• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis,Structures and Catalytic Activity in Knoevenagel Condensation Reaction of Two Diphenyl Ether Tetracarboxylic Acid?Co Coordination Polymers

    2022-01-14 11:30:20ZHAOSuQinGUJinZhong
    無機化學學報 2022年1期

    ZHAO Su?Qin GU Jin?Zhong

    (1College of Physics and Electronic Information Engineering,Qinghai University for Nationalities,Xining 810007,China)

    (2College of Chemistry and Chemical Engineering,Lanzhou University,Lanzhou 730000,China)

    Abstract:Two cobalt coordination polymers,namely[Co2(μ3?deta)(H2biim)3(H2O)2]n(1)and{[Co2((μ6?deta)(phen)2]·H2O}n(2),have been constructed hydrothermally using H4deta(2,3,3',4'?diphenyl ether tetracarboxylic acid),H2biim(2,2'?biimidazole),phen(1,10?phenanthroline),and cobalt chloride at 160 ℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single?crystal X?ray diffraction analyses.Single?crystal X?ray diffraction analyses revealed that compounds 1 and 2 crystallize in the triclinic and monoclinic systems,space groups and P21/c,respectively.Compound 1 discloses a 1D chain structure,and compound 2 features a 2D network.The catalytic activities in Knoevenagel condensation reaction of the compounds were investigated.Compound 1 exhibited excellent catalytic activity in Knoevenagel con?densation reaction at room temperature.CCDC:2069400,1;2069401,2.

    Keywords:coordination polymer;tetracarboxylic acid;catalytic property;Knoevenagel condensation reaction

    0 Introduction

    The field of coordination polymers has attracted tremendous attention due to their structural and topo?logical diversity as well as their potential applications as functional materials[1?11].In the last ten years,organic carboxylate ligands have been widely used in synthesiz?ing coordination polymers due to the strong coordina?tion ability of the carboxyl group and the rich coordina?tion modes[5?6,12?15].Among them,ether?bridged carboxyl?icacids have been extensively applied as versatile building blocks toward the assembly of metal?organic architectures[16?17].

    The 2,3,3',4'?diphenyl ether tetracarboxylic acid(H4deta)is a good bridging ligand for constructing coor?dination polymers[18],under considering structural semi?rigidity,which has multiple coordinate sites involving four carboxylate oxygen atoms and one O?ether donor.Knoevenagel condensation is one of the imperative and essential condensation processes in synthetic organic chemistry,in whichα,β?unsaturated products formed via carbon?carbon double bond involve a nucleophilic addition reaction between active methylene and carbon?yl compounds followed by a dehydration reaction[19?23].Products obtained are extensively used as specialty chemicals and intermediates in the synthesis of fine chemicals such as carbocyclic,substituted alkenes,biologically active compounds,therapeutic drugs,calci?um antagonists,natural products,functional polymers,coumarin derivatives,flavors,and perfumes.Transition metal?catalyzed Knoevenagel condensation reactions have recently received much attention[24?26],mainly due to the low price and moderate toxicity of the catalysts in combination with their high activity.

    Herein,we report the synthesis,crystal structures,and catalytic activity of two Cocoordination poly?mers with H4deta,2,2'?biimidazole(H2biim)and 1,10?phenanthroline(phen)ligands.

    1 Experimental

    1.1 Reagents and physical measurements

    All chemicals and solvents were of AR grade and used without further purification.Carbon,hydrogen and nitrogen were determined using an Elementar Vario EL elemental analyzer.IR spectra were recorded using KBr pellets and a Bruker EQUINOX 55 spec?trometer.Thermogravimetric analysis(TGA)data were collected on a LINSEIS STA PT1600 thermal analyzer with a heating rate of 10 ℃·min-1.Powder X?ray dif?fraction patterns(PXRD)were measured on a Rigaku?Dmax 2400 diffractometer using CuKαradiation(λ=0.154 06 nm);the X?ray tube was operated at 40 kV and 40 mA;the data collection range was between 5°and 45°.Solution1H NMR spectra were recorded on a JNM ECS 400M spectrometer.

    1.2 Synthesis of[Co2(μ3?deta)(H2biim)3(H2O)2]n(1)

    A mixture of CoCl2·6H2O(0.048 g,0.2 mmol),H4deta(0.035 g,0.1 mmol),H2biim(0.027 g,0.2 mmol),NaOH(0.016 g,0.4 mmol),and H2O(10 mL)was stirred at room temperature for 15 min,and then sealed in a 25 mL Teflon?lined stainless?steel vessel,and heated at 120℃for 3 d,followed by cooling to room temperature at a rate of 10 ℃·h-1.Orange block?shaped crystals were isolated manually,and washed with distilled water.Yield:35%(based on H4deta).Anal.Calcd.for C34H28Co2N12O11(%):C 45.45,H 3.14,N 18.71;Found(%):C 45.62,H 3.12,N 18.59.IR(KBr,cm-1):3 384m,2 972w,1 628w,1 549s,1 483m,1430m,1398s,1377s,1341m,1271w,1231w,1182w,1 120w,1 084w,1 049w,991w,907w,867w,828w,756w,694m,624w.

