• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel low-loss four-bit bandpass filter using RF MEMS switches

    2022-01-23 06:35:18LuluHan韓路路YuWang王宇QiannanWu吳倩楠ShiyiZhang張世義
    Chinese Physics B 2022年1期
    關(guān)鍵詞:王宇

    Lulu Han(韓路路) Yu Wang(王宇) Qiannan Wu(吳倩楠) Shiyi Zhang(張世義)

    Shanshan Wang(王姍姍)1,2,3,4, and Mengwei Li(李孟委)1,2,3,4,?

    1School of Instrument and Electronics,North University of China,Taiyuan 030051,China

    2Nantong Institute of Intelligent Opto-Mechatronics,North University of China,Nantong 226000,China

    3Center for Microsystem Integration,North University of China,Taiyuan 030051,China

    4Academy for Advanced Interdisciplinary Research,North University of China,Taiyuan 030051,China

    5School of Science,North University of China,Taiyuan 030051,China

    Keywords: four-bit,RF microelectromechanical system(MEMS)switch,reconfigurable filter,comb resonator

    1. Introduction

    Bandpass filters are widely used in microwave and millimeter-wave circuits and systems due to their ability to select or suppress signals at specific frequencies.[1-12]In recent years,great attention has been paid to reconfigurable filters based on various circuit structures,owning to their ability to reduce complexity and strengthen expansibility in modern electronic systems.[13-19]

    Traditional reconfigurable filters, including semiconductor filters,[14]and MEMS filters,[15-17,19]have been extensively studied over the last two decades. However, these filters have shortcomings,such as large structural size,complex structure, high loss, and low integration. Chuanget al.[14]proposed a switchable filter with a selectable range of 0.9-2.35 GHz based on the use of p-i-n diode switches. The maximum insertion loss of the filter was approximately 3 dB,and the overall size was 97 mm×32 mm. Since each diode was too complicated to be integrated into a uniplanar filter structure,this reconfigurable bandpass filter had limitations,for instance, a large size and large insertion loss. Moreover, based on MEMS switches, Zhanget al.[15]demonstrated an openloop reconfigurable filter composed of“open-loop”resonators and cantilever MEMS switches with reconfigurable frequency bands of 7.81 GHz and 8.35 GHz,respectively. The insertion loss of this reconfigurable filter in the passband was smaller than 3.4 dB,and its size was 25 mm×17 mm. Compared with the device described in Ref.[14],its size was greatly reduced,but it was still not conductive to integration into an RF module.

    To address the abovementioned problems associated with existing MEMS reconfigurable filters, this study proposes a novel low-loss four-bit filter using RF MEMS switches. It can switch 16 operating states through eight switches in the frequency range of 7-16 GHz, and the overall size of this novel proposed filter is only 4.4 mm×2.5 mm×0.4 mm. It can effectively reduce insertion loss, reduce the system size, and improve the reliability of the system.

    2. Theory and design

    2.1. Design of the MEMS switch

    The reconfigurable filter has eight MEMS switches that represent 16 operating states according to their positioning in the ‘up’ and ‘down’ states. Ohmic contact MEMS switches are employed to tune the filter frequency,[20,21]the equivalent circuit diagram is shown in Fig.1,in whichZcpwis the equivalent impedance of a coplanar waveguide (CPW),Rsis the resistance when the switch is“closed”,andCsis the coupling capacitance formed by the cantilever beam and the CPW signal line when the switch is“open”.

    The cantilever beam of the MEMS switch is a straight plate structure that has the characteristics of a simple structure and is easy to process. Additionally, to facilitate the release of the sacrificial layer and reduce the driving voltage of the MEMS switch, several release holes are designed in the cantilever beam. The structure and simulation results of the MEMS switch are shown in Figs.2(a)and 2(b),respectively.

    Fig. 1. Equivalent circuit diagram of the ohmic contact MEMS switch: (a)“closed”state and(b)“open”state.

    Fig. 2. (a) Structure of the MEMS switch. (b) Simulation results of the MEMS switch.

    The elastic coefficient of the straight plate cantilever beam design is mainly determined by the beam stiffness,k.When the driving voltage is applied directly under the cantilever beam,it is equivalent to a distributed load acting on the single-ended cantilever beam. Based on this,the elastic coefficientkof the cantilever beam can be expressed as

    wherel,w,t, andEare the length, width, thickness, and Young’s modulus of the cantilever beam. The elastic coefficient,kc, of the designed cantilever beam is calculated to be 1.024 N/m. The area between the cantilever beam and the pull-down electrode isA=18000 μm2, and the distance between the cantilever beam and the pull-down electrode isg=3.0μm. According to the calculation,the driving voltage isV=12.41 V.

