展小云,趙 軍,稅軍峰,趙向輝,郭明航
全自動稱重式雨量計的研制及性能分析
展小云1,2,趙 軍1,2,稅軍峰2※,趙向輝3,郭明航1,2
(1. 西北農(nóng)林科技大學(xué)黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點實驗室,楊凌 712100;2. 中國科學(xué)院水利部水土保持研究所,楊凌 712100;3. 西安三智科技有限公司,西安 710075)
為了精準(zhǔn)刻畫降雨過程特征,研制了一種具有野外復(fù)雜條件下普遍適用的全自動稱重式雨量計,該儀器以STM32單片機(jī)為核心,利用A/D轉(zhuǎn)換芯片對稱重傳感器的電壓信號進(jìn)行放大處理,獲取分辨率為0.01 mm的分鐘級別的降雨數(shù)據(jù)。試驗結(jié)果表明,該雨量計測量標(biāo)準(zhǔn)差為0.02 mm/min,測量準(zhǔn)確度最高為98.67%,說明該儀器監(jiān)測精度高且適用范圍廣。稱重式雨量計分辨率高,對微小雨滴反應(yīng)靈敏,使得其監(jiān)測結(jié)果較翻斗式雨量計大。此外,利用稱重式雨量計在王東溝小流域進(jìn)行野外自然降雨觀測,發(fā)現(xiàn)該小流域自然降雨集中在5-9月,主要以次降雨量≤5 mm的降雨為主,而次降雨量為>10~25 mm的降雨對降雨總量貢獻(xiàn)最大。該儀器可以實時準(zhǔn)確地監(jiān)測降雨全過程,可為提高降雨監(jiān)測技術(shù)的精準(zhǔn)化和自動化水平提供參考。
降水;傳感器;雨量計;自動化監(jiān)測
降雨作為水循環(huán)的關(guān)鍵組成部分,是全球氣候變化背景下重點關(guān)注的核心要素之一,與農(nóng)、林、牧等多個領(lǐng)域都密切相關(guān)[1-2]。雨量計作為降雨監(jiān)測的重要手段,其精度高低直接影響著獲取數(shù)據(jù)的可靠性,因此,雨量計精確與否,對于開展天氣預(yù)報、預(yù)防氣象災(zāi)害、指導(dǎo)工農(nóng)業(yè)生產(chǎn)、深入土壤侵蝕研究等至關(guān)重要[3-4]。
目前國內(nèi)外用于監(jiān)測降雨的儀器從傳統(tǒng)的人工觀測雨量桶[5]、翻斗式雨量計[6-8]、虹吸式雨量計[9-11]發(fā)展到基于敏感器件及電子技術(shù)的超聲雨量計[12-13]、光學(xué)式雨量計[14-16]、壓力式雨量計[17-19]等多種類型的雨量監(jiān)測儀,為降雨的精準(zhǔn)監(jiān)測提供了多元化的選擇。降雨發(fā)生的時間和空間具有很大的不確定性,并且野外環(huán)境復(fù)雜,使得現(xiàn)有的技術(shù)難以滿足不同情境下的降雨準(zhǔn)確監(jiān)測要求[20-22]。例如,在水文站應(yīng)用較多的虹吸式雨量計需要定期現(xiàn)場記錄和人工維護(hù),難以達(dá)到遙測要求,而且虹吸管容易被降塵污染導(dǎo)致虹吸失常,精度低,測量誤差大[11, 23-24]。翻斗式雨量計克服了虹吸式雨量計不易將降雨量信息進(jìn)行遠(yuǎn)距離傳輸?shù)娜秉c[25],但是其存在異物易堵塞翻斗口、強(qiáng)降雨時翻斗翻轉(zhuǎn)不及時等問題[8,26]。超聲雨量計則由于超聲波的傳播速度受介質(zhì)密度、濃度、外界溫度等因素影響而發(fā)生折射和衰減現(xiàn)象,其測量精度和準(zhǔn)確性均較低[27-28]。光學(xué)式雨量計和壓力式雨量計測量誤差主要由雨滴重疊跌落和信號噪聲干擾引起的,并且成本過于昂貴,無法大面積布設(shè)[15, 29-31]??梢姡延杏炅坑嫓y量精度容易受雨強(qiáng)大小影響,測量范圍小,對強(qiáng)降水測量誤差大。
近年來,測量精度高、功耗小的Pluvio稱重式雨量計被逐漸應(yīng)用于降雨監(jiān)測[32-33]。Pluvio雨量計的采樣桶采用了敞開式設(shè)計,所以必須加設(shè)風(fēng)盾配件,以消除風(fēng)沙的影響。此外,該儀器集成了溫度傳感器,主要用于補償平衡系統(tǒng)內(nèi)的溫度變化。但是,該類儀器價格昂貴,并且采樣桶面積有200和400 cm2兩種規(guī)格,采樣口徑與中國的標(biāo)準(zhǔn)不一致。使用最受限的一點是該儀器不能有效地自動排水,在采集的雨水達(dá)到采樣桶總體積的80%時必須進(jìn)行人工清潔,如未及時傾倒采樣桶內(nèi)雨水,則會造成雨量漏測。
