• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      比例施肥泵吸肥活塞結(jié)構(gòu)優(yōu)化與試驗(yàn)

      2022-02-15 01:10:34易中懿
      關(guān)鍵詞:流槽肥液吸液

      湯 攀,任 妮,易中懿,李 紅

      比例施肥泵吸肥活塞結(jié)構(gòu)優(yōu)化與試驗(yàn)

      湯 攀1,任 妮2,易中懿2,李 紅1

      (1. 江蘇大學(xué)流體機(jī)械工程技術(shù)研究中心,鎮(zhèn)江 212013;2. 江蘇省農(nóng)業(yè)科學(xué)院信息中心,南京 210014)

      為了提高比例施肥泵的注肥精度,該研究分析了吸液活塞的工作原理,采用二次回歸正交組合試驗(yàn)對(duì)關(guān)鍵結(jié)構(gòu)參數(shù)進(jìn)行優(yōu)化,以吸液活塞下端直徑、泄流槽寬度以及泄流槽深度為變量,以注入流量為響應(yīng)指標(biāo),建立多元回歸模型,并通過試驗(yàn)進(jìn)行驗(yàn)證。結(jié)果表明:在不同壓差和設(shè)定肥液注入比例下,比例施肥泵的實(shí)際肥液注入比例均低于設(shè)定肥液注入比例。壓差在0.15 MPa以下時(shí),隨著設(shè)定肥液注入比例的升高,實(shí)際肥液注入比例與設(shè)定肥液注入比例的偏差減小,采用較高的設(shè)定肥液注入比例有利于提高注肥精度。吸液活塞下端直徑、泄流槽寬度、泄流槽深度對(duì)注入流量都有顯著影響(<0.01)。注入流量隨著吸液活塞下端直徑和泄流槽深度的增大而先升高后降低,隨泄流槽寬度的增大而增大。對(duì)注入流量的影響順序從大到小依次為泄流槽寬度、泄流槽深度、吸液活塞下端直徑。優(yōu)化后的吸液活塞下端直徑為16.6 mm、泄流槽寬度為5.5 mm和泄流槽深度為3.7 mm,工作壓差為0.05、0.10和0.15 MPa時(shí)的注肥精度分別提高了3.33、1.67和7.29個(gè)百分點(diǎn)。研究結(jié)果可為比例施肥泵的優(yōu)化設(shè)計(jì)及實(shí)際應(yīng)用提供理論支持。

      肥料;試驗(yàn);水肥一體化;比例施肥泵;參數(shù)優(yōu)化;回歸方程

      0 引 言

      長(zhǎng)期以來,肥料的大量與不合理施用對(duì)自然生態(tài)環(huán)境造成了嚴(yán)重破壞,如土壤肥力破壞、土壤污染、面源污染等,嚴(yán)重影響了農(nóng)業(yè)的可持續(xù)發(fā)展[1-2]。因此,減少化肥使用量、合理施肥、提高化肥利用率已成為農(nóng)業(yè)可持續(xù)發(fā)展和保障糧食安全的重要手段[3-5]。水肥一體化是精確施肥與精確灌溉相結(jié)合的產(chǎn)物,在灌溉技術(shù)中占有重要地位[6-8]。施肥設(shè)備是水肥一體化系統(tǒng)的關(guān)鍵,其性能的優(yōu)劣直接影響灌溉與施肥的質(zhì)量。比例施肥泵是一種先進(jìn)的水肥一體化施肥裝備,其通過水壓驅(qū)動(dòng)內(nèi)部吸液活塞的運(yùn)動(dòng)來向管網(wǎng)中定量添加肥液,與其他施肥設(shè)備相比,比例施肥泵的施肥精度高,且肥液注入比例可在一定范圍內(nèi)進(jìn)行調(diào)節(jié)[9-10]。

      法國(guó)Dosatron公司早在1974就開發(fā)出了比例施肥泵,此后經(jīng)過不斷發(fā)展,目前已開發(fā)出了系列產(chǎn)品,可以滿足不同應(yīng)用場(chǎng)合的需求。國(guó)內(nèi)在施肥泵方面的研究較晚,李百軍等[11]從原理及試驗(yàn)上初步研制過水動(dòng)比例施肥泵,但沒有形成產(chǎn)品。王建東等[12]制造出施肥泵樣品并進(jìn)行了試驗(yàn)測(cè)試,雖然試驗(yàn)結(jié)果表明該施肥泵可以基本滿足微灌施肥的需要,但與國(guó)外產(chǎn)品相比仍有可改進(jìn)空間。針對(duì)水力性能研究,韓啟彪等[13]對(duì)一些典型產(chǎn)品進(jìn)行了性能測(cè)試,根據(jù)試驗(yàn)結(jié)果給出了典型產(chǎn)品的工作壓差和流量關(guān)系以及工作壓差的合理控制范圍等較重要參數(shù)。楊大森等[14-15]對(duì)3種比例施肥泵的水力性能進(jìn)行了試驗(yàn),提出了比例施肥泵驅(qū)動(dòng)腔和吸肥腔的容積效率計(jì)算公式。Tang等[16-17]研究了比例施肥泵注入液體的黏度對(duì)進(jìn)口流量和注入流量的綜合影響,并建立了進(jìn)口流量計(jì)算模型和注入流量計(jì)算模型。目前已有研究主要側(cè)重于單個(gè)運(yùn)行及結(jié)構(gòu)參數(shù)對(duì)某一水力性能的簡(jiǎn)單外特性試驗(yàn)研究,缺乏總體運(yùn)行與結(jié)構(gòu)參數(shù)對(duì)綜合水力性能及其影響機(jī)理的深入研究。隨著計(jì)算流體動(dòng)力學(xué)(Computational Fluid Dynamics, CFD)的發(fā)展,數(shù)值模擬已成為目前研究流體機(jī)械內(nèi)部流動(dòng)規(guī)律的主要手段之一。湯攀等[18]在比例施肥泵運(yùn)行機(jī)理分析的基礎(chǔ)上,采用流固耦合動(dòng)網(wǎng)格技術(shù)進(jìn)行數(shù)值模擬,分析其內(nèi)部流動(dòng)以及活塞受力。此外,王睿等[19]研究了施肥泵施肥比例與肥水比對(duì)過濾器堵塞的影響,提出了網(wǎng)式和疊片式過濾器的適宜肥液濃度。吳錫凱[20]指出為了提高施肥精度,在運(yùn)行時(shí)不要使用較大壓差與較小施肥比例配合,當(dāng)肥液注入比例設(shè)定在2%~4%時(shí),實(shí)際所需的施肥時(shí)間與設(shè)定時(shí)間相比增加了近1/4,這表明實(shí)際注入流量要小于理論注入流量,即比例施肥泵的注肥精度仍有待提高。