    Fig.3. Displacement simulation of the cantilever beam of the MEMS switch.

    The coupling field finite-element software,COMSOL,is used to simulate the cantilever beam of the MEMS switch,and the simulation results are shown in Fig.3.The cantilever beam deforms under the action of static electricity,and the deformation is largest at its free end.When a distributed load is applied directly under the cantilever beam, the maximum displacement of the cantilever beam in theZdirection is 4.3μm,which is greater than the distance of 3.0μm between the switch pulldown electrode and the cantilever beam. We have therefore determined that the structure of the designed switch is reasonable.

    2.2. Design of the comb resonator

    In this study,a stepped impedance resonator(SIR)is applied to the comb resonator to realize the design of a miniaturized filter. SIRs are divided into theλg/4 type,theλg/2 type,and theλgtype. Theλg/4 type of SIR is selected because of its small size and the location of the center of its second passband at triple the base frequency. Theλg/4 type SIR is composed of an open circuit and short circuit in series through an impedance step junction.As shown in Fig.4,the equivalent impedance and equivalent electrical length of the open-circuit end are(Z1,θ1),and the equivalent impedance and equivalent electrical length of the short-circuit end are (Z2,θ2), respectively.

    Fig.4. Schematic of a λg/4-type SIR.

    Equation (2) represents the input impedance, ignoring the edge capacitance of the resonator. If the admittance isYi=1/Zi=0,theλg/4-type SIR resonance condition can be achieved as shown in Eq. (3). Thus, theλg/4-type SIR resonance conditions are related toθ1,θ2,andZ1/Z2.

    Equation (4) represents the total electrical length of theλg/4-type SIR. Compared with the electrical length ofπ/2 of a uniform impedance resonator (whose open-end width is equal to the short-end width), the SIR normalized resonator length is

    The comb resonator is composed of an arrangement of parallel coupling lines,in which one end is short-circuited and the other end is grounded through the lumped capacitor. Two symmetrical 50 Ω transmission lines are arranged at both ends of the resonator to form input and output signal ends of the resonator.[22]

    In the schematic diagram of the comb resonator in Fig.5,C′irepresents the load capacitance corresponding to the coupling line in sectioni, whereW′irepresents the width of the coupling line in sectioni,L′irepresents the length of the coupling line in sectioni, andSi,i+1represents the interval between the coupling line in sectioniand sectioni+1 of the resonator. Here,i=0-m. For narrowband comb resonators,the coupling lines from sections one tomare all resonators.The coupling lines of section zero and sectionm+1 feed the external circuit, which changes the impedance instead of acting as a resonator.[23]

    Fig.5. Schematic diagram of the comb resonator.

    Comb resonators have evolved from parallel coupling line resonators,and the central frequency of the resonator is mainly determined by the length of the resonator and the load capacitance. The coupling coefficient and the port loadQvalue of the resonator can be calculated by[24]

    whereσiis the Chebyshev low-pass prototype value,f0is the center frequency of the filter,BWis the passband bandwidth of the filter,and theKlevel is the coupling coefficient.

    2.3. Design of the four-bit filter

    Generally,the terminal load capacitance of the comb line is small and fixed. The central frequency of the filter can be adjusted by changing the capacitance if the fixed capacitance is replaced by an adjustable capacitor. Equation(7)shows the relationship between the central frequency of the filter,the resonator length,and the terminal capacitance value:

    whereYais the characteristic admittance of the resonator,θis the electrical length of the resonator, andCis the terminal capacitance.

    According to Eq.(7),the inverse relationship between the resonance frequency and the capacitance can be obtained by fixing the electrical length of the resonator and the specific admittance.Based on this characteristic,we designed a reconfigurable bandpass filter. The designed reconfigurable filter consists of eight MEMS switches and comb resonators,and the selection of a specific operating frequency band can be achieved by controlling the gating state of the MEMS switches.

    The reconfigurable filter in Fig. 6 is manufactured using MEMS technology and is mainly composed of a substrate and a metal structure.

    Fig.6. The structure of the reconfigurable filter.