為了實現(xiàn)降雨過程的連續(xù)化、自動化和精細(xì)化監(jiān)測,本研究將稱重法和精準(zhǔn)傳感、自動測控等現(xiàn)代化科學(xué)技術(shù)相結(jié)合,研制基于STM32單片機(jī)的全自動、高精度的降雨監(jiān)測儀,以期實現(xiàn)降雨過程觀測和數(shù)據(jù)的遠(yuǎn)程傳輸,為降雨監(jiān)測的網(wǎng)絡(luò)化提供新的技術(shù)手段,提升國產(chǎn)儀器設(shè)備的研發(fā)能力。
稱重式雨量計主要通過稱重傳感器測量測量艙中降雨的質(zhì)量數(shù)據(jù),經(jīng)信號放大處理后將質(zhì)量數(shù)據(jù)實時返回至單片機(jī)STM32中,從而經(jīng)過自動換算獲得降雨量數(shù)據(jù),并進(jìn)行存儲和遠(yuǎn)程無線傳輸。降雨量計算公式如下:
式中為降雨量,mm;h為當(dāng)前測量艙質(zhì)量,g;0為初始測量艙質(zhì)量,g;為測量艙半徑,cm;為水的密度,g/cm3;10為換算系數(shù)。其中,一般取值為1 g/cm3,但是為了提高測量結(jié)果的準(zhǔn)確度,取溫度傳感器測得的實時水溫所對應(yīng)的水的密度。
該雨量計主要由3部分構(gòu)成,即采集系統(tǒng)、稱重(質(zhì)量)系統(tǒng)、測控系統(tǒng),具體包括不銹鋼筒體、盛雨器、溫度傳感器、測量艙、稱重(質(zhì)量)傳感器、測控系統(tǒng)等(圖1a)。儀器的設(shè)計高度為40 cm,外殼防護(hù)等級IP54,電氣防護(hù)等級IP65,可適應(yīng)降雨監(jiān)測的惡劣環(huán)境。設(shè)備機(jī)架選用優(yōu)質(zhì)不銹鋼304,并采取焊接和剛性連接,以增加其光滑性和密閉性(圖1b)。儀器由太陽能電池(12V/200AH,光伏板180 W)或AC 220V/50HZ市電供電。此外,儀器的監(jiān)測數(shù)據(jù)會實時傳輸至站點/數(shù)據(jù)管理平臺。
1.2.1 采集系統(tǒng)
樣品采集部分主要由濾網(wǎng)、溫度傳感器和盛雨器組成??讖綖? mm的濾網(wǎng)安裝在筒體最上端,防止雜物進(jìn)入盛雨器而造成管路堵塞。Pt100溫度傳感器通過惠斯登電橋獲取溫度變化的電壓信號,通過高精度運算放大器,輸入到控制系統(tǒng),并進(jìn)行24位A/D轉(zhuǎn)換,將電壓信號解析出降水溫度,降水密度則由實測的水的溫度對應(yīng)的水的密度進(jìn)行實時矯正,以消除降水溫度引起的誤差,提高降雨量計算結(jié)果的準(zhǔn)確性。樣品采集所使用的盛雨器尺寸設(shè)計和傳統(tǒng)雨量筒一致,直徑為20 cm。此外,為了提高測量結(jié)果的準(zhǔn)確性,盛雨器的設(shè)計還考慮了以下幾個因素:
1)上端刀口設(shè)計:為了使不同大小的雨滴更精準(zhǔn)地落入盛雨器中,設(shè)計了盛雨器和雨滴線性接觸的45°傾斜角刀口(圖2a),最大程度地防止刀口切掉的雨滴濺到盛雨器中,確保盛雨器的有效采樣直徑為20 cm。
2)下端傾角設(shè)計:當(dāng)水滴與盛雨器下端接觸面形成的接觸角大于90°時,則表現(xiàn)為疏水性,反之則表現(xiàn)為親水性。如要確保雨滴降落到盛雨器后具有好的疏水性,只要滿足接觸角大于90°即可。盛雨器下端傾角設(shè)計為60°,接觸角為120°呈現(xiàn)疏水狀態(tài),而水滴前部的接觸角大而后部的接觸角小,均超過親水性的臨界接觸角,使得雨滴自然流動,避免附著在盛雨器內(nèi)壁(圖2b)。
3)內(nèi)壁表面處理:盛雨器內(nèi)壁經(jīng)過拋光表面光潔度達(dá)0.8以上,增加了雨滴的流動性,減少了雨滴掛壁現(xiàn)象。此外,盛雨器內(nèi)壁上涂有低表面能的疏水材料,通過表面氟化處理,可以減少盛雨器表面浸濕和蒸發(fā)帶來的測量誤差。
1.2.2 稱重系統(tǒng)