    1.3 Synthesis of{[Co2(μ6?deta)(phen)2]·H2O}n(2)

    Synthesis of 2 was similar to 1 except using phen(0.040 g,0.2 mmol)instead of H2biim.Purple block?shaped crystals of 2 were isolated manually,and washed with distilled water.Yield:60%(based on H4deta).Anal.Calcd.for C40H24Co2N4O10(%):C 57.30,H 2.88,N 6.68;Found(%):C 57.12,H 2.86,N 6.70.IR(KBr,cm-1):3 660w,3 428w,3 066w,1 626s,1 581s,1514m,1492w,1425m,1391s,1377s,1302w,1262w,1 235w,1 151w,1 089w,969w,924w,894w,840m,818w,770m,725m,685w,641w.

    The compounds are insoluble in water and com?mon organic solvents,such as methanol,ethanol,ace?tone,and DMF.

    1.4 Structure determination

    Two single crystals with dimensions of 0.25 mm×0.20 mm×0.18 mm(1)and 0.23 mm×0.22 mm×0.20 mm(2)were collected at 293(2)K on a Bruker SMART APEX Ⅱ CCD diffractometer with MoKα(λ=0.071 073 nm).The structures were solved by direct methods and refined by full?matrix least?squares onF2using the SHELXTL?2014 program[27].All non?hydro?gen atoms were refined anisotropically.All the hydro?gen atoms were positioned geometrically and refined using a riding model.A summary of the crystallography data and structure refinements for 1 and 2 is given in Table 1.The selected bond lengths and angles for compounds 1 and 2 are listed in Table 2.Hydrogen bond parameters of compounds 1 and 2 are given in Table 3 and 4.

    Table 1 Crystal data for compounds 1 and 2

    Table 2 Selected bond distances(nm)and bond angles(°)for compounds 1 and 2

    Continued Table 2

    Table 3 Hydrogen bond parameters of compound 1

    Table 4 Hydrogen bond parameters of compound 2

    CCDC:2069400,1;2069401,2.

    1.5 Catalytic activity for Knoevenagel condensation reaction of aldehydes

    Prior to the catalytic activity study,compound 1 was activated in a vacuum oven at 210℃for 10 h.In a typical test,a suspension of an aromatic aldehyde(0.50 mmol,benzaldehyde as a model substrate),malononi?trile(1.0 mmol),and catalyst(Molar fraction:2%)in methanol(1.0 mL)was stirred at room temperature.After the desired reaction time,the catalyst was removed by centrifugation,followed by evaporation of the solvent from the filtrate under reduced pressure to give a crude solid.This solid was dissolved in CDCl3and analyzed by1H NMR spectroscopy for quantifica?tion of products(Fig.S1,Supporting information).To perform the recycling experiment,the catalyst was iso?lated by centrifugation,washed with dichloromethane,dried at room temperature,and reused.The subsequent steps were performed as described above.

    2 Results and discussion

    2.1 Description of the structure

    2.1.1 Structure of compound 1

    X?ray crystallography analysis reveals that com?pound 1 crystallizes in the triclinic system space group.As shown in Fig.1,the asymmetric unit of 1 bears two crystallographically unique Coions(Co1 and Co2),oneμ3?deta4-block,three H2biim moieties,and two H2O ligands.The six?coordinated Co1 ion exhibits a distorted octahedral{CoN4O2}environment,which is occupied by two carboxylate O donors from two differ?entμ3?deta4-blocks and four N atoms from two H2biim moieties.The Co2 center is also six?coordinated and forms a distorted octahedral{CoN2O4}geometry.It is completed by two carboxylate O atoms from oneμ3?deta4-block,two O donors from two H2O ligands,and two N atoms from the H2biim moiety.The Co—O and Co—N bond distances are 0.218 4(4)?0.234 5(5)nm and 0.207 5(4)?0.218 1(5)nm,respectively;these are within the normal ranges observed in related Cocom?pounds[6,28?29].In compound 1,the ligand deta4-adopts a coordination mode Ⅰ(Scheme 1)with four COO-groups being uncoordinated,monodentate or bidentate.In deta4-ligand,a dihedral angle(between two aromat?ic rings)and a C—Oether—C angle are 78.88°and 118.26°,respectively.Theμ3?deta4-blocks connect Co ions to give a 1D chain(Fig.2).Adjacent chains are assembled into a 2D supramolecular sheet through O—H…O and N—H…O hydrogen bonds(Table 3 and Fig.3).

