• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conditional autoregressive negative binomial model for analysis of crash count using Bayesian methods

    2014-09-17 06:00:46XuJianSunLu

    Xu Jian Sun Lu

    (1School of Transportation, Southeast University, Nanjing 210096, China)

    (2Center for Transportation Research, University of Texas at Austin, Austin 78712, USA)(3Department of Civil Engineering, Catholic University of America, Washington DC 20064, USA)

    W ith the increase in the number of vehicles,it is interesting and commendable that currently fatalities are decreasing every year in China,the reason of which can be attributed to the optimization of roadway designs,more safety vehicles,as well as many researches of crashes and the contributing factors.However, still 210 812 reported crashes and 62 387 reported fatalities occurred on roadways in 2011 in China according to official reports[1], demanding the further improvement of transportation safety to reduce the traffic accidents and fatalities.

    The possible access to understand the elements of crashes is to develop statistical analysis methods used to distinguish the significant factors,which can be utilized to provide an optimality criterion to policy makers.During the past several years,numerous methods for analyzing crash counts were proposed[2-6].The earliest approach for crash count data is the Poisson model[7], and then it gives rise to more flexible alternatives, e.g., the negative binomial(NB)model[8], the GIS-based Bayesian approach[9], the finite mixture regression model[10], and the quantile regression method[11].Most of the regression methods applied to model crash counts, however, are focused on aspatial(i.e.non-spatial)analysis.Applied work in aspatial models may not be able to capture spatial heterogeneity and spatial dependence at neighborhood areas, a frequently happening issue in crash counts.This leads to the development of alternative methodologies that focus on spatial modeling in the past few decades.Early pioneering work on spatial modeling is reported by Besag[12], and is further enriched by LeSage et al[13-16].Anselin[17]provided two specifications of spatial models,spatial error model(SEM)(i.e., the spatial autocorrelation model(SAC))and the spatial lag model(SLM)(i.e., the spatial autoregressive model(SAR))that is a special type of conditional autoregressive(CAR)model,at least in a continuous-response setting.

    The primary objective of this study is to develop associations between crash counts on homogeneous segments and the contributing factors,using a negative binomial(NB)-based conditional autoregressive model(CAR)which allows for overdispersion,unobserved heterogeneity and spatial autocorrelation.The Bayesian estimation is employed,using Markov chain Monte Carlo methods and the Gibbs sampler.The independent variables consist of traffic characteristics,roadway design and built environments,and the data are derived from on-system highways of Austin, TX, USA in the year 2010.Meanwhile, the exposure variable and the dummy variable are also considered.

    1 Model Structure

    As described before,there are two specifications of spatial models:the spatial autocorrelation model and the spatial autoregressive model.The general formulation of the spatial autoregressive model for cross-sectional spatial data is

    where yicontains ann×1 vector of dependent variables;ρ is the spatial lag coefficient;W1is the spatial weights matrix;φ is the error term for spatial dependence;xirepresents the matrix of independent variables.

    where λ is the spatial autoregressive coefficient;W2is a known spatial weights matrix like W1,usually containing the first-order contiguity relationships; ε ~N(0,σ2In).The SAR model tends to be difficult to develop for limited-response frameworks,especially when dealing with large scale problems involving a large amount of observations,and yields parameter estimates similar to those estimated from the CAR model.Moreover, due to faster computation,the CAR model is preferred in spatial analysis over the SAR model.Under the MRF assumption, the conditional probability density function of the univariate CAR model is[18]

    The joint probability density function is

    whereEiis the exposure variable,which represents vehicle miles traveled(VMT)in this study;τ denotes an unknown parameter for the exposure measure;β0is the intercept term;βkdenotes the coefficient of thek-th covariate;Xikare indicators for thek-th covariate for segmenti;ψifollows the proper CAR prior,as described before;εiis a random error that has a gamma distribution,that is,εi~ Γ(θ,θ).

    2 Data Description

    In this study,roadways and crash data sets of Austin City in USA in 2010 are used to examine the associations between crash counts on mainlanes and the contributing factors.The roadways in this study are on-system highways, containing interstate highways, US highways,state highways,farm-to-market roadways,etc.In order to avoid the modifiable areal unit problem(MAUP)[19],roadways are split into 1 824 homogeneous segments where geometric characteristics are coincident,as shown in Fig.1.Most segments have a length of 0 to 1.6 km and occupy more than 90%of the whole sample.The average of the segment length on mainlanes is 0.459 km.After merging crashes and segments,1 413 crashes on mainlanes are matched.