稱重系統(tǒng)主要是完成樣品的測量,由導(dǎo)流管、測量艙、排樣開關(guān)和稱重傳感器組成(圖1a)。導(dǎo)流管通徑為DN15,安裝在盛雨器底端,緊貼測量艙的內(nèi)壁,防止雨水流動對稱重系統(tǒng)帶來的擾動,同時把樣品導(dǎo)入測量艙(圖1a)。測量艙容積為1 L,口徑為10 cm,滿艙時對應(yīng)的降雨量為30 mm。排樣開關(guān)為銅質(zhì)結(jié)構(gòu)的電動球閥,采用螺紋連接置于測量艙底部,其運轉(zhuǎn)為回轉(zhuǎn)電動驅(qū)動,單次運轉(zhuǎn)時間4 s,1 L樣品完全排出(從排樣開關(guān)開始開啟到排樣完成后排樣開關(guān)完全關(guān)閉)所需時間約10 s。排樣開關(guān)設(shè)計有兩個狀態(tài),一是排樣開關(guān)處于開啟狀態(tài),則執(zhí)行排放樣品的功能(開啟動作執(zhí)行時即可開始排樣);二是排樣開關(guān)的處于完全關(guān)閉狀態(tài),則作為樣品測量艙的下底使用。稱重傳感器選用METTLE-TOLEDO梁式傳感器,其可實時將測量艙重量信號輸出至PLC進(jìn)口端,經(jīng)處理后傳輸至數(shù)據(jù)處理系統(tǒng)。傳感器量程為5 kg,靈敏度為(2±10%)mV/V,測量精度為1/10 000,零點輸出≤±10% R·C(額定載荷,Rated Capacity),工作溫度為?20~65 ℃。此外,由于稱重傳感器處于長期壓力狀態(tài)而形成零基準(zhǔn)點的漂移,為此需進(jìn)行零點自動校正,使其測量更加精確。
1.2.3 測控系統(tǒng)
稱重式雨量計采用STM32控制芯片,形成了集數(shù)據(jù)采集、模型計算、數(shù)據(jù)處理、遠(yuǎn)程發(fā)送等功能為一體的測控系統(tǒng)。測控系統(tǒng)主要包括數(shù)據(jù)采集模塊、軟件系統(tǒng)構(gòu)架智能運算控制模塊、數(shù)據(jù)發(fā)送及儲存模塊、WIFI手機(jī)互聯(lián)人機(jī)對話APP模塊和數(shù)據(jù)通訊擴(kuò)展模塊(圖3)。數(shù)據(jù)采集模塊由稱重傳感器模塊和24位A/D 轉(zhuǎn)換HX711模塊組成。其中,A/D轉(zhuǎn)換芯片對稱重傳感器mV級電壓信號進(jìn)行采樣放大,采樣頻率10 Hz,128倍增益放大,使稱重分辨率達(dá)到0.01 g以上。軟件系統(tǒng)構(gòu)架智能運算控制模塊由32位MCU STM32F107VCT6控制模塊組成,是整個測控系統(tǒng)的中樞神經(jīng),采用結(jié)構(gòu)化程序設(shè)計,運用C語言嵌入式開發(fā)系統(tǒng)編程,通過智能優(yōu)化設(shè)計進(jìn)行雨量計的自動化和信息化控制。數(shù)據(jù)發(fā)送及儲存模塊包含GPS/GPRS模塊參數(shù)和上位機(jī)云平臺通訊設(shè)置及本地USB數(shù)據(jù)存儲。在通訊信號較弱或無信號的偏遠(yuǎn)山區(qū),需要增加中繼器或直接使用衛(wèi)星通道,以確保數(shù)據(jù)的遠(yuǎn)程傳輸,但是成本將大大增加。WIFI手機(jī)互聯(lián)人機(jī)對話APP由安卓系統(tǒng)手機(jī)APP通過WIFI模式與系統(tǒng)相連,可進(jìn)行參數(shù)、功能、顯示等通訊及操控。數(shù)據(jù)通訊擴(kuò)展模塊根據(jù)實際需要可進(jìn)行擴(kuò)展,系統(tǒng)開放RS485通訊端口可與各種模塊例如其他類型的雨量計進(jìn)行對接。
儀器平時處于休眠狀態(tài),一旦盛雨器接到降雨信號,設(shè)備開始工作。儀器啟動,首先進(jìn)行零點校正,然后盛雨器收集的樣品進(jìn)入測量艙,由稱重傳感器稱取樣品質(zhì)量,測控系統(tǒng)將質(zhì)量值換算成降雨量值,將測量的數(shù)據(jù)進(jìn)行儲存并實時傳輸至站點/數(shù)據(jù)管理云平臺。若此后測量艙中樣品繼續(xù)增加,直至其容積累計達(dá)到1 L時(測量艙最大量程),測控系統(tǒng)則得到指令觸發(fā)排樣開關(guān)打開進(jìn)行排樣,排樣完畢后對測量艙進(jìn)行稱量,確保排樣干凈,從而進(jìn)入下一個測量周期。測量時間間隔可設(shè)定為1 min測量一次(時間間隔可調(diào),需要根據(jù)降雨大小考慮測量頻率和測量精度間的權(quán)衡)。以此類推,周而復(fù)始,直至10 min內(nèi)稱重傳感器獲取的樣品質(zhì)量增量<0.01 g,則視為降雨結(jié)束,儀器進(jìn)入休眠狀態(tài)。儀器工作流程如圖4所示。