      目前國(guó)內(nèi)比例施肥泵的研發(fā)和制造與國(guó)外相比尚有較大差距,依然缺乏自主的設(shè)計(jì)方法和優(yōu)秀產(chǎn)品。吸肥活塞作為比例施肥泵實(shí)現(xiàn)肥液抽吸的關(guān)鍵水力部件,其結(jié)構(gòu)參數(shù)對(duì)比例施肥泵的注肥精度具有重要影響?;诖耍疚耐ㄟ^旋轉(zhuǎn)優(yōu)化試驗(yàn)設(shè)計(jì)方法對(duì)吸肥活塞的關(guān)鍵結(jié)構(gòu)參數(shù)進(jìn)行研究,建立各參數(shù)與性能指標(biāo)的關(guān)系式,分析各因素的影響規(guī)律,以期為比例施肥泵的性能研究及關(guān)鍵水力部件優(yōu)化設(shè)計(jì)提供參考。

      1 吸液活塞工作原理

      比例施肥泵的主要結(jié)構(gòu)及工作原理已有詳細(xì)介紹[15-16],如圖1所示,吸液活塞在往復(fù)運(yùn)動(dòng)過程中首先需要將肥液從外部吸入到吸液活塞腔,然后將其排出到驅(qū)動(dòng)活塞腔與驅(qū)動(dòng)液體混合進(jìn)而排出泵體。吸液活塞在吸液過程中需保持密封狀態(tài),在排液過程中需起到將吸肥腔與驅(qū)動(dòng)腔連通的作用。

      如圖2所示為吸液活塞二維結(jié)構(gòu)圖,活塞頭兩側(cè)開有泄流槽,由于單獨(dú)活塞頭無法完成密封與連通功能的切換,因此在吸液活塞頭中間加入滑動(dòng)密封圈來控制泄流槽的連通與關(guān)閉,其主要結(jié)構(gòu)參數(shù)為:吸液活塞下端直徑15.5 mm、泄流槽寬度4.5 mm及泄流槽深度3 mm。

      注:d為吸液活塞下端直徑,mm;b1為泄流槽寬度,mm;b2為泄流槽深度,mm。

      如圖3a所示,當(dāng)吸液活塞向上運(yùn)動(dòng)時(shí),由于密封圈與吸液活塞腔壁面存在摩擦,使密封圈與吸液活塞頭的下端緊貼,從而阻斷泄流槽與吸液活塞腔的連通,使吸液活塞腔在活塞向上運(yùn)動(dòng)過程中形成負(fù)壓將外部液體吸進(jìn)活塞腔。如圖3b所示,當(dāng)吸液活塞向下運(yùn)動(dòng)時(shí),由于密封圈與吸液活塞腔壁面存在摩擦,使密封圈與吸液活塞頭的上端緊貼,從而通過泄流槽將吸液活塞腔與驅(qū)動(dòng)活塞腔進(jìn)行連通。吸液活塞向下運(yùn)動(dòng)的同時(shí)將活塞腔里面的液體擠壓,通過泄流槽排進(jìn)驅(qū)動(dòng)活塞腔與工作液體混合。

      注:箭頭表示液體流動(dòng)方向。

      2 試驗(yàn)方案

      為了研究比例施肥泵效率和實(shí)際注入流量與運(yùn)行參數(shù)之間的關(guān)系,搭建了比例施肥泵性能測(cè)試試驗(yàn)臺(tái),如圖4所示,通過調(diào)節(jié)比例施肥泵前后的閥門來控制其工作壓差。試驗(yàn)在江蘇大學(xué)流體機(jī)械工程技術(shù)研究中心的室內(nèi)噴灌試驗(yàn)室進(jìn)行,采用意大利Dosatron公司的D25RE2比例施肥泵,其進(jìn)出口直徑19 mm,最大承受壓力為0.60 MPa,設(shè)定肥液注入比例0.2%~2.0%。測(cè)試系統(tǒng)主要由水泵、測(cè)量裝置和控制裝置組成。系統(tǒng)管路為鋼管,主管路直徑50 mm,旁路管直徑25 mm。離心泵流量10 m3/h,揚(yáng)程70 m。主管道流量通過電磁流量計(jì)測(cè)量,精確度為±0.3%。比例施肥泵吸液速度由精度為0.1 g的精密電子天平測(cè)量。在比例施肥泵前后以及主管上安裝3個(gè)精度為±0.4%的壓力表,試驗(yàn)參照國(guó)家標(biāo)準(zhǔn)GB/T 19792-2012《農(nóng)業(yè)灌溉裝備水動(dòng)化肥—農(nóng)藥注入泵》[21]進(jìn)行。