    Fig.1 Distribution of homogeneous segments in Austin(Spots are the center points of segments)

    In this study,the dependent variable is the number of crashes,while the exposure variable captures VMT,which is a key crash exposure term(since crash counts closely correlate with VMT,everything else remaining constant),and simply the product of AADT,segment length,and 365 days per year.The dependent variable set contains both continuous and categorical variables,as shown in Tab.1.The indicator for curvature is a dummy variable,that is,if the answer is yes,it equals 1,and 0 otherwise.In addition,traffic characteristics allow for AADT,speed limit,and the percentage of truck AADT.In the past research,environments,especially distances to the nearest hospitals,were rarely employed for the contributing factors to analyze the associations of crash counts.In this study,hospitals are collected for analysis;meanwhile,the distances of which to segments are computed by ArcGIS,as shown in Fig.2.The data of annual rainfall obtained from the US Natural Resources Information System are also collected for analysis.It is noted that it would be best to match the year 2010 crashes to the same year rainfall data,however such information is unavailable,and we cannot find out the data.According to theclimate history in Texas,the annual rainfall changed a little,so 1961—1990 average rainfall is used instead.Fig.3 depicts the distribution of the annual rainfall in Austin.

    Tab.1 Summary statistics of variables for segments

    Fig.2 Distribution of hospitals in Austin

    Fig.3 Distribution of annual rainfall in Austin

    3 Estimation Results and Discussion

    This section discusses the results of the associations between the contributing factors and the crash counts on mainlanes in Austin.Tab.2 shows the parameter estimates of the CAR model for crash counts,based on a total number of 5 000 draws in WinBUGS.

    The association between crash exposure(VMT)and crash rates is estimated to be nonlinear(average exponent τ=0.658 for mainlanes),which follows prior expectations.After controlling the exposure variable(VMT),other covariates regardingcrash rates are estimated,which can be seen in Tab.2.

    Elasticities for total crash counts and fatal crash counts are computed as the average percentage change in the mean crash rate per 1%change in thek-th variable.As shown in Tab.2,crash counts are estimated to have a statistically and practically significant spatial autocorrelation coefficient of 0.624(that is α =0.624).The number of lanes,curve length,AADT per lane,and rainfall have positive impacts on the mean crash rates for mainlanes,while the remaining variables all exhibit negative impacts on the mean crash rates.The elasticity of - 0.123 is found to be that of the curve indicator variables,implying that,holding everything else constant at their means,the mean crash rate is estimated to drop by 0.123 when the indicator variable switches from 0 to 1.The result confirms that the roadway curvature has negative effects on crash rates,which is consistent with the findings of some other studies[5-6].

    Interestingly,the speed limit on mainlanes exhibits negative mean elasticities,implying that higher speed limits are associated with lower mean crash rates,as found in Ref.[4].However,the speed limit has a positive effect on fatality rates,as shown in Tab.2.Rainfall intensity is estimated to be positively associated with crash rates,and an increase of 1%rainfall will result in an increase of 8.622 in crash rates and an increase of 0.283 in fatality rates.As discussed previously,the distances to hospitals rarely appear as contributing factors in the crash modeling literature.It is found that the distances to the nearest hospitals have a negative impact on the mean crash rates,which suggests that shorter distances lead to higher crash rates,however,as expected,positive associations with fatal crash rates(presumably due to more severe collision impacts at higher speeds and time lost in transporting crash victims to an emergency room).

    Tab.2 Estimation results of CAR-NB model for crash and fatal counts

    In this study,the CAR-NB model is compared with another spatial model(CAR-Poisson)and some aspatial models(NB,zero-inflated NB and zero-inflated Poisson),as shown in Tab.3.

    Tab.3 Comparison of results using aspatial models and spatial models

    The deviance information criterion(DIC),as a generalization of the Akaike information criterion(AIC),can be used to compare the goodness-of-fit and complexity of different models estimated under a Bayesian framework.The DIC equation is

    whereD(θˉ)is the deviance evaluated atθˉ which is the posterior mean of the parameters;pDis the effective number of parameters in the model;Dˉ is the posterior mean of the deviance statisticD(θ).With regards to the model superiority and complexity,the lower the DIC,the better the model[20].Tab.3 also presents the log likelihood values,which are used in the likelihood ratio chi-square to test whether all predictors'regression coefficients in the model are simultaneously zero.Meanwhile,Moran'sIis also considered,which is a measure of spatial autocorrelation developed by Moran[21].Negative(positive)values indicate negative(positive)spatial autocorrelation and the values range from -1(indicating perfect dispersion)to+1(perfect correlation).

