jī)性強(qiáng),離散度大的建筑負(fù)荷,預(yù)測精度低[20];支持向量機(jī)(support vector machine, SVM)泛化能力強(qiáng),在解決維度災(zāi)難問題和局部最小問題上有天然的優(yōu)勢,結(jié)構(gòu)簡單,魯棒性強(qiáng),但不適用于大量樣本;BP神經(jīng)網(wǎng)絡(luò)具有強(qiáng)大的非線性映射能力和自學(xué)習(xí)能力,但其容易陷入局部極小,收斂速度慢,對網(wǎng)絡(luò)初值樣本數(shù)量較為敏感,對復(fù)雜的非線性問題預(yù)測精度低。因此,許多學(xué)者提出了改進(jìn)算法。Wei L Y等人[21]提出了自適應(yīng)期望遺傳算法,優(yōu)化自適應(yīng)網(wǎng)絡(luò)模糊推理系統(tǒng),并通過對比證實(shí)了模型的有效性;D. Sedighizadeh等人[22]提出了一種結(jié)合隨機(jī)最優(yōu)粒子的廣義粒子群優(yōu)化算法,與其他混合粒子群算法在均值和標(biāo)準(zhǔn)差方面均體現(xiàn)了優(yōu)越性;N. Kumar等人[16]提出了一種基于改進(jìn)布谷鳥搜索(cuckoo search)算法和自適應(yīng)高斯量子行為粒子群優(yōu)化算法的混合算法;Li D L等人[23]采用自適應(yīng)PSOSVM方法,建立新的自適應(yīng)短期負(fù)荷預(yù)測模型,自適應(yīng)PSOSVM方法預(yù)測精度高,泛化能力強(qiáng),可行性強(qiáng);D. Tien Bui等人[24]建立了遺傳算法和帝國主義競爭算法,優(yōu)化人工神經(jīng)網(wǎng)絡(luò)在節(jié)能住宅熱負(fù)荷和冷負(fù)荷估算中的權(quán)值和偏差,取得了較好的預(yù)測精度。而單一的混合算法很難表現(xiàn)出優(yōu)化模型的全部信息,單一的預(yù)測方法難以綜合描述冷負(fù)荷變化的規(guī)律性。因此,本文采用多個(gè)混合算法,分別優(yōu)化各個(gè)預(yù)測模型的參數(shù),再將各預(yù)測模型放入模糊推理系統(tǒng),分段動(dòng)態(tài)地提取組合權(quán)重,并將各預(yù)測模型組合起來,同時(shí)考慮到模擬負(fù)荷過程中產(chǎn)生的隨機(jī)誤差,采用馬爾科夫鏈對誤差進(jìn)行了修正,降低了預(yù)測誤差,提高了預(yù)測準(zhǔn)確率。

      1數(shù)據(jù)來源與處理

      1.1TRNSYS模擬平臺(tái)

      本文以初投入使用的青島市某自習(xí)室空調(diào)系統(tǒng)為研究對象,基于Trnsys動(dòng)態(tài)仿真平臺(tái),獲得了動(dòng)態(tài)逐時(shí)負(fù)荷,并對多功能自習(xí)室負(fù)荷模擬參數(shù)進(jìn)行設(shè)置。青島市多功能自習(xí)室負(fù)荷模擬參數(shù)如表1所示。

      1.2輸入變量篩選

      本文采用MIV與spearman系數(shù)結(jié)合的方式,提取外擾和內(nèi)擾特征變量因素反復(fù)計(jì)算,取MIV均值絕對值,選擇貢獻(xiàn)率大的成分,再充分考慮自習(xí)室內(nèi)的負(fù)荷,呈周期性變化的歷史負(fù)荷對當(dāng)前時(shí)刻t負(fù)荷的影響,以及內(nèi)擾和外擾的延遲作用,經(jīng)過試錯(cuò)法反復(fù)比較,進(jìn)而計(jì)算不同時(shí)刻每個(gè)成分的spearman系數(shù),最終選擇確定度大于0.6的成分作為輸入。

      2組合預(yù)測模型

      2.1CPSOBP預(yù)測

      粒子群搜索BP網(wǎng)絡(luò)最優(yōu)的閾值和權(quán)值初值,以提高BP對初值的敏感度。針對標(biāo)準(zhǔn)粒子群收斂慢、易早熟的問題,引入改進(jìn)算法。本文首先改進(jìn)速度更新公式,再引進(jìn)混沌算法流程,形成組合算法。