    The filter uses a microstrip line to transmit microwave signals, and the characteristic impedance of its input/output terminals is 50 Ω. By controlling the size of each comb resonator and optimizing the spacing between them,a filter with excellent performance can be obtained. The structural parameters are shown in Table 1.

    Table 1. Structural parameters of the reconfigurable comb filter.

    Using the ANSOFT HFSS software,the RF performance of the four-bit filter based on MEMS switches is simulated,and the simulation results are shown in Fig. 7. Figures 7(a)-7(c)show the simulation results for theS21,S11and group delays of the filter, respectively. The filter performance of each switch state is shown in Table 2, where ‘1’ indicates that the switch is on and‘0’indicates that the switch is off.

    The simulation results indicate that for a frequency range of 7-16 GHz, the maximum insertion loss of the filter is approximately 1.99 dB, the minimum out-of-band rejection is about 18.30 dB, and the maximum bandpass group delay is 0.25 ns. This four-bit filter exhibits excellent performance among reconfigurable bandpass filters,and the proposed filter can switch 16 channel frequencies with fewer switches.

    Table 2. Corresponding filter performance of each switch state. f1/2 is the frequency point of the sideband.

    Fig.7. Simulation results for the filter: (a)S21,(b)S11,and(c)group delay.

    Table 3 provides a comparison between the results for currently used reconfigurable filters and the filter designed in this study. As can be seen from Table 3,the proposed filter is able to switch 16 channel frequencies with the least number of switches,thus improving the reliability of the filter.Compared with current reconfigurable band-pass filters,the proposed filter has the advantages of low insertion loss, small size, and high integration.

    Table 3. Comparison of reconfigurable bandpass filters.

    2.4. Fabrication and measurement of the RF MEMS switch

    The MEMS switch, as the core device of the reconfigurable filter, is fabricated using micro-nano surface technology. Figure 8 illustrates the fabrication process of the MEMS switch.

    First,a thermal oxide layer is grown by a wet etching process on a silicon wafer with a thickness of 400 μm. Second,a silicon nitride layer is deposited by plasmaenhanced chemical vapor deposition(PECVD).Third,a square silicon nitride layer is etched by reactive ion etching (RIE). Fourth, an aluminum(Al)layer is sputtered by magnetron sputtering to fabricate the drive electrode. Subsequently, an Au layer with a thickness of 2 μm is plated to fabricate the transmission line of the MEMS switch. Then,a polyimide(PI)sacrificial layer is spun and cured. Next, on the sacrificial layer, an Au layer with a thickness of 2 μm is electroplated to fabricate the top electrode. Finally,the sacrificial layer is released by RIE,and the MEMS switch is finally fabricated.9(c) show the switching on and switching off times of the switch,respectively. As the actuation signal rises from zero to the signal voltage,the switch starts to pull down and achieves a stable contact after multiple bounces; and the switching on time of the switch is about 48.2 μs. When the actuation signal drops from the pull-down voltage to zero, the switching off of the switch from the “on” state to the “off” state takes about 8.1 μs. On the other hand, reliability is a key metric of a MEMS reconfigurable filter, and the switching life of a MEMS switch can be up to 107times. After many tests, the insertion loss changed little and the repeatability was good,which confirms the performance of the reconfigurable filter.

    Fig.8. The fabrication processes of the MEMS switch.

    Fig.9. Measured results of the MEMS switch: (a)S21,(b)switching on time and(c)switching off time.

    3. Conclusions and perspectives

    In this study,the current development status of reconfigurable filters is first analyzed,and then a four-bit bandpass filter with a small size, low loss, and strong reconfigurability is designed.The terminal load capacitance of the comb resonator can be changed by MEMS switches,thus tuning the filter. The results show that this filter has good performance within a 7-16 GHz operational frequency range and can be used in multifrequency complex communication systems.As a result,it has great potential for use in channel selection,image suppression,duplexing,and multichannel communication.

    Acknowledgments

    Project supported by the National Defense Technology Industry Strong Foundation Project of China (Grant No. JCKY2018****06) and the Information System New items Project(Grant Nos.2018****26 and 2019****10).We thank the Key Laboratory of Instrumentation Science and Dynamic Measurement for their support.