    It is observed that the CAR-NB model has the lowest DIC and Moran'sIof residuals among these tested models.Meanwhile,mean log likelihood values of the CARNB model are the largest.The statistical tests suggest that the CAR-NB model is preferred over the CAR-Poisson,NB,zero-inflated Poisson,zero-inflated NB models due to its lower prediction errors and more robust parameter inference.It can be found that the negative binomial models in Tab.3 are better than the Poisson models due to the fact that overdispersion actually exists in the data.

    4 Conclusions

    1)Statistical tests of DIC,log likelihood and Moran'sIsuggest that the CAR-NB model is preferred over the CAR-Poisson,NB,zero-inflated Poisson,zero-inflated NB models,while the negative binomial models are better than the Poisson models.

    2)The association between crash exposure(VMT)and crash rates is estimated to be nonlinear(average exponent τ =0.658 for mainlanes),with crash rates effectively falling as VMT rises.

    3)The number of lanes,curve length,AADT per lane,and rainfall have positive impacts on crash count,while the remaining variables all exhibit negative impacts.

    4)The distances to the nearest hospitals and the speed limit have negative associations with segment-based crash counts but positive associations with fatality counts,presumably as a result of time loss during transporting crash victims and worsened collision impacts at higher speeds.

    [1]Traffic Management Bureau of the Ministry of Public Security of the People's Republic of China.Road traffic accident statistics annual report of the People's Republic of China(2010)[R].Wuxi:Traffic Management Research Institute of the Ministry of Public Security,2011.(in Chinese)

    [2]Qu X,Guo T,Wang W,et al.Measuring speed consistency for freeway diverge areas using factor analysis[J].Journal of Central South University:Science and Technology,2013,20(1):837-840.(in Chinese)

    [3]Pei Y L,Ma J.Research on countermeasures for road condition causes of traffic accidents[J].China Journal of Highway and Transport,2003,16(4):77-82.

    [4]Ma J,Kockelman K M,Damien P.A multivariate Poisson-lognormal regression model for prediction of crash counts by severity,using Bayesian methods[J].Accident Analysis and Prevention,2008,40(3):964-975.

    [5]Quddus M A,Wang C,Ison S G.Road traffic congestion and crash severity:econometric analysis using ordered response models[J].Journal of Transportation Engineering,2010,136(5):424-435.

    [6]Wang C,Quddus M A,Ison S G.Predicting accident frequency at their severity levels and its application in site ranking using a two-stage mixed multivariate model[J].Accident Analysis and Prevention,2011,43(6):1979-1990.

    [7]Jovanis P,Chang H L.Modeling the relationship of accidents to miles traveled[J].Transportation Research Record,1986,1068:42-51.

    [8]Lord D.The prediction of accidents on digital networks:characteristics and issues related to the application of accident prediction models[D].Toronto:University of Toronto,2000.

    [9]Li L,Zhu L,Daniel Z S.A GIS-based Bayesian approach for analyzing spatial-temporal patterns of intra-city motor vehicle crashes[J].Journal of Transport Geography,2007,15(4):274-285.

    [10]Park B J,Lord D.Application of finite mixture models for vehicle crash data analysis[J].Accident Analysis and Prevention,2009,41(4):683-91.

    [11]Qin X,Reyes P.Conditional quantile analysis for crash count data[J].Journal of Transportation Engineering,2011,137(9):601-607.

    [12]Besag J E.Nearest-neighbour systems and the auto-logistic model for binary data[J].Journal of the Royal Statistical Society,Series B:Methodological,1972,34(1):75-83.

    [13]LeSage J P.Spatial econometrics[EB/OL].(1999)[2013-03-15].http://www.spatial-econometrics.com/.

    [14]Miaou S,Song J J,Malick B.Roadway traffic crash mapping:a space-time modeling approach[J].Journal of Transportation and Statistics,2003,6(1):33-57.

    [15]Quddus M A.Modeling area-wide count outcomes with spatial correlation and heterogeneity:an analysis of London crash data[J].Accident Analysis and Prevention,2008,40(4):1486-1497.