1.4.1 標(biāo)準(zhǔn)樣品法
蠕動泵可以精準(zhǔn)地控制水流流速,而稱重式雨量計的采樣面積已知,因此可以通過控制蠕動泵的水流流速設(shè)計不同的降雨強(qiáng)度情景。為了兼顧自然降雨和模擬降雨強(qiáng)度變化,本研究設(shè)置了不同的標(biāo)準(zhǔn)降雨強(qiáng)度,即0.02、0.08、0.17、0.25、0.50、0.67、0.83、1.67和3.33 mm/min。其中,0.83 mm/min的降雨強(qiáng)度采用稱重式雨量計重復(fù)測量30次,對測量的結(jié)果進(jìn)行K-S(Kolmogorov-Smirnov)檢驗判斷測量結(jié)果是否屬于正態(tài)分布,并選取標(biāo)準(zhǔn)差作為衡量儀器測量精度的指標(biāo)。此外,其余降雨強(qiáng)度則重復(fù)測量5次,采用相對誤差來評價儀器測量的準(zhǔn)確性。
1.4.2 翻斗式雨量計法
目前的降雨觀測多采用翻斗式雨量計,在本次檢測中將翻斗式雨量計測得的結(jié)果與稱重式雨量計的觀測結(jié)果進(jìn)行比較分析。本研究選取JDZ05L型翻斗式雨量計,是國內(nèi)水文部門常用的一款雨量計,分辨率為0.5 mm。在黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點實驗室的模擬降雨實驗大廳下噴區(qū)布設(shè)一個3 m×6 m雨量觀測場,稱重式雨量計和翻斗式雨量計各3臺,成對等間距布設(shè),以排除單個雨量計測量代表性問題。利用以上兩種雨量計同步觀測某一未知降雨強(qiáng)度的模擬降雨,降雨歷時60 min,分析儀器開始/結(jié)束時間(以翻斗式雨量計工作時間為標(biāo)準(zhǔn),正值表示晚于翻斗式雨量計,負(fù)值表示早于翻斗式雨量計)、有效降雨率(降雨時長內(nèi)非零值的時長占降雨總時長的百分比)、降雨總量和降雨強(qiáng)度的差異。
1.4.3 自然降雨觀測
通過以上方法驗證儀器測量結(jié)果是否可靠的基礎(chǔ)上,為了檢測稱重式雨量計對野外復(fù)雜環(huán)境的適應(yīng)性和運轉(zhuǎn)情況,利用該儀器在長武王東溝小流域進(jìn)行自然降雨觀測。王東溝小流域位于黃土高原南部地區(qū),海拔940~1 220 m,流域面積8.3 km2,年平均氣溫9.1℃,屬暖溫帶半濕潤大陸性季風(fēng)氣候。儀器放置于王東溝小流域的裸地監(jiān)測點(107°41′E,35°14′N),試驗觀測時間為2020年1-12月。
試驗結(jié)果表明,稱重式雨量計對0.83 mm/min的降雨強(qiáng)度重復(fù)測量的均值為0.85 mm/min,標(biāo)準(zhǔn)差為0.02 mm/min(圖5a)。同時進(jìn)行K-S檢驗,得出樣本的偏度值()和豐度值()分別為0.31和?0.49,均小于1,且值為0.15,大于0.05,說明測量結(jié)果服從正態(tài)分布,儀器測量精度高。此外,在不同的降雨強(qiáng)度條件下對測量結(jié)果的準(zhǔn)確性進(jìn)行分析可知,降雨強(qiáng)度的測量值和實際值回歸系數(shù)接近1,決定系數(shù)高達(dá)0.999(圖5b)。此外,分析測量結(jié)果的相對誤差表明,相對誤差均值為?1.32%,最大為?13.33%,最高測量準(zhǔn)確度可達(dá)98.67%,并且大部分相對誤差較小且在0附近分布,相對誤差<5%的樣本占樣本總數(shù)的85%以上(圖5c)。可見,稱重式雨量計對降雨強(qiáng)度的觀測是準(zhǔn)確可靠的,且適用觀測范圍較廣。