    Fig.1 Drawing of asymmetric unit of compound 1 with 30% probability thermal ellipsoids

    Fig.2 Perspective of 1D metal?organic chain along a axis

    Fig.3 Perspective of 2D H?bonded network along a axis

    Scheme 1 Coordination modes of deta4-ligand in compounds 1 and 2

    2.1.2 Structure of compound 2

    The asymmetric unit of compound 2 contains two crystallographically unique Coions(Co1 and Co2),oneμ6?deta4-block,two phen moieties,and one lattice water molecule.As depicted in Fig.4,both Co centers are six?coordinated and display a distorted octahedral{CoN2O4}geometry.It is taken by four carboxylate O atoms from three individualμ6?deta4-blocks and two N donors from the ligand phen.The bond lengths of Co—O are in a range of 0.202 4(3)?0.239 0(4)nm,while the Co—N bonds are 0.208 8(5)?0.215 8(4)nm,being comparable to those found in some reported Cocompounds[28?30].In 2,the deta4-block acts as aμ6?linker(mode Ⅱ,Scheme 1),in which four carboxylate groups adopt monodentate,μ?bridging bidentate or tridentate modes.Besides,theμ6?deta4-ligand is considerably bent showing a dihedral angle of 67.68°(between two aromatic rings)and the angle of C—Oether—C being 121.04°.Two adjacent Co1 and Co2 ions are joined via three carboxylate groups from three independentμ6?deta4-ligands to form a Co2subunit with a Co1…Co2 distance of 0.352 7(2)nm(Fig.4).These di?cobaltsubunits are further linked together through the remain?ing carboxylate groups ofμ6?deta4-blocks to form a 2D metal?organic network(Fig.5).Compounds 1 and 2 were assembled under similar conditions except for the type of auxiliary ligand used(H2biim for 1 and phen for 2),but they show different structures.

    Fig.4 Drawing of asymmetric unit of compound 2 with 30% probability thermal ellipsoids

    Fig.5 View of 2D metal?organic network parallel to ab plane

    2.2 TGA for compounds 1 and 2

    To determine the thermal stability of compounds 1 and 2,their thermal behaviors were investigated under nitrogen atmosphere by TGA.As shown in Fig.6,compound 1 lost its two coordinated water molecules in a range of 96?203℃ (Obsd.4.2%,Calcd.4.0%).Decomposition of the sample occurred above 305℃,corresponding to the removal of deta4-and H2biim ligands attached to the Co ions.For 2,one weight loss(Obsd.2.2%,Calcd.2.1%)in a range of 84?243 ℃corresponds to the removal of one lattice water mole?cule;the remaining sample started to decompose above 342℃,corresponding to the removal of deta4-and phen ligands attached to the Co ions.

    Fig.6 TGA curves of compounds 1 and 2

    2.3 Catalytic activity for Knoevenagel condensation reaction

    Given the potential of cobaltcoordination com?pounds to catalyze organic reactions[6,30?31],we explored the application of 1 and 2 as heterogeneous catalysts in the Knoevenagel condensation reaction of benzalde?hyde as a model substrate to give 2?(phenylmethylene)?propanedinitrile.Typical tests were carried out by reacting a mixture of benzaldehyde,malononitrile,and a Cocomplex catalyst in methanol at room tempera?ture(Scheme 2,Table 5).Such effects as reaction time,catalyst loading,solvent composition,catalyst recy?cling,and finally substrate scope were investigated.

    Scheme 2 Knoevenagel condensation reaction of benzaldehyde(model substrate)catalyzed by Cocoordination compounds

    Table 5 Knoevenagel condensation reaction of benzaldehyde with malononitrile catalyzed by Cocoordination compounds

    Table 5 Knoevenagel condensation reaction of benzaldehyde with malononitrile catalyzed by Cocoordination compounds

    aMolar fraction;bCalculated by1H NMR spectroscopy:nproduct/naldehyde×100%.

    Entry Catalyst 1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 16 17 1 1 1 1 1 1 1 1 1 1 1 1 1 2 Blank CoCl2·6H2O H4deta Time/min 10 20 30 40 50 60 60 60 60 60 60 60 55 60 60 60 60 Catalyst loadinga/%2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.5 2.5 2.0—2.0 2.0 Solvent CH3OH CH3OH CH3OH CH3OH CH3OH CH3OH H2O C2H5OH CH3CN CHCl3 CH3OH CH3OH CH3OH CH3OH CH3OH CH3OH CH3OH Yieldb/%41 56 64 80 93 100 90 98 85 67 92 98 100 89 23 33 30

    Upon using compound 1 as the catalyst(Molar fraction:2%),a high conversion rate of 100% of benzal?dehyde into 2?(phenyl methylene)?propanedinitrile was reached after 60 min in methanol at room temperature(Table 5,Entry 6).The product was accumulated with a yield increase from 41% to 100% on prolonging the reaction from 10 to 60 min(Table 5,Entry 1?6).The influence of catalyst amount was also investigated,revealing a product yield growth from 92% to 100% on increasing the loading of catalyst from 1% to 2.5%(Table 5,Entry 6 and 11?13).In addition to water,other solvents were tested,in particular,the reaction showed a comparable efficiency in H2O and ethanol(90% and 98% product yields,respectively).Acetoni?trile and chloroform were less suitable(85% and 67% product yields,respectively).It should be highlighted that under similar reaction conditions,the Knoevenagel condensation of benzaldehyde was significantly less ef?ficient in the absence of catalyst(only 23% product yield)or when using H4deta(30% yield)or CoCl2·6H2O(33% yield)as catalysts(Table 5,Entry 15?17).