    [16]Wang Y,Kockelman K M.A conditional-autoregressive count model for pedestrian crashes across neighborhoods[C/CD]//The92nd Annual Meeting of the Transportation Research Board.Washington DC,USA,2013.

    [17]Anselin L.Spatial econometrics:methods and models[M].Dordrecht:Kluwer Academic Publishers,1988.

    [18]Mariella L,Tarantino M.Spatial temporal conditional auto-regressive model:a new autoregressive matrix [J].Australian Journal of Statistics,2010,39(3):223-244.

    [19]Openshaw S.The modifiable areal unit problem [J].Concepts and Techniques in Modern Geography,1983,38:39-41.

    [20]Spregelhalter D J,Best N G,Carlin B P,et al.Bayesian measures of model complexity and fit[J].Journal of the Royal Statistical Society,Series B:Statistical Methodology,2002,64(4):583-639.

    [21]Moran P A P.Notes on continuous stochastic phenomena[J].Biometrika,1950,37(1):17-23.

    国产精品熟女久久久久浪| 免费人成在线观看视频色| 色综合色国产| 欧美日韩精品成人综合77777| a级毛片免费高清观看在线播放| 午夜福利视频1000在线观看| 国产精品永久免费网站| 国产老妇女一区| 在线观看一区二区三区| 免费搜索国产男女视频| 91精品国产九色| 午夜视频国产福利| 久久欧美精品欧美久久欧美| 日韩成人伦理影院| 国内少妇人妻偷人精品xxx网站| 久久亚洲精品不卡| 能在线免费看毛片的网站| 男人狂女人下面高潮的视频| 天堂av国产一区二区熟女人妻| 亚洲最大成人中文| 久久久久精品久久久久真实原创| 日韩av在线大香蕉| 久久精品国产亚洲av天美| 人妻制服诱惑在线中文字幕| 亚洲精品自拍成人| 久久综合国产亚洲精品| 久99久视频精品免费| 级片在线观看| 国产极品精品免费视频能看的| 国产精品久久久久久精品电影| 一二三四中文在线观看免费高清| 久久精品国产亚洲av天美| 国产精品国产高清国产av| 久久精品人妻少妇| av在线天堂中文字幕| 午夜激情福利司机影院| 欧美高清成人免费视频www| 男的添女的下面高潮视频| 久久精品影院6| 99久久精品国产国产毛片| 国产 一区 欧美 日韩| 免费av不卡在线播放| 午夜a级毛片| 日日干狠狠操夜夜爽| 美女高潮的动态| 欧美日本视频| 少妇被粗大猛烈的视频| 丰满少妇做爰视频| 观看免费一级毛片| 日本黄大片高清| 亚洲av免费在线观看| 最后的刺客免费高清国语| 国产在线一区二区三区精 | 五月玫瑰六月丁香| 国产真实乱freesex| 亚洲丝袜综合中文字幕| 亚洲精品,欧美精品| 国产精品精品国产色婷婷| 嫩草影院入口| 国产在视频线在精品| av天堂中文字幕网| 亚洲av成人av| 少妇熟女欧美另类| 内射极品少妇av片p| 国产三级在线视频| 国产免费视频播放在线视频 | 久久鲁丝午夜福利片| 少妇人妻一区二区三区视频| 国产精品久久久久久av不卡| 