    The measured results in Fig.9(a)show that the insertion loss of the MEMS switch is approximately 1.0 dB and the isolation is more than 22.0 dB in the range of 7-16 GHz,which satisfy the design specification requirements. Figures 9(b)and

    猜你喜歡
    王宇
    Experimental study on the effect of H2O and O2 on the degradation of SF6 by pulsed dielectric barrier discharge
    基于ShuffleNet V2算法的三維視線估計
    應(yīng)急物流:疫情之下迎來“大考”
    美術(shù)作品
    人生的岔路口,幸好遇到你
    Cavitation erosion in bloods*
    死不瞑目!我愛的悲情已婚男是個“影帝”
    報銷
    故事會(2014年19期)2014-09-25 14:08:10
    A Support Vector Machine Based on Bayesian Criterion
    Proton-exchange Sulfonated Poly(ether ether ketone)/SulfonatedPhenolphthalein Poly(ether sulfone) Blend Membranes in DMFCs*
    免费久久久久久久精品成人欧美视频 | 午夜视频国产福利| 亚洲三级黄色毛片| 久久久欧美国产精品| 欧美+日韩+精品| 国产av一区二区精品久久| 在线免费观看不下载黄p国产| 国产日韩欧美视频二区| 日韩中文字幕视频在线看片| 青青草视频在线视频观看| 国产亚洲精品久久久com| 99久久精品国产国产毛片| 久热这里只有精品99| 熟妇人妻不卡中文字幕| 又黄又爽又刺激的免费视频.| 国产伦精品一区二区三区四那| 成年人免费黄色播放视频 | 亚洲,欧美,日韩| 国产一区二区三区综合在线观看 | 中国三级夫妇交换| 最新中文字幕久久久久| 又粗又硬又长又爽又黄的视频| 丰满少妇做爰视频| 99热这里只有精品一区| 国产午夜精品一二区理论片| 亚洲精品久久久久久婷婷小说| 日韩中文字幕视频在线看片| 国产精品一区www在线观看| 国产精品蜜桃在线观看| 成年人免费黄色播放视频 | 国产成人aa在线观看| 三上悠亚av全集在线观看 | 日本av手机在线免费观看| 欧美精品亚洲一区二区| 日韩在线高清观看一区二区三区| 女性生殖器流出的白浆| 色婷婷av一区二区三区视频| 色婷婷久久久亚洲欧美| 日韩一区二区视频免费看| 肉色欧美久久久久久久蜜桃| 欧美精品一区二区大全| 自拍偷自拍亚洲精品老妇| 99久久中文字幕三级久久日本| 我的女老师完整版在线观看| 在线观看美女被高潮喷水网站| 国产片特级美女逼逼视频| 乱人伦中国视频| 国产伦精品一区二区三区四那| 91精品一卡2卡3卡4卡| 一级毛片黄色毛片免费观看视频| 欧美bdsm另类| 大片电影免费在线观看免费| 99九九在线精品视频 | 国产 一区精品| 免费不卡的大黄色大毛片视频在线观看| 国产精品一区二区在线不卡| 中文乱码字字幕精品一区二区三区| 国产精品久久久久久久久免| 少妇的逼水好多| 老司机影院毛片| 一区二区三区精品91| 99久久中文字幕三级久久日本| 18禁在线播放成人免费| 一本大道久久a久久精品| 中文乱码字字幕精品一区二区三区| 男人狂女人下面高潮的视频| 亚洲av成人精品一区久久| 色5月婷婷丁香| 伊人亚洲综合成人网| 日本午夜av视频| 欧美少妇被猛烈插入视频| 