    The results show that compound 1 is more active than compound 2.Although a relationship between structure and catalytic activity in the present study can not be clearly established,the highest conversation shown by compound 1 may eventually be associated with its 1D structure for easily accessible metal centers,together with the presence of the open metal sites[30,32].

    We also compared the activities of catalyst 1 in the reactions of other substituted aromatic aldehydes with malononitrile,and the corresponding yields were in a range of 54% to 100%(Table 6).Aryl aldehydes bearing strong electron?withdrawing substituents(e.g.,nitro and chloro)exhibited high activities(Table 6,Entry 2?5),which may be related to an increase in the electrophilicity of the substrate.Aldehydes containing electron?donating groups(e.g.,methyl)showed lower reaction yields(Table 6,Entry 6?8),as expected.

    Table 6 Knoevenagel condensation reaction of various aldehydes with malononitrile catalyzed by compound 1a

    To examine the stability of 1 in the Knoevenagel condensation reaction,we tested the recyclability of this heterogeneous catalyst.For this purpose,upon completion of a reaction cycle,we separated the cata?lyst by centrifugation,washed it with CH2Cl2,and dried it at room temperature before its further use.We found that for catalyst 1,the catalytic system maintained the high activity over at least five consecutive cycles with the yields being 100%,100%,99%,and 98% for the second to the fifth run,respectively.According to the PXRD data(Fig.S2),the structure of 1 was essentially preserved after five catalytic cycles.

    The achieved catalytic performance of compound 1 in the Knoevenagel condensation reaction of benzal?dehyde with malononitrile is superior to those exhibit?ed by the heterogeneous catalysts based on other metal?carboxylate coordination compounds(Table 7)[33?37].

    Table 7 Comparison among various catalysts for Knoevenagel condensation reaction between benzaldehyde and malononitrile

    3 Conclusions

    In summary,we have synthesized two Cocoor?dination polymers based on a tetracarboxylate ligand.Compound 1 discloses a 1D chain structure.Com?pound 2 features a 2D network.The catalytic proper?ties of both compounds were investigated.Compound 1 revealed an excellent catalytic activity in the Knoeve?nagel condensation reaction of benzaldehyde at room temperature.