亚洲美女搞黄在线观看| 国产午夜福利久久久久久| 色吧在线观看| 亚洲国产精品成人久久小说| 欧美日本视频| 久久精品夜夜夜夜夜久久蜜豆| 色播亚洲综合网| 亚洲人成网站在线播| 白带黄色成豆腐渣| 久久久久久久久久黄片| 最近2019中文字幕mv第一页| 日本熟妇午夜| 久久99热这里只有精品18| 一区二区三区免费毛片| 大又大粗又爽又黄少妇毛片口| 亚洲精品aⅴ在线观看| 国产亚洲午夜精品一区二区久久 | 国内精品宾馆在线| 联通29元200g的流量卡| 国产三级中文精品| 亚洲av熟女| 亚洲国产成人一精品久久久| 亚洲中文字幕一区二区三区有码在线看| 五月玫瑰六月丁香| 成年免费大片在线观看| 亚洲成色77777| 99热网站在线观看| 亚洲成人久久爱视频| 亚洲人成网站在线观看播放| 精品久久久久久久久亚洲| 69av精品久久久久久| 亚洲图色成人| 纵有疾风起免费观看全集完整版 | 免费搜索国产男女视频| 精品国内亚洲2022精品成人| 国产精品无大码| 欧美激情在线99| 国产精品永久免费网站| 久久精品人妻少妇| 毛片一级片免费看久久久久| 午夜精品一区二区三区免费看| 男的添女的下面高潮视频| 国产精品爽爽va在线观看网站| 久久99热6这里只有精品| 久久久久久久久久成人| 最近最新中文字幕免费大全7| 一本一本综合久久| 国产伦一二天堂av在线观看| 精品国产三级普通话版| 成人性生交大片免费视频hd| 久久久久国产网址| 亚洲怡红院男人天堂| 国产在视频线精品| 一级毛片aaaaaa免费看小| 日韩av在线免费看完整版不卡| 国产精品精品国产色婷婷| 特大巨黑吊av在线直播| 日本黄大片高清| 国产视频首页在线观看| 国产精品永久免费网站| 久久久午夜欧美精品| 久久精品久久精品一区二区三区| 亚洲av成人精品一区久久| 欧美一区二区精品小视频在线| 国产亚洲最大av| 欧美3d第一页| 九九在线视频观看精品| 中国国产av一级| 特大巨黑吊av在线直播| 欧美日韩一区二区视频在线观看视频在线 | 在线免费十八禁| 久久久欧美国产精品| 欧美日韩在线观看h| 少妇猛男粗大的猛烈进出视频 | 亚洲av电影不卡..在线观看| 全区人妻精品视频| 久久久精品94久久精品| 欧美高清性xxxxhd video| 亚洲中文字幕日韩| av在线天堂中文字幕| 内地一区二区视频在线| 日韩欧美 国产精品| 舔av片在线| 久久久久久久国产电影| 纵有疾风起免费观看全集完整版 | 天天躁日日操中文字幕| 啦啦啦韩国在线观看视频| 2021天堂中文幕一二区在线观| 99国产精品一区二区蜜桃av| 成人一区二区视频在线观看| 欧美bdsm另类| 国产精品美女特级片免费视频播放器| 国产精品国产高清国产av| 爱豆传媒免费全集在线观看| 成人鲁丝片一二三区免费| av福利片在线观看| 日本猛色少妇xxxxx猛交久久| 久久99热6这里只有精品| 国产精品一区二区在线观看99 | 国产高清有码在线观看视频| 日韩视频在线欧美| 欧美日韩精品成人综合77777| 午夜福利视频1000在线观看| 看免费成人av毛片| 有码 亚洲区| 女人被狂操c到高潮| 夫妻性生交免费视频一级片| 亚洲av电影在线观看一区二区三区 | 成人三级黄色视频| 深夜a级毛片| 亚洲av成人精品一区久久| www.av在线官网国产| 我的女老师完整版在线观看| 乱系列少妇在线播放| 欧美成人免费av一区二区三区| 麻豆成人av视频| 国产午夜精品久久久久久一区二区三区| 久久99热这里只频精品6学生 | 欧美高清性xxxxhd video| 黄色一级大片看看| 村上凉子中文字幕在线| 在线a可以看的网站| 亚洲国产精品sss在线观看| 亚洲国产欧美人成| 国产麻豆成人av免费视频| 国产乱来视频区| 色5月婷婷丁香| 看非洲黑人一级黄片| 性色avwww在线观看| 成人美女网站在线观看视频| 国产免费福利视频在线观看| 国产亚洲91精品色在线| 99在线人妻在线中文字幕| 国产麻豆成人av免费视频| 精品久久久久久久人妻蜜臀av| 两个人的视频大全免费| 色综合亚洲欧美另类图片| 欧美激情在线99| 免费观看的影片在线观看| 国产av一区在线观看免费| 国产精品电影一区二区三区| 夫妻性生交免费视频一级片| www.