      1)改進(jìn)粒子群。改進(jìn)的粒子群為

      2)混沌算法?;煦缬成渚哂须S機(jī)性和遍歷性的特點(diǎn),將最優(yōu)解映射到logistic方程的定義域[0,1]中,經(jīng)過有限次迭代得到混沌序列后,將其逆映射到原解空間,計(jì)算得到混沌序列可行解的適應(yīng)度值,保留混沌最優(yōu)可行解。CPSOBP結(jié)構(gòu)流程圖如圖1所示。

      2.2CSSVR預(yù)測

      核函數(shù)參數(shù)和正則化系數(shù)是控制SVR預(yù)測精度的關(guān)鍵。CS算法具有搜索能力強(qiáng)和搜索路徑優(yōu)的特點(diǎn),對SVR的核參數(shù)和正則系數(shù)尋優(yōu)能夠有效的提高精度。CS算法通過維持Levy飛行產(chǎn)生隨機(jī)解[16],即

      2.3GAGrey預(yù)測

      灰色模型通過將原始序列轉(zhuǎn)變?yōu)橐?guī)律性,弱化原數(shù)據(jù)的隨機(jī)性,深入挖掘預(yù)測對象的演化規(guī)律。參數(shù)a和參數(shù)b影響灰色預(yù)測結(jié)果,當(dāng)矩陣接近退化時(shí),最小二乘法求參預(yù)測精度低。本文采用遺傳算法代替最小二乘法求解參數(shù)優(yōu)化模型。

      GA通過選擇、交叉和變異完成進(jìn)化過程,是一種高效的全局優(yōu)化算法。采用遺傳算法優(yōu)化灰色模型參數(shù),GAGrey結(jié)構(gòu)流程圖如圖3所示。

      2.4組合預(yù)測

      不同偏差的預(yù)測模型反應(yīng)不同信息,組合預(yù)測將各模型的有效信息整合優(yōu)化,得到最優(yōu)解的近似解。傳統(tǒng)的權(quán)重分配未考慮權(quán)重的動(dòng)態(tài)特性,不同段各優(yōu)化預(yù)測模型的有效信息不同,因此將權(quán)重分段分配,分段提取有效信息。將預(yù)測結(jié)果模糊化,并根據(jù)模糊規(guī)則建立自適應(yīng)模糊組合預(yù)測模型。模糊推理數(shù)據(jù)列表如表2所示。

      3馬爾可夫鏈誤差修正

      4案例分析

      4.1組合預(yù)測

      模糊系統(tǒng)組合優(yōu)化模型,馬爾可夫修正組合結(jié)果算法流程如圖4所示,各模型相對誤差分布如圖5所示,兩種組合預(yù)測方式的相對誤差分布如圖6所示。由圖5可以看出,各優(yōu)化和組合后的預(yù)測模型,其性能更佳,比PSOBP模型精度提高26.32%,比CSSVR的預(yù)測精度提高62.16%,比GAGrey預(yù)測精度提高94.68%,且優(yōu)于線性組合模型;由圖6可以看出,各優(yōu)化和組合后的預(yù)測模型依舊存在峰值誤差,因此馬爾科夫系統(tǒng)可以對誤差進(jìn)行修正。

      4.2誤差修正

      按照聚類原理,將45個(gè)時(shí)間點(diǎn)相對誤差數(shù)據(jù)確定為6個(gè)中心,根據(jù)中心劃分成6個(gè)狀態(tài)區(qū)間,Kmeans計(jì)算聚類中心和狀態(tài)區(qū)間劃分結(jié)果如表3所示,各點(diǎn)所屬狀態(tài)區(qū)間分布如圖7所示,修正前后相對誤差對比如圖8所示。

      由圖8可以看出,馬爾可夫修正后,在7月27日~29日這3天中,每天分別有76.47%,92.86%,85.71%個(gè)時(shí)刻的預(yù)測性能均有所提高,誤差峰值大大降低,修正后的模型FCM比組合模型FC的預(yù)測精度提高57.14%。

      采用平均絕對誤差(mean absolute error,MAE)和均方根誤差(root mean aquare error,RMSE)對優(yōu)化預(yù)測和修正結(jié)果進(jìn)行綜合評價(jià)。修正前后性能對比如圖9所示。由圖9可知,通過修正前后性能對比,F(xiàn)CM預(yù)測模型的RMSE和MAE均小于各優(yōu)化預(yù)測模型。