      試驗(yàn)主要測(cè)試比例施肥泵在不同壓差和不同設(shè)定肥液注入比例下的注入流量和進(jìn)口流量。根據(jù)比例施肥泵的最大承受壓力,試驗(yàn)共設(shè)置8個(gè)水平的壓差,分別為0.05、0.10、0.15、0.20、0.25、0.30、0.35、0.40 MPa,試驗(yàn)過程中將比例施肥泵的進(jìn)口壓力保持在0.60 MPa,然后調(diào)節(jié)出口壓力,使比例施肥泵所設(shè)定的不同壓差下工作。設(shè)定肥液注入比例共設(shè)置13個(gè)水平,為了更加精確地測(cè)量肥液注入比例較小時(shí)的水力性能,當(dāng)設(shè)定肥液注入比例在0.8%以下時(shí),間隔為0.1%,當(dāng)設(shè)定肥液注入比例大于0.8%時(shí),間隔為0.2%。比例施肥泵的進(jìn)口流量直接通過電磁流量計(jì)獲得,由于注入流量相對(duì)進(jìn)口流量較小,為了提高測(cè)試精度,通過如下公式計(jì)算:

      1.電機(jī) 2.水泵 3.壓力表1 4.閥門1 5.電磁流量計(jì) 6.閥門2 7.壓力表2 8.壓力表3 9.閥門3 10.比例施肥泵 11.儲(chǔ)液罐 12.精密電子天平 13.水池1 14.水池2

      式中為注入流量,kg/h;1為儲(chǔ)液罐的初始質(zhì)量,kg;2為測(cè)試結(jié)束時(shí)儲(chǔ)液罐的質(zhì)量,kg;為測(cè)試時(shí)間,h。在本研究中,每次測(cè)試的時(shí)間為0.5 h。試驗(yàn)過程中,改變測(cè)試工作壓差和設(shè)定肥液注入比例時(shí),需待比例施肥泵運(yùn)行穩(wěn)定后開始測(cè)量,每個(gè)測(cè)試點(diǎn)3次重復(fù),取均值為最終試驗(yàn)結(jié)果。

      3 結(jié)果與分析

      表1為比例施肥泵在不同設(shè)定肥液注入比例和壓差下的注入流量。理論上,隨著壓差的增大,活塞往復(fù)運(yùn)動(dòng)頻率升高,吸液活塞吸液速度會(huì)增加,然而從表1可以看出,隨著壓差的增大,比例施肥泵在不同設(shè)定肥液注入比例下的注入流量都呈現(xiàn)先增大后趨于平穩(wěn)或減小的趨勢(shì),表明壓差的增大不能有效增加比例施肥泵的吸液速度,即活塞運(yùn)動(dòng)頻率過高會(huì)降低比例施肥泵的性能,其工作壓差應(yīng)控制在0.20 MPa以內(nèi)。表2為比例施肥泵在不同設(shè)定肥液注入比例和壓差下的進(jìn)口流量,從表2可以看出,比例施肥泵的進(jìn)口流量隨著壓差的增大而增大;在同一壓差下,隨著設(shè)定肥液注入比例的升高有較小幅度的降低,可認(rèn)為設(shè)定肥液注入比例對(duì)進(jìn)口流量的影響較小,這與吳錫凱[20]的研究相吻合。

      表1 不同設(shè)定肥液注入比例和壓差下的注入流量

      注:s為設(shè)定肥液注入比例,%;表中數(shù)據(jù)為均值±標(biāo)準(zhǔn)差,下同。

      Note:sis the set injection ratio, %; data in the table are mean ± standard deviation, the same as below.

      表2 不同設(shè)定肥液注入比例和壓差下的進(jìn)口流量

      實(shí)際肥液注入比例為實(shí)際注入流量與進(jìn)口流量的比值,即:

      式中a為實(shí)際肥液注入比例,%;as為實(shí)際注入流量,kg/h;in為進(jìn)口流量,kg/h。

      通過公式(2)計(jì)算可得如圖5所示的比例施肥泵在不同壓差下的實(shí)際肥液注入比例和設(shè)定肥液注入比例的對(duì)比,從圖中可以看出,隨著壓差的增大,實(shí)際肥液注入比例與設(shè)定肥液注入比例的偏差越大;壓差在0.15 MPa以下時(shí),隨著設(shè)定肥液注入比例的升高,實(shí)際肥液注入比例與設(shè)定肥液注入比例的偏差越小,表明采用較高的設(shè)定肥液注入比例有利于提高比例施肥泵的注入精度。Tang等[18]在研究注入液體黏度對(duì)進(jìn)口流量和注入流量影響時(shí)也同樣指出比例施肥泵的最大工作壓差不應(yīng)過高。在不同的壓差和設(shè)定肥液注入比例下,比例施肥泵的實(shí)際肥液注入比例都低于設(shè)定肥液注入比例,一方面,這是由于比例施肥泵存在一定的容積損失,無法按照設(shè)定的肥液注入比例進(jìn)行抽吸;另一方面,吸液活塞是實(shí)現(xiàn)肥液抽吸的關(guān)鍵水力部件,其關(guān)鍵結(jié)構(gòu)參數(shù)對(duì)比例施肥泵的注入流量具有重要的影響。

      圖5 不同壓差下的實(shí)際肥液注入比例和設(shè)定肥液注入比例

      4 參數(shù)優(yōu)化

      根據(jù)吸液活塞工作原理可知吸液活塞的結(jié)構(gòu)尺寸對(duì)液體流動(dòng)產(chǎn)生主要影響的有吸液活塞下端直徑、泄流槽寬度1以及泄流槽深度2。因此,選取這3個(gè)主要參數(shù)探索吸肥活塞流道結(jié)構(gòu)尺寸對(duì)比例施肥泵施肥精度的影響規(guī)律。