色视频.com| 欧美xxxx黑人xx丫x性爽| 国产乱人偷精品视频| 人人妻人人澡人人爽人人夜夜 | 日本与韩国留学比较| 欧美性感艳星| 中文字幕精品亚洲无线码一区| 国产激情偷乱视频一区二区| 91午夜精品亚洲一区二区三区| 久久久久久国产a免费观看| 免费搜索国产男女视频| 国产精品伦人一区二区| 人妻夜夜爽99麻豆av| 久久6这里有精品| 免费人成在线观看视频色| 少妇丰满av| 熟女人妻精品中文字幕| 你懂的网址亚洲精品在线观看 | av天堂中文字幕网| 狠狠狠狠99中文字幕| 久久人妻av系列| 亚洲成人精品中文字幕电影| 51国产日韩欧美| av天堂中文字幕网| 91在线精品国自产拍蜜月| 可以在线观看毛片的网站| 国内揄拍国产精品人妻在线| 韩国高清视频一区二区三区| 中文天堂在线官网| 大香蕉97超碰在线| 精品少妇黑人巨大在线播放 | 亚洲欧美日韩东京热| 亚洲av福利一区| 午夜福利成人在线免费观看| 亚洲欧美精品专区久久| 乱系列少妇在线播放| 欧美最新免费一区二区三区| 日日摸夜夜添夜夜爱| 天堂av国产一区二区熟女人妻| 亚洲国产精品专区欧美| 欧美3d第一页| 日产精品乱码卡一卡2卡三| 国产精华一区二区三区| .国产精品久久| 免费大片18禁| 中文字幕av在线有码专区| 日韩大片免费观看网站 | 欧美又色又爽又黄视频| 欧美色视频一区免费| 国产毛片a区久久久久| 久久精品综合一区二区三区| 观看免费一级毛片| 久久99热这里只有精品18| 欧美丝袜亚洲另类| 精品人妻偷拍中文字幕| 午夜精品在线福利| 九九在线视频观看精品| 欧美xxxx黑人xx丫x性爽| 内射极品少妇av片p| 成年女人永久免费观看视频| 又爽又黄a免费视频| 亚洲国产精品sss在线观看| 成人性生交大片免费视频hd| 麻豆久久精品国产亚洲av| 18禁在线无遮挡免费观看视频| 亚洲成av人片在线播放无| 亚洲国产欧洲综合997久久,| 国产一区有黄有色的免费视频 | 国产亚洲91精品色在线| 十八禁国产超污无遮挡网站| 色综合亚洲欧美另类图片| 国产精品伦人一区二区| 亚洲欧美精品专区久久| 桃色一区二区三区在线观看| 日韩一本色道免费dvd| 国语对白做爰xxxⅹ性视频网站| 日韩一区二区视频免费看| 久久久午夜欧美精品| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲人成网站在线播| 夜夜看夜夜爽夜夜摸| 色综合站精品国产| 91精品国产九色| 久久精品91蜜桃| 亚洲av福利一区| 乱系列少妇在线播放| 国产精品久久久久久久电影| 欧美xxxx黑人xx丫x性爽| 少妇熟女aⅴ在线视频| 淫秽高清视频在线观看| 少妇的逼水好多| 欧美精品国产亚洲| 国产精品麻豆人妻色哟哟久久 | 国产精品久久久久久av不卡| 欧美不卡视频在线免费观看| 色播亚洲综合网| 国产精品99久久久久久久久| 综合色丁香网| 美女被艹到高潮喷水动态| 亚洲精品色激情综合| 亚洲久久久久久中文字幕| 国产 一区精品| 国产乱来视频区| 国产乱人视频| 久99久视频精品免费| 国产免费福利视频在线观看| 日韩亚洲欧美综合| 成人毛片60女人毛片免费| 美女cb高潮喷水在线观看| 国产精品1区2区在线观看.