      5結(jié)束語

      本文以初投入使用的青島市某自習(xí)室空調(diào)系統(tǒng)為研究對象,主要對基于改進(jìn)算法的空調(diào)冷負(fù)荷組合預(yù)測進(jìn)行研究。以自然啟發(fā)的CS,CPSO,GA全局優(yōu)化算法為基礎(chǔ),以神經(jīng)網(wǎng)絡(luò)BP,SVR,Grey為主體,分別建立了CPSOBP優(yōu)化預(yù)測模型、CSSVR優(yōu)化預(yù)測模型和GAGrey優(yōu)化預(yù)測模型,基于模糊理論將3個(gè)優(yōu)化預(yù)測模型帶入模糊系統(tǒng)中,從而建立了動(dòng)態(tài)馬爾可夫組合預(yù)測模型FCM,最后將組合預(yù)測模型應(yīng)用于空調(diào)系統(tǒng)的冷負(fù)荷預(yù)測案例中,修正后的模型FCM比組合模型FC的預(yù)測精度提高了57.14%,驗(yàn)證了本文所提出算法的有效性,由預(yù)測誤差分析可知,本文預(yù)測算法精度較高。該研究為空調(diào)的節(jié)能運(yùn)行策略提供了具有實(shí)際意義的參考。

      參考文獻(xiàn):

      [1]Sarbu I, Adam M. Experimental and numerical investigations of the energy efficiency of conventional air conditioning systems in cooling mode and comfort assurance in office buildings[J]. Energy and Buildings, 2014, 85: 4558.

      [2]Kilic U, Tugrul A B. Identification and analysis of risks associated with gas supply security of turkey[C]∥Energy Systems and Management. Istanbul: Springer International Publishing, 2015: 241252.

      [3]Shi H, Xu M H, Li R. Deep learning for household load forecastinga novel pooling deep RNN[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 52715280.

      [4]Jing Z, Liu X. A hybrid method of dynamic cooling and heating load forecasting for office buildings based on artificial intelligence and regression analysis[J]. Energy and Buildings, 2018, 174: 293398.

      [5]Fan C, Xiao F, Zhao Y. A shortterm building cooling load prediction method using deep learning algorithms[J]. Applied Energy, 2017, 195: 222233.

      [6]Li N, Wang K, Cheng J. A research on a following day load simulation method based on weather forecast parameters[J]. Energy Conversion and Management, 2015, 103(6): 691704.

      [7]Li Z, Huang G. Reevaluation of building cooling load prediction models for use in humid subtropical area[J]. Energy and Buildings, 2013, 62: 442449.

      [8]Dahanayake K W D K C, Chow C L. Studying the potential of energy saving through vertical greenery systems: Using EnergyPlus simulation program[J]. Energy and Buildings, 2017, 138: 4759.

      [9]Lim H S, Kim G. Prediction model of cooling load considering timelag for preemptive action in buildings[J]. Energy and Buildings, 2017, 151: 5365.

      [10]Asadi S, Hassan M, Beheshti A. Development and validation of a simple estimating tool to predict heating and cooling energy demand for attics of residential buildings[J]. Energy and Buildings, 2012, 54: 1221.

      [11]Zhou C G, Fang Z S, Xu X N, et al. Using long shortterm memory networks to predict energy consumption of airconditioning systems[J]. Sustainable Cities and Society, 2020, 55: 1020.

      [12]Brockwell P J, Davis R A, Berger J O, et al. Time series: theory and methods[M]. Berlin: SpringerVerlag, 1987.

      [13]Yu Z, Haghighat F, Fung B C M, et al. A decision tree method for building energy demand modeling[J]. Energy and Buildings, 2010, 42(10): 16371646.

      [14]Harb H, Boyanov N, Hernandez L, et al. Development and validation of greybox models for forecasting the thermal response of occupied buildings[J]. Energy and Buildings, 2016, 117: 199207.

      [15]Mauro C, Ales P, Leonardo T, et al. Prediction of energy performance of residential buildings: A genetic programming approach[J]. Energy and Buildings, 2015, 102: 6774.

      [16]Kumar N, Shaikh A A, Mahato S K, et al. Applications of new hybrid algorithm based on advanced cuckoo search and adaptive Gaussian quantum behaved particle swarm optimization in solving ordinary differential equations[J]. Expert Systems with Applications, 2021, 172: 118.

      [17]Yang X S, Deb S. Cuckoo search: recent advances and applications[J]. Neural Computing and Applications, 2014, 24(1): 169174.

      [18]Deb C, Eang L S, Yang J J, et al. Forecasting diurnal cooling energy load for institutional buildings using Artificial Neural Networks[J]. Energy and Buildings, 2016, 121: 284297.

      [19]Jain R K, Smith K M, Culligan P J, et al. Forecasting energy consumption of multifamily residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy[J]. Applied Energy, 2014, 123: 168178.