      比例施肥泵的注入精度是最能體現(xiàn)其水力性能優(yōu)越的重要指標(biāo),當(dāng)比例施肥泵的注入精度較低,即實(shí)際注入流量與理論注入流量差別較大時(shí),會(huì)造成施肥時(shí)間過長(zhǎng)或施藥濃度達(dá)不到目標(biāo)設(shè)定值,進(jìn)而影響施肥或施藥效果。根據(jù)圖5,比例施肥泵的實(shí)際肥液注入比例都低于設(shè)定肥液注入比例,即不同設(shè)定肥液注入比例下的實(shí)際注入流量都小于理論注入流量。比例施肥泵在同一設(shè)定肥液注入比例及壓差下工作時(shí),注入流量越大,則注入精度越高,故選擇注入流量作為本文的試驗(yàn)指標(biāo)。根據(jù)表1和圖5,設(shè)定肥液注入比例越低,實(shí)際注入流量與理論注入流量的偏差越大,故試驗(yàn)中將比例施肥泵的工作參數(shù)定為設(shè)定肥液注入比例0.2%,工作壓差0.05 MPa,研究吸液活塞流道結(jié)構(gòu)參數(shù)對(duì)注入精度的影響規(guī)律。

      4.1 二次回歸正交組合試驗(yàn)

      試驗(yàn)采用二次回歸正交組合設(shè)計(jì)[22-24],根據(jù)前期試驗(yàn)確定比例施肥泵能正常工作時(shí)各參數(shù)的取值范圍為:吸液活塞下端直徑(12~18 mm)、泄流槽寬度(4~6 mm)和泄流槽深度(2~4 mm)。由于因素?cái)?shù)=3,則二水平試驗(yàn)次數(shù)c=23=8,取零水平試驗(yàn)次數(shù)0=1,根據(jù)二次回歸正交試驗(yàn)設(shè)計(jì)中星號(hào)臂長(zhǎng)度的計(jì)算公式

      計(jì)算得到=1.215。因素的上下星號(hào)臂水平為因素的上下限,零水平為上下限的算術(shù)平均值,變化間距Δ的計(jì)算公式為

      式中x為上星號(hào)臂水平,0為零水平。

      因素的上下水平計(jì)算公式分別為

      根據(jù)試驗(yàn)設(shè)計(jì)得到試驗(yàn)因素水平編碼表見表3。

      表3 試驗(yàn)因素水平編碼表

      根據(jù)因素水平編碼表的參數(shù)值及表4中的不同參數(shù)組合首先在Pro/E中完成三維造型,然后采用快速成型技術(shù)(Rapid Prototyping Manufacturing, RPM)加工,材料為ABS樹脂,活塞頭試件如圖6所示。試驗(yàn)測(cè)試結(jié)果見表4。

      圖6 吸液活塞頭試件

      將試驗(yàn)方案及結(jié)果導(dǎo)入Design-Expert 8.0.5.0,對(duì)試驗(yàn)數(shù)據(jù)處理和響應(yīng)面分析,采用回歸分析法建立三元二次回歸方程

      =0.084 25+0.094 167+0.263 751?0.022 752+

      0.008 3331+0.013 3332+0.052 512?

      0.005 8062?0.049 7512?0.069 7522(7)

      表4 二次回歸組合設(shè)計(jì)試驗(yàn)方案及試驗(yàn)結(jié)果

      注:為注入流量,kg·h-1。

      Note:is injection flowrate, kg·h-1.

      對(duì)試驗(yàn)結(jié)果進(jìn)行方差分析和顯著性檢驗(yàn),如表5所示。從表5中可以看出,注入流量模型的值小于0.01,注入流量回歸模型極顯著。模型決定系數(shù)2=0.957 4,表明模型能夠反映出95.74%的響應(yīng)值變化,失擬項(xiàng)不顯著,說明試驗(yàn)誤差小,試驗(yàn)各因素對(duì)注入流量影響的大小順序依次為泄流槽寬度、泄流槽深度、吸液活塞下端直徑;3個(gè)因素的交互作用對(duì)注入流量影響的大小順序依次為,泄流槽寬度×泄流槽深度、吸液活塞下端直徑×泄流槽深度、吸液活塞下端直徑×泄流槽寬度。顯著性分析結(jié)果表明所選試驗(yàn)因素都對(duì)注入流量有較為顯著的影響,且其各因素之間的相互交互作用同樣對(duì)注入流量具有顯著的影響,這表明本文所選擇的吸液活塞流道結(jié)構(gòu)參數(shù)都為關(guān)鍵水力結(jié)構(gòu)參數(shù)。

      表5 試驗(yàn)指標(biāo)方差分析表

      注:SS為離差平方和;df為自由度;MS為均方;*代表差異顯著(<0.05);**代表差異極顯著(<0.01)。

      Note: SS is sum of squares; df is degree of freedom; MS is mean squares; * is significant (<0.05); ** is very significant (<0.01).