| 99国产精品一区二区蜜桃av| 国产精品99久久久久久久久| 校园人妻丝袜中文字幕| 国产精品99久久久久久久久| 最近中文字幕高清免费大全6| 色5月婷婷丁香| 噜噜噜噜噜久久久久久91| 国产伦精品一区二区三区四那| 亚洲自偷自拍三级| 天堂网av新在线| av免费在线看不卡| 中文在线观看免费www的网站| 搡女人真爽免费视频火全软件| 特大巨黑吊av在线直播| 久久久久精品久久久久真实原创| 日本三级黄在线观看| 国产不卡一卡二| 蜜桃亚洲精品一区二区三区| 欧美日韩精品成人综合77777| 久久精品国产99精品国产亚洲性色| 免费看a级黄色片| 精品无人区乱码1区二区| 欧美精品一区二区大全| 成人性生交大片免费视频hd| 日韩人妻高清精品专区| 国产黄色视频一区二区在线观看 | 又爽又黄无遮挡网站| 日产精品乱码卡一卡2卡三| 午夜激情福利司机影院| 1000部很黄的大片| 水蜜桃什么品种好| 日韩一本色道免费dvd| 国产人妻一区二区三区在| 国产一级毛片七仙女欲春2| 大香蕉97超碰在线| 精品熟女少妇av免费看| 欧美色视频一区免费| 寂寞人妻少妇视频99o| 国产亚洲av嫩草精品影院| 九九在线视频观看精品| 在现免费观看毛片| ponron亚洲| 国产真实乱freesex| av.在线天堂| 一边摸一边抽搐一进一小说| 夜夜看夜夜爽夜夜摸| 午夜免费激情av| 日本免费在线观看一区| 亚洲av免费高清在线观看| 国产免费福利视频在线观看| 国产精品美女特级片免费视频播放器| 久久久午夜欧美精品| 久久久久性生活片| 美女大奶头视频| 男人狂女人下面高潮的视频| 日韩精品有码人妻一区| 精品久久久久久久久久久久久| 美女国产视频在线观看| 十八禁国产超污无遮挡网站| 国产国拍精品亚洲av在线观看| 成人综合一区亚洲| 日本猛色少妇xxxxx猛交久久| 精品国内亚洲2022精品成人| 国产视频首页在线观看| 内射极品少妇av片p| 久久99热这里只频精品6学生 | 99九九线精品视频在线观看视频| 国产精品乱码一区二三区的特点| 国产成人a∨麻豆精品| .国产精品久久| 丰满少妇做爰视频| 国产精品一区二区性色av| 在线免费十八禁| 亚洲激情五月婷婷啪啪| 成年免费大片在线观看| 男人舔女人下体高潮全视频| 中文在线观看免费www的网站| 日韩三级伦理在线观看| 亚洲av中文字字幕乱码综合| 一级毛片久久久久久久久女| www.av在线官网国产| 欧美成人a在线观看| 美女脱内裤让男人舔精品视频| 春色校园在线视频观看| 精品人妻偷拍中文字幕| 欧美丝袜亚洲另类| 少妇被粗大猛烈的视频| 直男gayav资源| 丰满人妻一区二区三区视频av| 最近最新中文字幕大全电影3| 亚洲熟妇中文字幕五十中出| 国产又色又爽无遮挡免| 日韩成人av中文字幕在线观看| 国内精品一区二区在线观看| 国产精品久久视频播放| 久久精品91蜜桃| av女优亚洲男人天堂| 91午夜精品亚洲一区二区三区| a级毛色黄片| av国产免费在线观看| 欧美成人午夜免费资源| 国产高清视频在线观看网站| 久久久久久久久中文| 我要搜黄色片| av天堂中文字幕网| 精品一区二区三区视频在线| 欧美日本亚洲视频在线播放| 精品99又大又爽又粗少妇毛片| 最新中文字幕久久久久| 男女那种视频在线观看| 成人特级av手机在线观看| 尾随美女入室| 一个人观看的视频www高清免费观看| 美女脱内裤让男人舔精品视频| 国产精品一区二区三区四区免费观看| 色综合亚洲欧美另类图片| 女人被狂操c到高潮| 久久久亚洲精品成人影院| 日本一二三区视频观看| 看十八女毛片水多多多| av在线天堂中文字幕| 国产激情偷乱视频一区二区| 国产成年人精品一区二区| 国产乱人偷精品视频| 少妇丰满av| 男人狂女人下面高潮的视频| 欧美又色又爽又黄视频| 成人性生交大片免费视频hd| 国产精品久久久久久久电影| 欧美成人a在线观看| 亚洲最大成人中文| 噜噜噜噜噜久久久久久91| 成人一区二区视频在线观看| 国产一区亚洲一区在线观看| 亚洲人成网站在线播| 日本色播在线视频| 韩国av在线不卡| 国内精品美女久久久久久| 国产麻豆成人av免费视频| 成人三级黄色视频| 国产综合懂色| 国国产精品蜜臀av免费| 久久久久国产网址| 亚洲四区av| 2022亚洲国产成人精品| 国产精品久久电影中文字幕| 黑人高潮一二区| 看黄色毛片网站| 岛国在线免费视频观看| 午夜福利在线观看免费完整高清在| 国产人妻一区二区三区在| 日韩欧美精品v在线| 亚洲美女搞黄在线观看| 亚洲内射少妇av| 搞女人的毛片| 