    Supporting information is available at http://www.wjhxxb.cn

    精品久久蜜臀av无| 国产伦理片在线播放av一区| 秋霞在线观看毛片| 丰满少妇做爰视频| av电影中文网址| 国产成人aa在线观看| 又黄又粗又硬又大视频| 人妻少妇偷人精品九色| 中文字幕人妻丝袜制服| 丰满少妇做爰视频| 国产男女超爽视频在线观看| 久久精品aⅴ一区二区三区四区 | 欧美日韩视频精品一区| 一区二区三区精品91| 90打野战视频偷拍视频| 久久毛片免费看一区二区三区| 久久久久国产精品人妻一区二区| 国产精品久久久久久av不卡| 久久久久久久久免费视频了| 欧美少妇被猛烈插入视频| 黄片播放在线免费| 亚洲婷婷狠狠爱综合网| 侵犯人妻中文字幕一二三四区| 中文字幕精品免费在线观看视频| 97精品久久久久久久久久精品| 自线自在国产av| 免费看不卡的av| 最近中文字幕2019免费版| 1024视频免费在线观看| 大香蕉久久成人网| 91国产中文字幕| 一本色道久久久久久精品综合| 国产激情久久老熟女| 国产免费视频播放在线视频| 免费在线观看视频国产中文字幕亚洲 | 哪个播放器可以免费观看大片| 亚洲一码二码三码区别大吗| 成人毛片60女人毛片免费| 国产精品国产三级专区第一集| 精品人妻偷拍中文字幕| 人体艺术视频欧美日本| 久久久久国产网址| 考比视频在线观看| 欧美日韩亚洲高清精品| 国产成人免费观看mmmm| 国产 一区精品| 久久99精品国语久久久| 如日韩欧美国产精品一区二区三区| 极品人妻少妇av视频| 欧美日韩精品成人综合77777| 老鸭窝网址在线观看| 在线精品无人区一区二区三| 秋霞伦理黄片| 亚洲三级黄色毛片| 国产日韩欧美亚洲二区| 一区二区日韩欧美中文字幕| 亚洲成人av在线免费| 女性生殖器流出的白浆| 老鸭窝网址在线观看| 考比视频在线观看| 午夜激情av网站| 99久国产av精品国产电影| 久久久久网色| 午夜激情av网站| 十八禁高潮呻吟视频| 老司机亚洲免费影院| 国产精品久久久久成人av| 精品国产露脸久久av麻豆| 在线看a的网站| 亚洲少妇的诱惑av| 成年女人毛片免费观看观看9 | 一本色道久久久久久精品综合| 看非洲黑人一级黄片| 一级毛片电影观看| 国产1区2区3区精品| 久久 成人 亚洲| 免费观看性生交大片5| 啦啦啦在线免费观看视频4| 色婷婷久久久亚洲欧美| 国产精品免费视频内射| 欧美精品一区二区免费开放| 日韩中字成人| 中文字幕最新亚洲高清| 精品少妇内射三级| 超碰97精品在线观看| 一区二区日韩欧美中文字幕| 男人添女人高潮全过程视频| 欧美老熟妇乱子伦牲交| 不卡视频在线观看欧美| 免费观看在线日韩| 国产精品偷伦视频观看了| 波多野结衣一区麻豆| 99热网站在线观看| 熟女少妇亚洲综合色aaa.| 国产在线视频一区二区| 黄色配什么色好看| 国产一区二区三区av在线| 极品人妻少妇av视频| 日韩成人av中文字幕在线观看| 下体分泌物呈黄色| 久久久国产欧美日韩av| 久久久精品免费免费高清| 天天操日日干夜夜撸| 女人久久www免费人成看片| 国产 一区精品| 国产成人免费观看mmmm| 人人澡人人妻人| 日韩 亚洲 欧美在线| 国产麻豆69| 日本爱情动作片www.在线观看| 韩国高清视频一区二区三区| 精品国产一区二区三区四区第35| 免费女性裸体啪啪无遮挡网站| 国产熟女午夜一区二区三区| 中文字幕最新亚洲高清| 亚洲欧美一区二区三区国产| 巨乳人妻的诱惑在线观看| 午夜福利在线免费观看网站| 久久精品国产自在天天线| 精品第一国产精品| av女优亚洲男人天堂| 久久久久久久亚洲中文字幕| 九草在线视频观看| 国产精品成人在线| 最黄视频免费看| 国产精品一区二区在线不卡| 一级a爱视频在线免费观看| 国产xxxxx性猛交| 国产成人精品福利久久| 制服诱惑二区| 久久久久久久精品精品| 一二三四在线观看免费中文在| 自线自在国产av| 亚洲欧美成人精品一区二区| 亚洲经典国产精华液单| 一区在线观看完整版| 欧美日韩视频高清一区二区三区二| 色播在线永久视频| 免费黄色在线免费观看| 人妻少妇偷人精品九色| 国产爽快片一区二区三区| 日本91视频免费播放| 亚洲国产毛片av蜜桃av| 免费大片黄手机在线观看| 亚洲av中文av极速乱| av免费在线看不卡| 中文精品一卡2卡3卡4更新| 国产成人a∨麻豆精品| 亚洲精品成人av观看孕妇| 