      圖7為吸液活塞下端直徑與泄流槽寬度交互作用對(duì)注入流量的影響,從圖7可以看出,在同一泄流槽寬度下,注入流量隨著吸液活塞下端直徑的增大而先升高后降低,表明吸液活塞下端直徑在確定范圍內(nèi)存在一個(gè)最優(yōu)值。從吸液活塞結(jié)構(gòu)上分析,吸液活塞下端直徑過大或過小都不利于提高比例施肥泵的注入精度,這是由于當(dāng)吸液活塞下端直徑過大時(shí)會(huì)使吸液活塞與吸液活塞腔的間隙變小,增大被吸液體在排液過程中的阻力,從而使注入流量變?。幌喾?,當(dāng)吸液活塞下端直徑過小時(shí),吸液活塞與吸液活塞腔的間隙變大,造成吸液活塞下端對(duì)滑動(dòng)密封墊圈的支撐變小,導(dǎo)致吸液活塞在向上運(yùn)動(dòng)吸取液體時(shí)的密封性變差。吸液活塞下端直徑小于14 mm時(shí),注入流量同樣隨著泄流槽寬度的增大而先升高后降低,當(dāng)吸液活塞下端直徑在14~17 mm時(shí),注入流量隨著泄流槽寬度的增大而增大。

      圖7 吸液活塞下端直徑與泄流槽寬度交互作用對(duì)注入流量的影響

      圖8為吸液活塞下端直徑與泄流槽深度交互作用對(duì)注入流量的影響,從圖8可以看出,在設(shè)定范圍內(nèi),注入流量隨吸液活塞下端直徑與泄流槽深度的增大而先升高后降低。泄流槽深度過大或過小都會(huì)造成液體流經(jīng)吸液活塞的流道過大或過小,流道尺寸較大一方面會(huì)降低流體從吸液腔到混合器的流動(dòng)阻力,另一方面又會(huì)造成吸液活塞換向運(yùn)動(dòng)時(shí)(即由排液過程變?yōu)槲哼^程)殘留在泄流槽中的液體增多,從而影響注入流量。

      圖8 吸液活塞下端直徑與泄流槽深度交互作用對(duì)注入流量的影響

      圖9所示為泄流槽寬度與泄流槽深度交互作用對(duì)注入流量的影響,從圖中可以看出,此交互作用影響與吸液活塞下端直徑與泄流槽寬度交互作用對(duì)注入流量的影響類似。當(dāng)泄流槽深度小于2.5 mm時(shí),注入流量隨泄流槽寬度的增大基本保持不變,此時(shí)泄流槽寬度對(duì)注入流量的影響較??;當(dāng)泄流槽深度大于2.5 mm時(shí),注入流量隨泄流槽寬度的增大而升高。

      圖9 泄流槽寬度與泄流槽深度交互作用對(duì)注入流量的影響

      4.2 優(yōu)化求解及試驗(yàn)驗(yàn)證

      模型共有3個(gè)設(shè)計(jì)變量,是一個(gè)非線性數(shù)學(xué)規(guī)劃問題[25-26]。

      目標(biāo)函數(shù)如下

      根據(jù)式(8)目標(biāo)函數(shù)與約束條件進(jìn)行參數(shù)求解,得到如表6所示的吸液活塞流道結(jié)構(gòu)參數(shù)優(yōu)化結(jié)果及優(yōu)化前后的注入流量。從表6中可以看出,吸液活塞流道結(jié)構(gòu)參數(shù)優(yōu)化后的注入流量得到了較大幅度的提高,從優(yōu)化前的1.26 kg/h提高到了1.61 kg/h,提高幅度為27.78%。

      表6 優(yōu)化前后參數(shù)及性能對(duì)比

      對(duì)優(yōu)化結(jié)果進(jìn)行圓整,取吸液活塞下端直徑為16.6 mm、泄流槽寬度為5.5 mm和泄流槽深度為3.7 mm,并進(jìn)行驗(yàn)證試驗(yàn),測(cè)試優(yōu)化后比例施肥泵分別在壓差為0.05、0.10和0.15 MPa時(shí)不同設(shè)定肥液注入比例下的注入流量,并與原型比例施肥泵注入流量進(jìn)行對(duì)比,結(jié)果如表7所示。從表7中可以發(fā)現(xiàn),優(yōu)化后的注入流量在不同設(shè)定肥液注入比例和工作壓差下都較原型比例施肥泵有一定提高。特別是當(dāng)設(shè)定肥液注入比例較低時(shí),優(yōu)化后的實(shí)際注入流量更接近理論注入流量(進(jìn)口流量與設(shè)定肥液注入比例的乘積),同時(shí)實(shí)際注入流量與理論注入流量的偏差進(jìn)一步降低,在一定程度上提高了比例施肥泵的注入精度,從而有效提高了比例施肥泵的水力性能。當(dāng)工作壓差為0.15 MPa時(shí),優(yōu)化后的注入流量較優(yōu)化之前有一定的提高,且在較高設(shè)定肥液注入比例下的實(shí)際注入流量與理論注入流量的差距進(jìn)一步縮?。▔翰顬?.15 MPa和肥液注入比例為2.0%時(shí)的偏差從優(yōu)化之前的9.31%降低到優(yōu)化之后的4.24%),從而提高了比例施肥泵的正常工作壓差范圍,有利于比例施肥泵的實(shí)際應(yīng)用,因?yàn)楦呔鹊淖⒎时壤梢杂行Ы档退室惑w化系統(tǒng)肥液濃度的變化,從而提高施肥均勻性[27-29]。

      表7 不同壓差下比例施肥泵吸液活塞流道優(yōu)化前后的注入流量

      注:T.V為理論值;M.V為原型值;D.V1為原型值與理論值的偏差;O.V為優(yōu)化值;D.V2為優(yōu)化值與理論值的偏差。

      Note: T.V is the theoretical value; M.V is the prototype value; D.V1is the deviation between the prototype value and the theoretical value; O.V is the optimal value; D.V2is the deviation between the optimal value and the theoretical value.