亚洲综合精品二区| 色视频www国产| tube8黄色片| 性高湖久久久久久久久免费观看| 亚洲欧美成人综合另类久久久| 免费大片18禁| av在线播放精品| 精品少妇黑人巨大在线播放| 久久精品国产亚洲av涩爱| www.av在线官网国产| 在线看a的网站| 日韩中字成人| 日韩中文字幕视频在线看片| 亚洲婷婷狠狠爱综合网| 免费看日本二区| 日本黄色日本黄色录像| 99热网站在线观看| 色婷婷久久久亚洲欧美| av视频免费观看在线观看| 91午夜精品亚洲一区二区三区| 久久久精品94久久精品| 如何舔出高潮| 精品国产露脸久久av麻豆| 日韩大片免费观看网站| 国产成人aa在线观看| 日韩在线高清观看一区二区三区| 最新中文字幕久久久久| 人妻人人澡人人爽人人| h视频一区二区三区| 久久久久久久久久久久大奶| 午夜免费鲁丝| 欧美成人午夜免费资源| 成年美女黄网站色视频大全免费 | 日本av手机在线免费观看| 国产91av在线免费观看| 亚洲国产精品一区二区三区在线| 午夜久久久在线观看| 免费黄色在线免费观看| av有码第一页| 国产亚洲欧美精品永久| 天堂俺去俺来也www色官网| 99国产精品免费福利视频| 在现免费观看毛片| 亚洲国产精品999| 亚洲美女黄色视频免费看| 高清不卡的av网站| 一级爰片在线观看| 国产精品福利在线免费观看| 国精品久久久久久国模美| 欧美成人午夜免费资源| 成人毛片a级毛片在线播放| av一本久久久久| 乱系列少妇在线播放| 欧美高清成人免费视频www| 91aial.com中文字幕在线观看| 最近中文字幕高清免费大全6| 亚洲人成网站在线播| 亚洲经典国产精华液单| √禁漫天堂资源中文www| 99热全是精品| 久久99精品国语久久久| 97超视频在线观看视频| 在线观看av片永久免费下载| 校园人妻丝袜中文字幕| 老女人水多毛片| 在线看a的网站| 日本猛色少妇xxxxx猛交久久| a级毛色黄片| 午夜免费观看性视频| 国产精品久久久久久久电影| 一级毛片久久久久久久久女| 丝袜喷水一区| 国产精品福利在线免费观看| 好男人视频免费观看在线| 亚洲三级黄色毛片| 日韩伦理黄色片| 美女cb高潮喷水在线观看| 日韩亚洲欧美综合| 自线自在国产av| 精品酒店卫生间| 久久久亚洲精品成人影院| 久久人人爽人人爽人人片va| 亚洲国产最新在线播放| 有码 亚洲区| 女性被躁到高潮视频| 熟妇人妻不卡中文字幕| 国产在线免费精品| 91午夜精品亚洲一区二区三区| 日本猛色少妇xxxxx猛交久久| 曰老女人黄片| 在线观看人妻少妇| 亚洲欧美日韩东京热| 91久久精品电影网| 精品国产一区二区久久| 校园人妻丝袜中文字幕| 日韩一区二区三区影片| 成年女人在线观看亚洲视频| 男女免费视频国产| 黄色毛片三级朝国网站 | 免费久久久久久久精品成人欧美视频 | av播播在线观看一区| 嫩草影院入口| 亚洲欧美成人精品一区二区| 日本vs欧美在线观看视频 | 观看av在线不卡| 亚洲va在线va天堂va国产| 久久久精品免费免费高清| 哪个播放器可以免费观看大片| 一区二区三区乱码不卡18| 日韩一区二区视频免费看| 观看av在线不卡| 国产亚洲精品久久久com| 日韩成人伦理影院| 又粗又硬又长又爽又黄的视频| 热re99久久精品国产66热6| 最近中文字幕2019免费版| 色哟哟·www| 丝袜在线中文字幕| 纵有疾风起免费观看全集完整版| 黄色毛片三级朝国网站 | 国产精品女同一区二区软件| 亚洲av综合色区一区| 午夜视频国产福利| 国产亚洲5aaaaa淫片| 又粗又硬又长又爽又黄的视频| 能在线免费看毛片的网站| 欧美日韩av久久| 日韩成人av中文字幕在线观看| 少妇裸体淫交视频免费看高清| 国产精品嫩草影院av在线观看| 亚洲欧美一区二区三区国产| 亚洲不卡免费看| 婷婷色av中文字幕| 久久午夜福利片| 免费看av在线观看网站| 欧美一级a爱片免费观看看| 