精品亚洲乱码少妇综合久久| 在线精品无人区一区二区三| 黄色 视频免费看| 午夜日韩欧美国产| 一区二区三区激情视频| tube8黄色片| 你懂的网址亚洲精品在线观看| 99热国产这里只有精品6| 制服人妻中文乱码| 有码 亚洲区| 性少妇av在线| 春色校园在线视频观看| 99久久人妻综合| 在线天堂中文资源库| 一区二区三区精品91| 国产亚洲最大av| 色婷婷久久久亚洲欧美| 美女中出高潮动态图| 欧美激情 高清一区二区三区| 日韩av不卡免费在线播放| 一级,二级,三级黄色视频| 七月丁香在线播放| 女人精品久久久久毛片| videos熟女内射| 国产日韩欧美亚洲二区| 日韩精品免费视频一区二区三区| 久久久久久久久久久免费av| 男人操女人黄网站| 国产精品秋霞免费鲁丝片| 国产毛片在线视频| 人人妻人人澡人人爽人人夜夜| 精品国产露脸久久av麻豆| 久久久久视频综合| 欧美日韩视频高清一区二区三区二| 侵犯人妻中文字幕一二三四区| 天天影视国产精品| 97人妻天天添夜夜摸| 亚洲色图综合在线观看| 精品卡一卡二卡四卡免费| 欧美精品亚洲一区二区| 999久久久国产精品视频| 亚洲国产欧美日韩在线播放| 十分钟在线观看高清视频www| 国产精品亚洲av一区麻豆 | 婷婷色综合大香蕉| 亚洲视频免费观看视频| 久久亚洲国产成人精品v| 国产有黄有色有爽视频| 日韩伦理黄色片| 亚洲精品国产色婷婷电影| 综合色丁香网| 亚洲精品av麻豆狂野| 男人爽女人下面视频在线观看| 日韩制服丝袜自拍偷拍| 国产精品国产av在线观看| 大话2 男鬼变身卡| 久久久久视频综合| 亚洲av免费高清在线观看| 午夜福利一区二区在线看| 久久精品国产自在天天线| 国产片特级美女逼逼视频| 欧美人与善性xxx| 女人精品久久久久毛片| 中文字幕制服av| 最近最新中文字幕大全免费视频 | 在线天堂中文资源库| 午夜日本视频在线| 十八禁网站网址无遮挡| 久久精品国产亚洲av高清一级| 99热网站在线观看| 欧美人与性动交α欧美软件| 在线观看免费视频网站a站| 亚洲精品视频女| 国产日韩一区二区三区精品不卡| 国产精品久久久久久精品古装| 久久久久精品人妻al黑| 一区二区三区精品91| 啦啦啦中文免费视频观看日本| 久久精品国产亚洲av天美| 亚洲国产精品一区二区三区在线| 久久久久人妻精品一区果冻| 国产精品蜜桃在线观看| 午夜免费观看性视频| 一级,二级,三级黄色视频| 亚洲综合色惰| 校园人妻丝袜中文字幕| 亚洲av综合色区一区| 热99久久久久精品小说推荐| 大话2 男鬼变身卡| 七月丁香在线播放| 国产在视频线精品| 18禁动态无遮挡网站| 久久久a久久爽久久v久久| 欧美xxⅹ黑人| 亚洲伊人久久精品综合| 日韩免费高清中文字幕av| 国产野战对白在线观看| 欧美日韩精品成人综合77777| 国产老妇伦熟女老妇高清| 久久久久精品人妻al黑| 青春草亚洲视频在线观看| 久久精品国产亚洲av天美| 汤姆久久久久久久影院中文字幕| 人妻人人澡人人爽人人| 久久精品人人爽人人爽视色| 亚洲av电影在线观看一区二区三区| av在线老鸭窝| 精品一区二区三区四区五区乱码 | 精品一区二区免费观看| 欧美 日韩 精品 国产| 老鸭窝网址在线观看| 好男人视频免费观看在线| 亚洲男人天堂网一区| 大片电影免费在线观看免费| av在线app专区| 青草久久国产| 精品少妇内射三级| 久久久久精品人妻al黑| 久久综合国产亚洲精品| 久久久欧美国产精品| 亚洲欧洲国产日韩| 黄色 视频免费看| 日韩一本色道免费dvd| 婷婷色综合www| 捣出白浆h1v1| 久久精品亚洲av国产电影网| 色哟哟·www| 视频区图区小说| 中国国产av一级| 我要看黄色一级片免费的| 青春草视频在线免费观看| 免费高清在线观看视频在线观看| 久久综合国产亚洲精品| 国产又爽黄色视频| 久久99精品国语久久久| 婷婷色综合www| 日韩欧美一区视频在线观看| 在线观看免费日韩欧美大片| 99久久综合免费| 91成人精品电影| 边亲边吃奶的免费视频| 人人妻人人添人人爽欧美一区卜| 在线观看人妻少妇| 香蕉丝袜av| 免费av中文字幕在线| 777久久人妻少妇嫩草av网站| 18禁国产床啪视频网站| 极品少妇高潮喷水抽搐| 国产精品久久久久久精品古装| 捣出白浆h1v1| 十分钟在线观看高清视频www| 亚洲五月色婷婷综合| 国产一区二区三区综合在线观看| 精品久久久久久电影网| 国产黄色视频一区二区在线观看| 日韩,欧美,国产一区二区三区| 