      為進(jìn)一步分析吸肥活塞優(yōu)化前后比例施肥泵整體注肥精度的變化,將不同壓差下吸肥活塞流道結(jié)構(gòu)參數(shù)優(yōu)化前后比例施肥泵的實(shí)際肥液注入比例與對(duì)應(yīng)的設(shè)定肥液注入比例進(jìn)行對(duì)比,同時(shí)定義同一壓差下實(shí)際肥液注入比例與理論肥液注入比例比值的算術(shù)平均值為注肥精度,表示為

      式中為注肥精度,%;ti為比例施肥泵實(shí)際肥液注入比例,%;si為對(duì)應(yīng)的設(shè)定肥液注入比例,%;為同一壓差下的樣本數(shù)量;為同一壓差下的樣本編號(hào),1≤≤。通過計(jì)算得到如表8所示的對(duì)比結(jié)果,從表8中可以發(fā)現(xiàn),優(yōu)化后的實(shí)際肥液注入比例與設(shè)定肥液注入比例更接近,二者的偏差比優(yōu)化前的小。比例施肥泵在工作壓差為0.05、0.10和0.15 MPa時(shí)的注肥精度分別從82.74%、84.76%和65.29%提高到了86.07%、86.43%和72.58%,分別提高了3.33、1.67和7.29個(gè)百分點(diǎn)。

      表8 不同壓差下比例施肥泵吸液活塞流道優(yōu)化前后的注肥精度

      注:tm為原型比例施肥泵實(shí)際肥液注入比例,%;to為吸液活塞流道結(jié)構(gòu)參數(shù)優(yōu)化后比例施肥泵實(shí)際肥液注入比例,%;為注肥精度,%。

      Note:tmis the actual fertilizer injection rate of the prototype proportional fertilization pump, %;tois the actual fertilizer injection rate of the proportional fertilization pump after the structural parameters of the suction piston were optimized, %;is the fertilizer injection accuracy, %.

      5 結(jié) 論

      本研究通過二次回歸正交組合試驗(yàn)設(shè)計(jì)對(duì)比例施肥泵吸液活塞關(guān)鍵結(jié)構(gòu)參數(shù)進(jìn)行了優(yōu)化研究,得到的主要結(jié)論如下:

      1)在不同壓差和設(shè)定肥液注入比例下,比例施肥泵的實(shí)際肥液注入比例都低于設(shè)定肥液注入比例。壓差在0.15 MPa以下時(shí),隨著設(shè)定肥液注入比例的升高,實(shí)際肥液注入比例與設(shè)定肥液注入比例的偏差越小,采用較高的設(shè)定肥液注入比例有利于提高注肥精度。

      2)吸液活塞下端直徑、泄流槽寬度以及泄流槽深度都對(duì)注入流量有較為顯著的影響(<0.01);各因素在選取的水平范圍內(nèi)對(duì)注入流量的影響大小順序依次為泄流槽寬度、泄流槽深度、吸液活塞下端直徑。

      3)在同一泄流槽寬度下,注入流量隨著吸液活塞下端直徑的增大而先升高后降低。當(dāng)吸液活塞下端直徑小于14 mm時(shí),注入流量隨著泄流槽寬度的增大而先升高后降低,當(dāng)吸液活塞下端直徑在14~17 mm時(shí),注入流量隨著泄流槽寬度的增大而增大。注入流量隨著吸液活塞下端直徑與泄流槽深度的增大而先升高后降低。當(dāng)泄流槽深度小于2.5 mm時(shí),注入流量隨泄流槽寬度的增大基本保持不變;當(dāng)泄流槽深度大于2.5 mm時(shí),注入流量隨泄流槽寬度的增大而升高。

      4)優(yōu)化后的吸液活塞下端直徑為16.6 mm、泄流槽寬度為5.5 mm、泄流槽深度為3.7 mm。比例施肥泵在工作壓差為0.05、0.10和0.15 MPa時(shí)的注肥精度較優(yōu)化前分別提高了3.33、1.67和7.29個(gè)百分點(diǎn)。

      [1] 劉欽普,孫景榮,濮勵(lì)杰. 中國(guó)及歐美主要國(guó)家化肥施用強(qiáng)度與綜合效率比較研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(14):9-16.

      Liu Qinpu, Sun Jingrong, Pu Lijie. Comparative study on fertilization intensity and integrated efficiency in China and Euro-American major countries[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(14): 9-16. (in Chinese with English abstract)

      [2] 王晶晶,卓越,張顥暉,等. 柱塞式注肥泵的設(shè)計(jì)試驗(yàn)及精準(zhǔn)施肥應(yīng)用[J]. 排灌機(jī)械工程學(xué)報(bào),2022,40(1):22-29.

      Wang Jingjing, Zhuo Yue, Zhang Haohui, et al. Design and test of piston injection pump and its application in precise fertigation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(1): 22-29. (in Chinese with English abstract)

      [3] Chiaregato C G, Souza C F, Faez R. The fertilizer release into water and soil as the biodegradation process in the sustainable material enhancing the fertilizer efficiency[J]. Environmental Technology & Innovation, 2021, 22: 101417.

      [4] Xu M, Liu M J, Liu F, et al. A safe, high fertilizer-efficiency and economical approach based on a low-volume spraying UAV loaded with chelated-zinc fertilizer to produce zinc-biofortified rice grains[J]. Journal of Cleaner Production, 2021, 323: 129188.

      [5] Zhang M, Yao Y L, Tian Y H, et al. Increasing yield and N use efficiency with organic fertilizer in Chinese intensive rice cropping systems[J]. Field Crops Research, 2018, 227: 102-109.

      [6] 劉俊萍,朱興業(yè),袁壽其,等. 中國(guó)農(nóng)業(yè)節(jié)水噴微灌裝備研究進(jìn)展及發(fā)展趨勢(shì)[J]. 排灌機(jī)械工程學(xué)報(bào),2022,40(1):87-96.