亚洲成人av在线免费| 成人黄色视频免费在线看| 久久人人爽av亚洲精品天堂| a级毛色黄片| 成人综合一区亚洲| 在线播放无遮挡| 99热6这里只有精品| 亚洲国产精品国产精品| 久久av网站| 亚洲国产精品一区二区三区在线| 十分钟在线观看高清视频www | 亚洲精品成人av观看孕妇| 日韩视频在线欧美| 纵有疾风起免费观看全集完整版| 久久人人爽人人爽人人片va| 内地一区二区视频在线| 街头女战士在线观看网站| 午夜福利影视在线免费观看| www.av在线官网国产| 精品久久久久久久久av| 国产乱来视频区| 在线精品无人区一区二区三| 久久久久精品久久久久真实原创| av国产久精品久网站免费入址| 极品教师在线视频| 国产乱人偷精品视频| 波野结衣二区三区在线| 免费观看a级毛片全部| 青春草亚洲视频在线观看| 秋霞在线观看毛片| 王馨瑶露胸无遮挡在线观看| 少妇 在线观看| 日日啪夜夜爽| 免费看不卡的av| 国产免费福利视频在线观看| 久久久久视频综合| av不卡在线播放| 丝袜喷水一区| 最黄视频免费看| 欧美日韩av久久| av天堂中文字幕网| 日韩大片免费观看网站| 啦啦啦啦在线视频资源| 在线观看av片永久免费下载| 最后的刺客免费高清国语| 亚洲国产精品999| 中文精品一卡2卡3卡4更新| 三上悠亚av全集在线观看 | 国产精品蜜桃在线观看| 国产精品福利在线免费观看| 秋霞在线观看毛片| 国内少妇人妻偷人精品xxx网站| 观看美女的网站| 一级毛片aaaaaa免费看小| 精品国产一区二区久久| 国产欧美日韩一区二区三区在线 | 久久免费观看电影| 日韩亚洲欧美综合| 五月开心婷婷网| 日韩三级伦理在线观看| a 毛片基地| av专区在线播放| 国产成人91sexporn| 中文字幕精品免费在线观看视频 | 亚洲不卡免费看| 国产精品偷伦视频观看了| 国产老妇伦熟女老妇高清| h日本视频在线播放| 久久久久人妻精品一区果冻| 乱人伦中国视频| 我的老师免费观看完整版| 日韩av免费高清视频| 熟女人妻精品中文字幕| 中国美白少妇内射xxxbb| 欧美精品人与动牲交sv欧美| 狂野欧美激情性xxxx在线观看| 秋霞在线观看毛片| 91精品一卡2卡3卡4卡| 婷婷色麻豆天堂久久| 视频中文字幕在线观看| 国产欧美日韩一区二区三区在线 | 欧美精品一区二区大全| 日本爱情动作片www.在线观看| 久热这里只有精品99| 国产精品国产三级国产av玫瑰| 国产欧美日韩一区二区三区在线 | 久久人人爽av亚洲精品天堂| 亚洲精华国产精华液的使用体验| 男女边吃奶边做爰视频| 日韩精品免费视频一区二区三区 | 免费观看在线日韩| 一本久久精品| 九九在线视频观看精品| 一区二区三区四区激情视频| 久久精品国产亚洲av涩爱| a级毛片免费高清观看在线播放| 乱码一卡2卡4卡精品| 成人特级av手机在线观看| 国产成人aa在线观看| 免费av不卡在线播放| 中国国产av一级| 一级毛片aaaaaa免费看小| 一本—道久久a久久精品蜜桃钙片| 亚洲av不卡在线观看| 久久99蜜桃精品久久| a 毛片基地| 永久网站在线| 高清欧美精品videossex| 三级经典国产精品| 日日摸夜夜添夜夜爱| 久久亚洲国产成人精品v| √禁漫天堂资源中文www| 成人美女网站在线观看视频| 国产欧美另类精品又又久久亚洲欧美| 丁香六月天网| 国产精品国产三级国产av玫瑰| 国产深夜福利视频在线观看| 亚洲怡红院男人天堂| 在线亚洲精品国产二区图片欧美 | 校园人妻丝袜中文字幕| 国产探花极品一区二区| 亚洲精品久久午夜乱码| 久久久久久久久久成人| 国产综合精华液| 亚洲精华国产精华液的使用体验| 免费av中文字幕在线| 国产日韩欧美在线精品| 大片电影免费在线观看免费| 国产色婷婷99| 欧美精品国产亚洲| 日韩精品免费视频一区二区三区 | 午夜福利网站1000一区二区三区| 中文精品一卡2卡3卡4更新| 