久久这里只有精品19| 国产片特级美女逼逼视频| 赤兔流量卡办理| 国产成人精品无人区| 男人操女人黄网站| 伦理电影免费视频| 久久国内精品自在自线图片| 国产精品国产三级国产专区5o| 99国产精品免费福利视频| 中文字幕色久视频| 国产亚洲一区二区精品| 最近中文字幕2019免费版| 精品一区在线观看国产| 欧美日韩亚洲高清精品| av有码第一页| 在线观看三级黄色| 老司机亚洲免费影院| 久久国产精品男人的天堂亚洲| 婷婷色麻豆天堂久久| 嫩草影院入口| 天天躁狠狠躁夜夜躁狠狠躁| 18在线观看网站| 人人澡人人妻人| 久久精品国产鲁丝片午夜精品| 国产欧美亚洲国产| 精品一区二区三区四区五区乱码 | 国产精品国产av在线观看| 欧美亚洲 丝袜 人妻 在线| 嫩草影院入口| 亚洲三级黄色毛片| av网站在线播放免费| 欧美av亚洲av综合av国产av | 天天躁日日躁夜夜躁夜夜| 欧美激情极品国产一区二区三区| 亚洲精品久久午夜乱码| 熟女av电影| 男女高潮啪啪啪动态图| av视频免费观看在线观看| 又粗又硬又长又爽又黄的视频| 丁香六月天网| 久久久久视频综合| 精品一区二区三卡| 18禁裸乳无遮挡动漫免费视频| av线在线观看网站| 桃花免费在线播放| 久久久国产欧美日韩av| 大码成人一级视频| 国产xxxxx性猛交| av又黄又爽大尺度在线免费看| 波多野结衣av一区二区av| 精品一区二区免费观看| 老女人水多毛片| 成人国产麻豆网| 亚洲国产成人一精品久久久| 亚洲欧美成人综合另类久久久| 香蕉精品网在线| 国产精品无大码| 人妻系列 视频| 免费高清在线观看视频在线观看| 一级黄片播放器| 91午夜精品亚洲一区二区三区| 九色亚洲精品在线播放| 视频在线观看一区二区三区| 久久人人爽人人片av| 精品人妻偷拍中文字幕| 国产日韩欧美视频二区| 中文欧美无线码| av女优亚洲男人天堂| 人成视频在线观看免费观看| 中文乱码字字幕精品一区二区三区| 大话2 男鬼变身卡| 97人妻天天添夜夜摸| 电影成人av| 国产成人aa在线观看| 一级,二级,三级黄色视频| 一级a爱视频在线免费观看| 91午夜精品亚洲一区二区三区| 少妇人妻精品综合一区二区| av在线观看视频网站免费| 亚洲精品成人av观看孕妇| 最新的欧美精品一区二区| 亚洲精品第二区| 超色免费av| 激情视频va一区二区三区| 黄片无遮挡物在线观看| 丰满饥渴人妻一区二区三| 欧美亚洲 丝袜 人妻 在线| 天堂俺去俺来也www色官网| 国产精品成人在线| 久久久久久久国产电影| av片东京热男人的天堂| 国产一区有黄有色的免费视频| 精品午夜福利在线看| 青春草视频在线免费观看| 欧美中文综合在线视频| 蜜桃在线观看..| 久久热在线av| 亚洲国产日韩一区二区| 午夜91福利影院| 99国产综合亚洲精品| 又黄又粗又硬又大视频| 母亲3免费完整高清在线观看 | 亚洲欧美精品自产自拍| 日韩 亚洲 欧美在线| 免费高清在线观看视频在线观看| 妹子高潮喷水视频| 精品国产乱码久久久久久小说| 黑人巨大精品欧美一区二区蜜桃| 国产成人免费观看mmmm| 日韩精品免费视频一区二区三区| 国产高清国产精品国产三级| 午夜福利,免费看| 色视频在线一区二区三区| 国产在线免费精品| 美国免费a级毛片| 男女免费视频国产| 欧美日韩精品网址| 91aial.com中文字幕在线观看| 久久久久久久大尺度免费视频| 欧美精品一区二区免费开放| 久久久久久久国产电影| 中国三级夫妇交换| 一区福利在线观看| 精品一区在线观看国产| 亚洲国产日韩一区二区| av电影中文网址| 国产成人精品久久久久久| 水蜜桃什么品种好| 亚洲熟女精品中文字幕| 伊人久久大香线蕉亚洲五| 色婷婷av一区二区三区视频| 少妇精品久久久久久久| www.熟女人妻精品国产| 91精品三级在线观看| 国产精品久久久久久av不卡| 欧美日韩一区二区视频在线观看视频在线| 国产精品99久久99久久久不卡 | 综合色丁香网| 免费高清在线观看日韩| 曰老女人黄片| 亚洲精品,欧美精品| 夫妻午夜视频| 最近手机中文字幕大全| 尾随美女入室| 欧美另类一区| 巨乳人妻的诱惑在线观看| 久久久精品国产亚洲av高清涩受| 在线 av 中文字幕| 国产精品av久久久久免费| 久久久久久久精品精品| 18+在线观看网站| 大片电影免费在线观看免费| 精品亚洲成a人片在线观看| 久久99蜜桃精品久久| 最近的中文字幕免费完整| 欧美xxⅹ黑人| 亚洲精品国产av成人精品| 久久久久久久久久久免费av| 亚洲 欧美一区二区三区| 少妇被粗大的猛进出69影院| 日韩中文字幕视频在线看片| 成年av动漫网址| 久久精品亚洲av国产电影网| 亚洲欧美精品综合一区二区三区 | 亚洲精品国产一区二区精华液| 国产精品香港三级国产av潘金莲 | 高清av免费在线| 亚洲,欧美精品.