      Liu Junping, Zhu Xingye, Yuan Shouqi, et al. Research and development trend of agricultural water-saving sprinkler and micro-irrigation equipment in China[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(1): 87-96. (in Chinese with English abstract)

      [7] 朱德蘭,阮漢鋮,吳普特,等. 水肥一體機(jī)肥液電導(dǎo)率遠(yuǎn)程模糊PID控制策略[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(1): 186-191.

      Zhu Delan, Ruan Hancheng, Wu Pute, et al. Strategy on remote fuzzy PID control for fertilizer liquid conductivity of water fertilizer integrated machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 186-191. (in Chinese with English abstract)

      [8] 王振華,陳瀟潔,呂德生,等. 水肥耦合對(duì)加氣滴灌加工番茄產(chǎn)量及品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(19):66-75.

      Wang Zhenhua, Chen Xiaojie, Lyu Desheng, et al. Effects of water and fertilizer coupling on the yield and quality of processing tomato under aerated drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 66-75. (in Chinese with English abstract)

      [9] 李紅,湯攀,陳超,等. 中國(guó)水肥一體化施肥設(shè)備研究現(xiàn)狀與發(fā)展趨勢(shì)[J]. 排灌機(jī)械工程學(xué)報(bào),2021,39(2):200-209.

      Li Hong, Tang Pan, Chen Chao, et al. Research status and development trend of fertilization equipment used in fertigation in China[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(2): 200-209. (in Chinese with English abstract)

      [10] Tang P, Li H, Issaka Z, et al. Effect of manifold layout and fertilizer solution concentration on fertilization and flushing times and uniformity of drip irrigation systems[J]. Agricultural Water Management, 2018, 200: 71-79.

      [11] 李百軍,王曉寧. 水動(dòng)施肥裝置的設(shè)計(jì)與試驗(yàn)[J]. 江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版),2002,23(2):9-12.

      Li Baijun, Wang Xiaoning. Design and experiment on hydrodynamic fertilizer injection unit[J]. Journal of Jiangsu University (Natural Science Edition), 2002, 23(2): 9-12. (in Chinese with English abstract)

      [12] 王建東,龔時(shí)宏,徐茂云,等. 微灌用水動(dòng)活塞式施肥泵研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(6):100-103.

      Wang Jiandong, Gong Shihong, Xu Maoyun, et al. Research and development of liquamatic piston fertilizer pump for micro-irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(6): 100-103. (in Chinese with English abstract)

      [13] 韓啟彪,吳文勇,劉洪祿,等. 三種水力驅(qū)動(dòng)比例式施肥泵吸肥性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(2):43-47.

      Han Qibiao, Wu Wenyong, Liu Honglu, et al. Experiment on fertilizer suction performance of three hydraulic driven pumps[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 43-47. (in Chinese with English abstract)

      [14] 楊大森. 水動(dòng)比例施肥泵運(yùn)動(dòng)分析及性能優(yōu)化[D]. 鎮(zhèn)江:江蘇大學(xué),2016.

      Yang Dasen. Water-powered Proportional Dosing Pump Movement Analysis and Performance Optimization[D]. Zhenjiang: Jiangsu University, 2016. (in Chinese with English abstract)

      [15] 駱志文,水動(dòng)比例注入泵性能參數(shù)研究[D]. 鎮(zhèn)江:江蘇大學(xué),2017.

      Luo Zhiwen. Research on Performance Parameters of Hydrodynamic Proportional Injection Pump[D]. Zhenjiang: Jiangsu University, 2017. (in Chinese with English abstract)

      [16] Tang P, Li H, Issaka Z, et al. Methodology to investigate the hydraulic characteristics of a water-powered piston type proportional injector used for agricultural chemigation[J]. Applied Engineering in Agriculture, 2018, 34(3): 545-553.

      [17] Tang P, Chen C, Li H. Investigation of hydraulic performance based on response surface methodology for an agricultural chemigation proportional injector[J]. Water, 2020, 12(11): 3155.

      [18] 湯攀,李紅,駱志文,等. 比例施肥泵驅(qū)動(dòng)活塞受力分析及內(nèi)部流動(dòng)模擬與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(23):93-100.

      Tang Pan, Li Hong, Luo Zhiwen, et al. Force analysis of drive piston and simulation and experiment of internal flow for proportional fertilizer pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 93-100. (in Chinese with English abstract)

      [19] 王睿,王文娥,胡笑濤,等. 微灌用施肥泵施肥比例與肥水比對(duì)過濾器堵塞的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(23):117-122.

      Wang Rui, Wang Wene, Hu Xiaotao, et al. Impact of fertilizer proportion and fertilizer-water ratio on clogging of filter by fertilizer pump in microirrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 117-122. (in Chinese with English abstract)

      [20] 吳錫凱. 滴灌系統(tǒng)水力驅(qū)動(dòng)式比例施肥裝置性能影響因素研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2019.

      Wu Xikai. Study on Influence Factors of Performance of Hydraulic Driven Proportional Fertilizer Device in Drip Irrigation System[D]. Yangling: Northwest A&F University, 2019. (in Chinese with English abstract)

      [21] 中國(guó)農(nóng)業(yè)機(jī)械化科學(xué)研究院. 農(nóng)業(yè)灌溉設(shè)備水動(dòng)化肥-農(nóng)藥注入泵:GB/T 19792-2012[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2012.

      [22] Li H C, Gao F. Investigation on optimising agricultural cultivator openers using quadratic orthogonal rotation regression[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2021, 71(9): 970-979.

      [23] Liu J J, Zhao T, Liu K, et al. Optimization of structure parameters in a coal pyrolysis filtration system based on CFD and quadratic regression orthogonal combination and a genetic algorithm[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 815-829.