      [20]Zhang Y, Fang C, Li T J, et al. Research on shortterm load forecast of shopping mall based on similar day selection and bp neural network[C]∥Proceedings of 2018 3rd International Conference on Automation, Mechanical and Electrical Engineering. Shanghai: DEStech, 2018: 289295.

      [21]Wei L Y. A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast TAIEX[J]. Economic Modelling, 2013, 33: 893899.

      [22]Sedighizadeh D, Masehian E, Sedighizadeh M, et al. GEPSO: A new generalized particle swarm optimization algorithm[J]. Mathematics and Computers in Simulation, 2021, 179: 194212.

      [23]Li D L, Zhang X F, Qiao M Z, et al. A shortterm load forecasting method of warship based on PSOSVM method[C]∥Applied Mechanics and Materials. Wuhan: Trans Technology Publications LTD, 2012: 569574.

      [24]Tien D, Bui H, Moayedi D, et al. Predicting heating and cooling loads in energyefficient buildings using two hybrid intelligent models[J]. Applied Sciences, 2019, 9(17): 35433568.

      作者簡介: ?張晨晨(1994),女,碩士研究生,主要研究方向?yàn)閮?yōu)化算法對空調(diào)負(fù)荷的預(yù)測。

      通信作者: ?馬永志(1972),男,博士,副教授,主要研究方向?yàn)榇髷?shù)據(jù)與云計(jì)算技術(shù)。 Email: hiking@126.com

      Research on Combined Forecasting of Air Conditioning Cooling Load Based on Improved Algorithm

      ZHANG Chenchen, CONG Yilin, TIAN Ye, GUO Anzhu, LIU Tao, MA Yongzhi

      (College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China)

      Abstract: ?In order to solve the problem that it is difficult to comprehensively describe the regularity of cooling load change with a single forecasting method, this article takes the cooling load in a study room in Qingdao, China, which has been put into use for the first time, as the research object, and establishes a TRNSYS simulation platform to obtain sufficient dynamic load data. After using the mean influence value (MIV) and Spearman correlation coefficient to screen the characteristic variables, the prediction models are optimized: the random particle and chaos algorithm are introduced to establish the combined particle swarm optimization (CPSO) algorithm based on standard particle swarm optimization (PSO) algorithm. This is done in order to optimize back propagation (BP) and establish CPSOBP forecasting model;The cuckoo search support vector regression (CSSVR) forecasting model is established by introducing cuckoo search (CS);The grey prediction model GAgrey (1, N) based on genetic optimization(GA) is established; Load prediction values of each model are brought into the fuzzy system to establish the realtime fuzzy combination (FC) model. Finally, Markov(M) is used to correct the combination error. The results show that FCM is superior to CPSOBP, CSSVR and FC, and accuracy is respectively, 26.32%, 62.16%, 94.68% higher than the three optimization models. It gives full play to the advantages of each algorithm, makes up for the shortcomings of each algorithm, and greatly reduces the prediction error, increases the reliability of forecasting system. This study provides a theoretical reference for the formulation of energysaving operation strategy of air conditioning.

      Key words: fuzzy system; GAGM(1, N); CPSOBP; CSSVR; Markov

      猜你喜歡
      修正粒子精度
      數(shù)控車床加工精度的工藝處理及優(yōu)化試析
      對微擾論波函數(shù)的非正交修正
      近似邊界精度信息熵的屬性約簡
      虛擬校園漫游中粒子特效的技術(shù)實(shí)現(xiàn)
      一種用于抗體快速分離的嗜硫納米粒子的制備及表征
      電力系統(tǒng)短期負(fù)荷預(yù)測方法與預(yù)測精度
      慣性權(quán)重動(dòng)態(tài)調(diào)整的混沌粒子群算法
      問:超對稱是什么?
      修正2015生態(tài)主題攝影月賽
      修正2015生態(tài)主題攝影月賽
      宁阳县| 寿阳县| 永川市| 陈巴尔虎旗| 曲周县| 秦皇岛市| 噶尔县| 吉安县| 林芝县| 吉木乃县| 明光市| 静宁县| 灵丘县| 南江县| 墨玉县| 巫山县| 五指山市| 聂荣县| 玉溪市| 新乡市| 万安县| 苏州市| 镇宁| 南汇区| 汉源县| 昆山市| 紫金县| 望奎县| 洪雅县| 古丈县| 尼勒克县| 孟村| 葵青区| 巩留县| 长治市| 江达县| 涟源市| 个旧市| 改则县| 乐昌市| 天门市|