王馨瑶露胸无遮挡在线观看| 夫妻午夜视频| 少妇熟女欧美另类| 国产精品一区二区在线观看99| 黑人高潮一二区| 精品人妻熟女av久视频| 伊人久久精品亚洲午夜| 日韩制服骚丝袜av| 精品人妻熟女av久视频| www.av在线官网国产| 久久久国产一区二区| 特大巨黑吊av在线直播| 成人毛片60女人毛片免费| 久久ye,这里只有精品| 亚洲av成人精品一区久久| 十分钟在线观看高清视频www | 老司机影院毛片| 嫩草影院入口| 国产有黄有色有爽视频| 国产精品熟女久久久久浪| 成年美女黄网站色视频大全免费 | 免费少妇av软件| 黑人高潮一二区| 99热这里只有是精品50| 一级片'在线观看视频| 久久精品国产a三级三级三级| 久久久久久久久久久久大奶| 久久99热这里只频精品6学生| 纯流量卡能插随身wifi吗| 国产黄色免费在线视频| 成年人午夜在线观看视频| 熟女电影av网| 亚洲成人手机| 欧美+日韩+精品| 国产一区二区在线观看av| 日韩亚洲欧美综合| 黄色一级大片看看| 亚洲国产欧美在线一区| 国产精品久久久久久精品古装| 全区人妻精品视频| 一级毛片久久久久久久久女| 国产黄色视频一区二区在线观看| 精品少妇黑人巨大在线播放| av国产精品久久久久影院| 成年人免费黄色播放视频 | a级一级毛片免费在线观看| 欧美另类一区| a级片在线免费高清观看视频| 日韩强制内射视频| 亚洲性久久影院| 黄色怎么调成土黄色| 日韩,欧美,国产一区二区三区| 国产黄片视频在线免费观看| av有码第一页| 亚洲综合精品二区| 我的老师免费观看完整版| 亚洲欧美中文字幕日韩二区| 男女边摸边吃奶| 三级国产精品片| 91aial.com中文字幕在线观看| 亚洲精品中文字幕在线视频 | 一级黄片播放器| 这个男人来自地球电影免费观看 | 久久av网站| 综合色丁香网| 亚洲成色77777| 午夜老司机福利剧场| 99视频精品全部免费 在线| 美女cb高潮喷水在线观看| 男女免费视频国产| 亚洲精品成人av观看孕妇| 国产黄频视频在线观看| 晚上一个人看的免费电影| 欧美bdsm另类| 久久久国产欧美日韩av| 少妇的逼好多水| 青春草视频在线免费观看| 97在线视频观看| 18+在线观看网站| 国产综合精华液| 国产在线免费精品| 婷婷色综合www| 纵有疾风起免费观看全集完整版| 麻豆乱淫一区二区| 少妇丰满av| av在线app专区| 各种免费的搞黄视频| 久久精品熟女亚洲av麻豆精品| 欧美国产精品一级二级三级 | 91精品国产国语对白视频| 免费av不卡在线播放| 亚洲欧美清纯卡通| 亚洲av欧美aⅴ国产| 韩国av在线不卡| 中文欧美无线码| 狠狠精品人妻久久久久久综合| 日韩制服骚丝袜av| 日韩精品免费视频一区二区三区 | 日本与韩国留学比较| 男人狂女人下面高潮的视频| 99久久精品热视频| 中文字幕久久专区| 美女xxoo啪啪120秒动态图| 亚洲国产日韩一区二区| 最后的刺客免费高清国语| 我的老师免费观看完整版| 国产成人a∨麻豆精品| 熟女av电影| 亚洲精品久久午夜乱码| 最近中文字幕2019免费版| 中文乱码字字幕精品一区二区三区| 亚洲激情五月婷婷啪啪| 女的被弄到高潮叫床怎么办| 国产精品国产三级国产av玫瑰| 日韩一区二区视频免费看| 久久综合国产亚洲精品| 色94色欧美一区二区| 99久久精品国产国产毛片| 日韩av不卡免费在线播放| 久久久久国产精品人妻一区二区| av.在线天堂| 国产男女内射视频| 丰满乱子伦码专区| 美女视频免费永久观看网站| 久久免费观看电影| 一区二区三区乱码不卡18| 亚洲在久久综合| 色哟哟·www| 秋霞伦理黄片| 五月玫瑰六月丁香| av在线app专区| 国产精品国产三级国产av玫瑰| 亚洲av成人精品一区久久| 一本色道久久久久久精品综合| 国产乱人偷精品视频| www.