稱重式雨量計和翻斗式雨量計的觀測時間差為3.5 min(表1),說明稱重式雨量計對降雨響應(yīng)較為靈敏。這主要是因為稱重式雨量計的分辨率(0.01 mm)遠(yuǎn)遠(yuǎn)低于翻斗式雨量計的翻斗感量(0.5 mm),使得稱重式雨量計在翻斗式雨量計達(dá)到0.5 mm之前已開始計量降雨,而在降雨結(jié)束時,翻斗式雨量計因未達(dá)到0.5 mm而不翻動,導(dǎo)致稱重式雨量計的開始時間比翻斗式雨量計早,而結(jié)束時間比翻斗式雨量計晚。此外,稱重式雨量計的有效降雨率為73.33%,高于翻斗式雨量計的有效降雨率56.67%,可見,隨著雨量計分辨率的減小,降雨監(jiān)測的持續(xù)時間增加,從而有效降雨率也增大。稱重式雨量計測量的降雨總量為28.24 mm,高于翻斗式雨量計測得的結(jié)果(27.20 mm)(表1)。稱重式雨量計測量結(jié)果偏大,可能是因為它的分辨率高達(dá)0.01 mm,對微小雨滴捕捉敏感,可以更加精確地量化降雨特征。翻斗式雨量計測量結(jié)果比稱重式雨量計結(jié)果偏低,可能是其內(nèi)部結(jié)構(gòu)浸潤損失、翻斗內(nèi)雨量殘留損失等造成的。相對于降雨總量,兩者測得的有效降雨率和最大降雨強(qiáng)度差異均較大,這可能是因為本次模擬降雨強(qiáng)度較大,使得翻斗翻轉(zhuǎn)不及時或翻斗口比較淺造成大量濺水,從而低估了有效降雨率和最大降雨強(qiáng)度。
表1 翻斗式雨量計和稱重式雨量計觀測結(jié)果對比
在為期1 a的野外應(yīng)用中,儀器運轉(zhuǎn)正常,未出現(xiàn)堵塞、斷電等情況。此外,基于獲取的觀測數(shù)據(jù)可知,2020年王東溝小流域的降雨總量為522.80 mm,降雨主要集中在5-9月,累計降雨量為419.43 mm,占年降雨總量的80.23%,僅8月份的降雨量最高達(dá)144.82 mm(圖6a)。按降雨間隔時間不超過6 h劃分為1次降雨事件[34],全年共計112場降雨,8月降雨頻次最高,7月次之,3月最低(圖6a)。單次最大降雨量為48.82 mm,最小為0.23 mm。從降雨量場次分配來看,全年以次降雨量≤5 mm的降雨(TP5≤5 mm)為主,合計83場(圖b),占降雨總場次的74.11%,但是其累計降雨量較少,僅為105.22 mm,占降雨總量的20.13%(圖6b)。次降雨量為>5~10 mm的降雨(5 mm<TP5-10≤10 mm)和>10~25 mm的降雨(10 mm<TP10-25≤25 mm)場次相近,降雨量分別為93.43和175.81 mm。次降雨量為>25~50 mm的降雨(25 mm<TP25-50≤50 mm)僅出現(xiàn)4場,但是降雨量達(dá)到了148.34 mm,占降雨總量的28.37%。可見,該研究區(qū)域降雨主要以次降雨量≤5 mm的降雨為主,但是對降雨總量貢獻(xiàn)最大的則為次降雨量為>10~25 mm的降雨。
1)基于稱重法原理,以STM32單片機(jī)為核心,設(shè)計了集樣品采集和測量、數(shù)據(jù)傳輸和計算、遠(yuǎn)程控制和診斷等功能為一體的稱重式雨量計。該儀器結(jié)構(gòu)簡單,便于攜帶,運行成本低,可以全天候無人值守,智能化運行,實現(xiàn)了降雨過程的實時、連續(xù)、自動測量,數(shù)據(jù)傳遞快捷,觀測時間達(dá)到分鐘級別,分辨率可達(dá)0.01 mm,可以精細(xì)刻畫降雨過程特征,提升降雨過程監(jiān)測的自動化和信息化水平。
2)稱重式雨量計精度和準(zhǔn)確度檢測試驗表明,儀器測量結(jié)果重復(fù)性好,測量精度高,降雨強(qiáng)度的真實值與測量值具有較好的一致性,測量的相對誤差均值僅為?1.32%,測量準(zhǔn)確度最高為98.67%,并且相對誤差小于5%的樣本占樣本總數(shù)的85%以上。
3)與翻斗式雨量計觀測結(jié)果比較表明,稱重式雨量計分辨率顯著高于翻斗式雨量計,使其開始工作時間比翻斗式雨量計早,而結(jié)束時間滯后,觀測時間長3.5 min,并且測得的有效降雨率、降雨量和最大降雨強(qiáng)度均較大。
4)利用稱重式雨量計在王東溝小流域進(jìn)行為期1 a的自然降雨觀測,發(fā)現(xiàn)全年降雨量為522.80 mm,降雨主要集中在5-9月,且8月份的降雨量和降雨場次均最高。該地區(qū)的降雨主要以次降雨量≤5 mm的降雨為主,占降雨總場次的74.11%,而>10~25 mm的次降雨對降雨總量貢獻(xiàn)最大。
[1] Michaelides S, Levizzani V, Anagnostou E, et al. Precipitation: Measurement, remote sensing, climatology and modeling[J]. Atmospheric Research, 2009, 94(4): 512-533.