男人的好看免费观看在线视频| 日韩一本色道免费dvd| 99久国产av精品| 国产精品国产三级国产av玫瑰| 天堂av国产一区二区熟女人妻| 一夜夜www| 在线天堂最新版资源| 欧美xxxx性猛交bbbb| 3wmmmm亚洲av在线观看| 成人美女网站在线观看视频| 久久综合国产亚洲精品| 99视频精品全部免费 在线| 成人性生交大片免费视频hd| 精品久久久久久久久亚洲| av在线老鸭窝| 欧美一区二区亚洲| 国产av码专区亚洲av| 中文字幕精品亚洲无线码一区| 国产不卡一卡二| 欧美97在线视频| 视频中文字幕在线观看| 九九在线视频观看精品| 人妻系列 视频| 26uuu在线亚洲综合色| 国产成人a区在线观看| 亚洲av电影在线观看一区二区三区 | 国产69精品久久久久777片| 亚洲怡红院男人天堂| 国产欧美日韩精品一区二区| 69人妻影院| 亚洲中文字幕日韩| 久久99热6这里只有精品| 国产成人91sexporn| 久久这里有精品视频免费| 成人午夜高清在线视频| 国产女主播在线喷水免费视频网站 | 九九爱精品视频在线观看| 高清av免费在线| 亚洲欧美日韩东京热| 国产精品熟女久久久久浪| 日韩欧美精品v在线| av在线老鸭窝| 日本免费a在线| 亚洲第一区二区三区不卡| 亚洲一区高清亚洲精品| 爱豆传媒免费全集在线观看| 久久久久久久久久成人| 国产精品熟女久久久久浪| 国产真实伦视频高清在线观看| 中文字幕人妻熟人妻熟丝袜美| 狂野欧美激情性xxxx在线观看| 欧美最新免费一区二区三区| 国产中年淑女户外野战色| 最新中文字幕久久久久| 麻豆一二三区av精品| 99国产精品一区二区蜜桃av| 久久久久久九九精品二区国产| 中文字幕亚洲精品专区| 亚洲av成人av| 欧美激情久久久久久爽电影| 久久久国产成人免费| 亚洲成人中文字幕在线播放| 国产免费又黄又爽又色| 国产高清有码在线观看视频| 中文天堂在线官网| 亚洲美女搞黄在线观看| 国产视频首页在线观看| 国产av码专区亚洲av| 久久99热6这里只有精品| 国产精品国产三级国产av玫瑰| 伦精品一区二区三区| 99久国产av精品国产电影| 亚洲自拍偷在线| 亚洲在线自拍视频| 日韩成人av中文字幕在线观看| 国产成人精品久久久久久| 国产一级毛片在线| 长腿黑丝高跟| 久久久久国产网址| 国产成人aa在线观看| 亚洲欧美日韩东京热| 国产人妻一区二区三区在| 国产精品av视频在线免费观看| 中文字幕av在线有码专区| 免费观看性生交大片5| 两个人的视频大全免费| 内地一区二区视频在线| 久久久精品欧美日韩精品| 中文亚洲av片在线观看爽| 成年免费大片在线观看| 中文精品一卡2卡3卡4更新| 少妇高潮的动态图| 非洲黑人性xxxx精品又粗又长| 精品一区二区免费观看| 欧美日韩国产亚洲二区| 亚洲最大成人手机在线| 亚洲成人中文字幕在线播放| 免费一级毛片在线播放高清视频| 国产成人a∨麻豆精品| 国产精品国产三级专区第一集| 男女那种视频在线观看| 综合色丁香网| 精品一区二区三区人妻视频| 国产91av在线免费观看| 国产成人福利小说| 亚洲经典国产精华液单| 韩国av在线不卡| 日韩三级伦理在线观看| 色综合色国产| 久久久久性生活片| 五月玫瑰六月丁香| 成年版毛片免费区| 青春草国产在线视频| 国产精品一区二区三区四区久久| 国产毛片a区久久久久| 99热6这里只有精品| 国产成年人精品一区二区| 国产精品.久久久| 三级国产精品片| 国产成年人精品一区二区| 欧美不卡视频在线免费观看| 日韩一区二区三区影片| 亚洲18禁久久av| h日本视频在线播放| 国产精品一二三区在线看| 久久人人爽人人爽人人片va| 看十八女毛片水多多多| 成年免费大片在线观看| 九色成人免费人妻av| 精品国产一区二区三区久久久樱花 | 中国美白少妇内射xxxbb| 国产亚洲av嫩草精品影院| 午夜a级毛片| 尾随美女入室| 午夜爱爱视频在线播放| av免费在线看不卡| 大香蕉久久网| 建设人人有责人人尽责人人享有的 | 一本一本综合久久|