色视频.com| 国产乱人偷精品视频| 免费高清在线观看视频在线观看| 能在线免费看毛片的网站| 熟女电影av网| 五月天丁香电影| 亚洲精品aⅴ在线观看| 91久久精品国产一区二区成人| 国产伦在线观看视频一区| 国产日韩一区二区三区精品不卡 | 免费观看的影片在线观看| 亚洲人成网站在线观看播放| 2018国产大陆天天弄谢| 一级av片app| 美女大奶头黄色视频| 老司机亚洲免费影院| 高清午夜精品一区二区三区| 亚洲欧美清纯卡通| 亚洲成人av在线免费| 免费观看无遮挡的男女| 黄色日韩在线| 成人漫画全彩无遮挡| 内射极品少妇av片p| 嫩草影院新地址| 成人免费观看视频高清| 午夜91福利影院| 欧美三级亚洲精品| 一级片'在线观看视频| 久久狼人影院| 亚洲欧洲日产国产| 精品亚洲成国产av| 亚洲精品色激情综合| 中文字幕精品免费在线观看视频 | 香蕉精品网在线| 亚洲熟女精品中文字幕| 久久人人爽人人片av| 日韩欧美 国产精品| 国产精品一区www在线观看| 欧美精品一区二区大全| 老司机亚洲免费影院| 永久免费av网站大全| 在线免费观看不下载黄p国产| 交换朋友夫妻互换小说| 在现免费观看毛片| 22中文网久久字幕| 少妇 在线观看| 国产一区二区三区av在线| 久久久久网色| 黄色日韩在线| 亚洲四区av| 亚洲国产精品一区二区三区在线| 亚洲精品国产av成人精品| 一级毛片黄色毛片免费观看视频| 成人无遮挡网站| 国产欧美亚洲国产| 午夜91福利影院| 亚洲精品aⅴ在线观看| 最近2019中文字幕mv第一页| 亚洲精品,欧美精品| 性色av一级| 男女边摸边吃奶| 国产 精品1| 久久99精品国语久久久| 免费看av在线观看网站| 日韩精品有码人妻一区| 亚洲精品乱码久久久v下载方式| 桃花免费在线播放| 国产色爽女视频免费观看| 国产精品成人在线| 亚洲国产精品成人久久小说| 国产永久视频网站| 国产黄色视频一区二区在线观看| 国产精品国产三级专区第一集| 丰满饥渴人妻一区二区三| 亚洲精品日韩av片在线观看| 亚洲av二区三区四区| 久久午夜福利片| 日日啪夜夜撸| 国产日韩欧美亚洲二区| 久久综合国产亚洲精品| 在线看a的网站| 狠狠精品人妻久久久久久综合| 男女边吃奶边做爰视频| 人人妻人人爽人人添夜夜欢视频 | 国产一级毛片在线| 观看av在线不卡| 久久精品国产亚洲av天美| 黑人高潮一二区| a级片在线免费高清观看视频| 久久人人爽av亚洲精品天堂| 国产成人freesex在线| 国产精品三级大全| 亚洲精品一二三| 久久人人爽av亚洲精品天堂| av专区在线播放| 日本爱情动作片www.在线观看| 欧美区成人在线视频| 亚洲国产精品成人久久小说| 国产精品偷伦视频观看了| 亚洲图色成人| 大码成人一级视频| 国产伦精品一区二区三区四那| 黄色怎么调成土黄色| 国产在线视频一区二区| 国产成人免费无遮挡视频| 高清午夜精品一区二区三区| 久久久久精品性色| 国产精品成人在线| av黄色大香蕉| 亚洲内射少妇av| 中文资源天堂在线| 热re99久久国产66热| 三级国产精品欧美在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲熟女精品中文字幕| 乱码一卡2卡4卡精品| 日本vs欧美在线观看视频 | 美女主播在线视频| av在线app专区| 欧美国产精品一级二级三级 | 美女福利国产在线| 高清黄色对白视频在线免费看 | 成人毛片a级毛片在线播放| 啦啦啦啦在线视频资源| 亚洲综合色惰| 国产在线男女| 91久久精品国产一区二区成人| 成年美女黄网站色视频大全免费 | 乱码一卡2卡4卡精品| 丰满乱子伦码专区| 五月开心婷婷网| av女优亚洲男人天堂| 欧美精品一区二区免费开放| 亚洲av在线观看美女高潮| 亚洲自偷自拍三级| 国产精品人妻久久久久久| 久久6这里有精品| 人人妻人人澡人人爽人人夜夜| 亚洲国产最新在线播放| 亚洲精华国产精华液的使用体验|