[2] Feng Y, Zhao X Y. Changes in spatiotemporal pattern of precipitation over China during 1980-2012[J]. Environmental Earth Sciences, 2015, 73: 1649-1662.
[3] Lanza L G, Vuerich E. 2012. Non-parametric analysis of one-minute rain intensity measurements from the WMO field intercomparison[J]. Atmospheric Research, 2012, 103: 52-59.
[4] Gray B, Toucher M. Rain gauge accuracy at a high-altitude meteorological station in Cathedral Peak[J]. Jounal of Hydrologic Engineering, 2019, 24(2): 04018064.
[5] 馮訥敏. 雨量儀器綜述[J]. 水利水文自動化,1996(3):1-6.
[6] Molini A, La Barbera P, Lanza L G, et al. Rainfall intermittency and the sampling error of tipping-bucket rain gauges[J]. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 2001, 26(10/11/12): 737-742.
[7] Tapiador F J, Turk F J, PetersenW, et al. Global precipitation measurement: methods, datasets and applications[J]. Atmospheric Research, 2012, 104/105(1): 70-97.
[8] Mekkonnen G B, Matula S, Dolezal F, et al. Adjustment to rainfall measurement undercatch with a tipping-bucket rain gauge using ground-level manual gauges[J]. Meteorology and Atmospheric Physics, 2015, 127(3): 241-256.
[9] Serra Y L, A'Hearn P, Freitag H P, et al. Atlas self-siphoning rain gauge error estimates[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(12): 1989-2002.
[10] 舒大興,王志毅. JSP-1型虹吸校正翻斗雨量計研制與特點[J]. 水文,2009,29(6):73-75.
Shu Daxing, Wang Zhiyi. Development of JSP-1-type tipping-bucket rainfall recorder by siphon correction[J]. Journal of China Hydrology, 2009, 29(6): 73-75. (in Chinese with English abstract)
[11] 李弘洋,李青,李雄,等. 全自動遠(yuǎn)程虹吸式雨量計的研制[J]. 中國計量學(xué)院學(xué)報,2010,21(1):34-37.
Li Hongyang, Li Qing, Li Xiong, et al. The development of automatic remote siphon rain gauges[J]. Journal of China Univer sity of Metrology, 2010, 21(1): 34-37. (in Chinese with English abstract)
[12] 徐沾偉,鄭貴林. 基于聲學(xué)自校正原理的超聲式雨量計[J]. 自動化與儀表,2012,27(3):13-15,52.
Xu Zhanwei, Zheng Guilin. Ultrasonic rain gauge based on acoustic self-calibration principle[J]. Automation and Instrumentation, 2012, 27(3): 13-15, 52. (in Chinese with English abstract)
[13] Zheng G L, Xu Z W, Ding L.An innovative principle in self-calibration by dual ultrasonic sensor and application in rain gauge[J]. Sensor Letters, 2013, 11(3): 617-621.
[14] Kruger A, Krajewski W F. Two-dimensional video disdrometer: A description[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(5): 602-617.
[15] Ellis R A, Sandford A P, Jones, G E, et al. New laser technology to determine present weather arameters[J]. Measurement Science and Technology, 2006, 17(7): 1715-1722.
[16] Carollo F G, Ferro V, Serio M A. Reliability of rainfall kinetic power-intensity relationships[J]. Hydrological Processes, 2017, 31: 1293-1300.
[17] 張艷紅,劉兵武,劉理天,等. 一種新型硅基厚膜壓力/溫度傳感器的設(shè)計和制作[J]. 傳感技術(shù)學(xué)報,2006,19(6):2376-2379.