| 毛片一级片免费看久久久久| 永久免费av网站大全| 日韩一区二区三区影片| 精品一区二区三区四区五区乱码 | 丝袜脚勾引网站| 欧美亚洲 丝袜 人妻 在线| 18禁观看日本| 欧美精品国产亚洲| 80岁老熟妇乱子伦牲交| 日日摸夜夜添夜夜爱| 熟女电影av网| 欧美成人午夜精品| 精品一区二区三区四区五区乱码 | 最近2019中文字幕mv第一页| 波多野结衣一区麻豆| 精品亚洲成a人片在线观看| 免费av中文字幕在线| 成年人免费黄色播放视频| 国产在视频线精品| 欧美日韩成人在线一区二区| 久久精品国产鲁丝片午夜精品| 亚洲精品国产一区二区精华液| 国产精品二区激情视频| 亚洲精品国产av成人精品| 亚洲av国产av综合av卡| av线在线观看网站| 黑人猛操日本美女一级片| 老汉色av国产亚洲站长工具| 超碰成人久久| 成人手机av| 天天躁夜夜躁狠狠躁躁| 在线观看三级黄色| 国产探花极品一区二区| 久久 成人 亚洲| 午夜福利在线观看免费完整高清在| 国产乱来视频区| 久久久精品国产亚洲av高清涩受| 久热这里只有精品99| 国产成人精品婷婷| 国产不卡av网站在线观看| 国产成人免费无遮挡视频| 午夜福利网站1000一区二区三区| 亚洲国产欧美日韩在线播放| 777米奇影视久久| 伦精品一区二区三区| 亚洲国产最新在线播放| 亚洲人成电影观看| 涩涩av久久男人的天堂| 成人18禁高潮啪啪吃奶动态图| 精品人妻熟女毛片av久久网站| 看免费av毛片| 看十八女毛片水多多多| 欧美日韩国产mv在线观看视频| 夜夜骑夜夜射夜夜干| 少妇的逼水好多| 欧美另类一区| 午夜影院在线不卡| 亚洲综合色惰| 新久久久久国产一级毛片| 美女国产视频在线观看| 久久精品国产亚洲av天美| 亚洲av成人精品一二三区| 精品人妻一区二区三区麻豆| 国产成人免费观看mmmm| av在线老鸭窝| 亚洲欧洲日产国产| 80岁老熟妇乱子伦牲交| 国产亚洲最大av| 欧美老熟妇乱子伦牲交| 久久青草综合色| 国产成人精品在线电影| 不卡av一区二区三区| 纵有疾风起免费观看全集完整版| 伊人亚洲综合成人网| 如日韩欧美国产精品一区二区三区| 一区在线观看完整版| 天天躁夜夜躁狠狠躁躁| 精品一区二区三区四区五区乱码 | 热99国产精品久久久久久7| 亚洲精品aⅴ在线观看| 亚洲五月色婷婷综合| 观看av在线不卡| 中文字幕亚洲精品专区| 视频区图区小说| 欧美97在线视频| 青春草亚洲视频在线观看| 90打野战视频偷拍视频| 不卡av一区二区三区| 大话2 男鬼变身卡| 亚洲,一卡二卡三卡| 国产一区二区激情短视频 | 五月天丁香电影| 99国产综合亚洲精品| 女性被躁到高潮视频| av网站免费在线观看视频| 秋霞在线观看毛片| 久久精品国产自在天天线| 久久精品国产鲁丝片午夜精品| 爱豆传媒免费全集在线观看| 日本91视频免费播放| 国产熟女午夜一区二区三区| 国产精品熟女久久久久浪| 精品视频人人做人人爽| 2018国产大陆天天弄谢| 熟女av电影| 在线观看免费高清a一片| 香蕉丝袜av| 亚洲国产色片| 男的添女的下面高潮视频| 久久久久国产精品人妻一区二区| 亚洲av中文av极速乱| 女人被躁到高潮嗷嗷叫费观| 色婷婷av一区二区三区视频| 男女无遮挡免费网站观看| 久久人人爽av亚洲精品天堂| 女人久久www免费人成看片| 性色avwww在线观看| 永久免费av网站大全| 精品少妇一区二区三区视频日本电影 | 这个男人来自地球电影免费观看 | 晚上一个人看的免费电影| 极品人妻少妇av视频| tube8黄色片| 一本—道久久a久久精品蜜桃钙片| 午夜福利视频精品| 成人免费观看视频高清| 欧美 亚洲 国产 日韩一| 精品亚洲成国产av| 一本—道久久a久久精品蜜桃钙片| 日本欧美视频一区| 久久影院123| 黄片小视频在线播放| 国产精品久久久久久av不卡| 国产熟女欧美一区二区| 五月天丁香电影| 亚洲av国产av综合av卡| 亚洲欧美日韩另类电影网站| 18在线观看网站| 免费黄网站久久成人精品| 看非洲黑人一级黄片| 国产日韩一区二区三区精品不卡| 国产一区二区三区综合在线观看|