Zhang Yanhong, Liu Bingwu, Liu Litian, et al. Design and fabrication of a novel silicon pressure/temperature microsensor[J]. Chinese Journal of Sensors and Actuators, 2006, 19(6): 2376-2379. (in Chinese with English abstract)
[18] 蔣凱,葉樹明,陳杭,等. 適用于極端環(huán)境的高精度壓力傳感器開發(fā)與標(biāo)定[J]. 傳感技術(shù)學(xué)報,2007,20(10):2230-2233.
Jiang Kai, Ye Shuming, Chen Hang, et al. Developing and calibrating of the high precision pressure sensor applied in extreme environment[J]. Chinese Journal of Sensors and Actuators, 2007, 20(10): 2230-2233. (in Chinese with English abstract)
[19] 漆隨平,王東明,孫佳,等. 一種基于壓力敏感元件的降雨傳感器[J]. 傳感技術(shù)學(xué)報,2012,25(6):761-765.
Qi Suiping, Wang Dongming, Sun Jia, et al. The development of a novel automatic rainfall gauge based on the sensitive pressure sensor[J]. Chinese Journal of Sensors and Actuators, 2012, 25(6): 761-765. (in Chinese with English abstract)
[20] Overgaard S, EL-Shaarawi A H, Arnbjerg-Nielsen K. Calibration of tipping bucket rain gauges[J]. Water Science and Technology, 1998, 37(11): 139-145.
[21] Vasvari V. Calibration of tipping bucket rain gauges in the Graz urban research area[J]. Atmospheric Research, 2005, 77(1/2/3/4): 18-28.
[22] Habib E H, Meselhe E A, Aduvala A V. Effect of local errors of tipping-bucket rain gauges on rainfall-runoff simulations[J]. Jounal of Hydrological Engering, 2008, 13: 488-496.
[23] 孫貴萍,巨蘭香. 自動傳感雨量器與虹吸式雨量計對比分析[J]. 東北水利水電,2014,32(8):36-37.
[24] 曹潔,高健,帥立國,等. 雙桶雙虹吸稱重雨量計的測報系統(tǒng)設(shè)計[J]. 自動化儀表,2010,31(7):72-74,78.
Gao Jie, Gao Jian, Shuai Liguo, et al. Design of acquisiton and transmission system of double-barrel and double-siphon weighing pluviometer[J]. Process Automation Instrumentation, 2010, 31(7): 72-74, 78. (in Chinese with English abstract)
[25] 李耀寧,陶立新,黃湘. 不同雨量計測值誤差分析[J]. 氣象科技,2011,39(5):670-672.
Li Yaoning, Tao Lixin, Huang Xiang. Causal analsis of measurement difference between various rain gauges[J]. Meteorological Science and Technology, 2011, 39(5): 670-672. (in Chinese with English abstract)
[26] 梁朝陽,李清,劉瀏,等. 翻斗式雨量計的誤差分析[J]. 氣象水文海洋儀器,2016,33(1):68-71.
Liang Chaoyang, Li Qing, Liu Liu, et al. Error analysis of tipping bucket rain gauge[J]. Meteorological, Hydrological and Marine Instruments, 2016, 33(1): 68-71. (in Chinese with English abstract)
[27] 洪峰. 基于氣介式超聲波傳感器的雨量液位測量系統(tǒng)設(shè)計[J]. 現(xiàn)代電子技術(shù),2010,33(23):149-151,157.
Hong Feng. Rainfall liquid level measuring system based on air-coupled ultrasonic sensor[J]. Modern Electronics Technique, 2010, 33(23): 149-151, 157. (in Chinese with English abstract)
[28] 朱亞晨. 基于STM32的超聲雨量計研制[D]. 南京:南京信息工程大學(xué),2016.
Zhu Yachen. Development of Ultrasonic Rain Gauge Based on STM32[D]. Nanjing: Nanjing University of Information of Science & Techenology, 2016. (in Chinese with English abstract)
[29] 展小云,郭明航,趙軍,等. 基于粒子成像瞬態(tài)測量技術(shù)的雨滴微物理特性及降雨動能研究[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(2):107-113.
Zhan Xiaoyun, Guo Minghang, Zhao Jun, et al. Microphysical features of raindrop and rainfall energy based on particle imaging transient measurement technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 107-113. (in Chinese with English abstract)
[30] 唐慧強(qiáng),朱家聰. 基于無線傳感網(wǎng)絡(luò)的壓力式雨量計[J]. 通信技術(shù),2009,42(3):247-248,251.
Tang Huiqiang, Zhu Jiacong. Pressure pluviometer based on wireless sensor network[J]. Communications Technology, 2009, 42(3): 247-248, 251. (in Chinese with English abstract)
[31] Zhan X Y, Zhao J, Feng Q, et al. Particle imaging auto-measurement system for microphysical characteristics of raindrops in natural rain[J]. Atmospheric Research, 2020, 242: 104963.
[32] Milewska E J, Vincent L A, Hartwel M M, et al. Adjusting precipitation amounts from Geonor and Pluvio automated weighing gauges to preserve continuity of observations in Canada[J]. Cannadian Water Resources Journal,? 2019, 44(2):? 127-145.
[33] Saha R, Testik F Y, Testik M C.Assessment of OTT Pluvio(2) rain intensity measurements[J]. Journal of Atmospheric and Oceanic Technology, 2021, 38(4): 897-908.
[34] 殷水清,王楊,謝云,等. 中國降雨過程時程分型特征[J]. 水科學(xué)進(jìn)展,2014,25(5):617-624.
Yin Shuiqing, Wang Yang, Xie Yun, et al. Characteristics of intra-storm temporal pattern over China[J].Advances in Water Science, 2014, 25(5): 617-624. (in Chinese with English abstract)
Development and performance analysis of an automatic weighing rain gauge
Zhan Xiaoyun1,2, Zhao Jun1,2, Shui Junfeng2※, Zhao Xianghui3, Guo Minghang1,2
(1.,,712100,; 2.,,712100,; 3..,.,710075,)
Precipitation has widely been recognized as a fundamental component of the global water cycle. Accurate measurement of precipitation is very necessary for the main input into hydrological models. Hydraulic structures are then required to adequately design for efficient management of water resources. Several types of automatic rain gauges have been used in recent years, such as ultrasonic and laser rain gauges, but tipping-bucket rain gauges are still the common choice. Particularly, the tipping-bucket rain gauge can provide a better temporal resolution for the rainfall intensity. However, questions still remain on the accuracy of graphical representation for the actual rainfall. In this study, a real-time and automatic monitoring instrument was developed for the weighing rain gauge with high precision for precipitation. Three parts were composed of collector, weighing, measurement, and control subsystem. These subsystems were applied to multi-scenario conditions and performed well under the complex field. As such, the instrument was able to realize sample collection and measurement, data transmission and calculation, remote control, and diagnosis synchronously, compared with the traditional. The A/D conversion chip was utilized in the STM32 single-chip microcomputer to amplify the voltage signal of the weighing sensor. Subsequently, two important parameters of rainfall and rainfall intensity were achieved at a minute level with a resolution of 0.01 mm. Finally, a peristaltic pump was selected to verify the calibration of the developed instrument. The target intensities of rainfall were set as 0.02, 0.08, 0.17, 0.25, 0.50, 0.67, 0.83, 1.67, and 3.33 mm/min. The samples with the rainfall intensity of 0.83 mm/min were measured 30 times, and the rest were run five times. The results showed that the average rainfall intensity was 0.85 mm/min, where the histograms of target rainfall intensity presented a normal distribution, indicating higher precision of developed instrument than before. The best fitting linear regression was also represented by a slope with the2value close to 1. Additionally, the average error of the designed instrument was -1.32%, while the highest accuracy was 98.67%, and the relative error of less than 5% accounted for more than 85% of the total samples. The measured data of the developed instrument was also much larger than that of the tipping-bucket rain gauge under simulated rainfall conditions. The high resolution and sensitivity to light rain were contributed to the increase of effective rainfall rate and total rainfall. Finally, the performance of the developed instrument was verified under field conditions in the Wangdonggou watershed for one consecutive year. It was found that the annual rainfall was 522.80 mm, particularly concentrated from May to September. Correspondingly, the single rainfall ≤5 mm was the predominant contributor in natural precipitation, accounting for 74.11% of the total number of rainfall events, whereas, the single rainfall of >10-25 mm was the most important to total rainfall. Consequently, the self-designed instrument can widely be expected to automatically monitor the large variation of rainfall in most complex fields.
precipitation; sensors; rain gauge; automatic monitoring
展小云,趙軍,稅軍峰,等. 全自動稱重式雨量計的研制及性能分析[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(19):122-128.doi:10.11975/j.issn.1002-6819.2021.19.014 http://www.tcsae.org
Zhan Xiaoyun, Zhao Jun, Shui Junfeng, et al. Development and performance analysis of an automatic weighing rain gauge[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 122-128. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.19.014 http://www.tcsae.org
2021-06-13
2021-09-15
中國科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(XDA20040202);國家重點研發(fā)計劃(2017YFA0604803);黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點實驗室重要方向創(chuàng)新項目(A314021403-C3)
展小云,博士,副研究員,研究方向為水土流失過程與水土保持。Email:zhanxiaoyun2005@163.com
稅軍峰,博士,助理研究員,研究方向為科研信息化。Email:jfshui@ms.iswc.ac.cn
10.11975/j.issn.1002-6819.2021.19.014
S161; P426
A
1002-6819(2021)-19-0122-07