      [24] 郭嘉明,吳旭東,林詩濤,等. 基于多參數(shù)耦合的蓄冷溫控箱冷板對(duì)流換熱參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(19):228-235.

      Guo Jiaming, Wu Xudong, Lin Shitao, et al. Parameter optimization on convective heat transfer of cold plate for cold storage temperature control box based on multi-parameter coupling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 228-235. (in Chinese with English abstract)

      [25] 張德勝,祁炳,趙睿杰,等. 海水淡化能量回收透平水力模型優(yōu)化設(shè)計(jì)[J]. 排灌機(jī)械工程學(xué)報(bào),2021,39(7):649-654.

      Zhang Desheng, Qi Bing, Zhao Ruijie, et al. Optimization design of hydraulic model for seawater desalination energy recovery turbine[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(7): 649-654. (in Chinese with English abstract)

      [26] 諸永定,肖千豪,吳靈輝,等. 基于回歸Kriging代理模型的吸油煙機(jī)用多翼離心風(fēng)機(jī)優(yōu)化[J]. 排灌機(jī)械工程學(xué)報(bào),2022,40(1):62-67.

      Zhu Yongding, Xiao Qianhao, Wu Linghui, et al. Optimization of multi-blade centrifugal fan for range hood based on regression Kriging surrogate model[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(1): 62-67. (in Chinese with English abstract)

      [27] Fan J L, Wu L F, Zhang F C, et al. Evaluation of drip fertigation uniformity affected by injector type, pressure difference and lateral layout[J]. Irrigation and Drainage, 2017, 66(4): 520-529.

      [28] 李紅,張乾坤,湯攀,等. 閥門調(diào)節(jié)式比例施肥泵性能分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(18):34-41.

      Li Hong, Zhang Qiankun, Tang Pan, et al. Performance analysis and test of valve-regulated proportional fertilization pumps[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(18): 34-41. (in Chinese with English abstract)

      [29] Li J S, Meng Y B, Li B. Field evaluation of fertigation uniformity as affected by injector type and manufacturing variability of emitters[J]. Irrigation Science, 2007, 25(2): 117-125.

      Optimization and experiment of the suction piston structure for proportional fertilization pump

      Tang Pan1, Ren Ni2, Yi Zhongyi2, Li Hong1

      (1.212013,;2.210014)

      Fertilization equipment is one of the most important equipment for the fertigation system in recent year. The performance of fertigation pump directly dominates the quality of irrigation and fertilization. Among them, the proportional fertilization pump can be expected to serve as an advanced fertilization equipment. Specifically, the water pressure can be used as the power source in the most areas without electricity. The fertilizer suction piston is one of the vital hydraulic components to promote the accuracy of fertilizer injection. Taking the suction piston as the study object, the quadratic regression orthogonal combination test was carried out to optimize the major structural parameters, according to the operating principle. The injection flow rate was utilized as the response index. A multiple regression model was established for the response index and factors. The variables included the diameter of the lower end of the suction piston, the width of the discharge groove, and the depth of the discharge groove. The results demonstrated that the actual injection ratio of the proportional fertilization pump was lower than the predicted injection ratio under various differential pressures and injection ratios. The difference between the actual and predicted injection ratio was reduced with an increase in the injection ratio, at the differential pressure of less than 0.15 MPa. It infers that a larger injection ratio was preferred to boost the fertilizer injection accuracy. The greatest factors were determined in the injection flow within the factor level range, including the width of the discharge groove, the depth of the discharge groove, and the diameter of the lower end of the suction piston(<0.01). The injection flow rate was significantly influenced by each of the three parameters individually, as well as significantly by their interactions. Once the discharge groove was the same width, the injection flow rate first rose and then fell, as the diameter of the lower end of the suction piston increased. The injection flow rate also increased initially before decreasing, as the width of the discharge groove expanded, when the lower end of the diameter in the suction piston was less than 14 mm. However, the injection flow rate rose, as the width of the discharge groove increased, when the diameter of the lower end of the suction piston was between 14 and 17 mm. The injection flow rate first increased and subsequently declined with the increase in the diameter of the lower end of the suction piston and the depth of the discharge groove. The injection flow rate essentially remained the constant, as the width of discharge groove increased, when the depth of the discharge groove was less than 2.5 mm. Only a little impact was found in the width of the discharge groove on the injection flow at this time. The injection flow rate increased with the discharge groove width, when the depth of the groove was larger than 2.5 mm. An optimal combination was achieved: The diameter of the lower end of the suction piston was 16.6 mm, the width of the discharge groove was 5.5 mm, and the depth of the discharge groove was 3.7 mm. The optimum structure parameters were also obtained for the suction piston flow channel. The structural parameters of the suction piston were optimized for the proportional fertilization pump under various injection ratios and differential pressures. The injection flow rate was higher than that of the prototype proportional fertilization pump, which further decreased the discrepancy between the actual and theoretical injection flow rate. The injection precision increased by 3.33, 1.67, and 7.29 percentage points at the differential pressure of 0.05, 0.10, and 0.15 MPa, respectively. Anyway, the injection precision of proportional fertilization pump was improved significantly to extend the typical working differential pressure range, indicating the better hydraulic performance of the device.

      fertilizer; experiment; fertigation; proportional fertilization pump; parameter optimization; regress equation

      10.11975/j.issn.1002-6819.2022.21.005

      S277.9+4

      A

      1002-6819(2022)-21-0033-09

      湯攀,任妮,易中懿,等. 比例施肥泵吸肥活塞結(jié)構(gòu)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(21):33-41.doi:10.11975/j.issn.1002-6819.2022.21.005 http://www.tcsae.org

      Tang Pan, Ren Ni, Yi Zhongyi, et al. Optimization and experiment of the suction piston structure for proportional fertilization pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(21): 33-41. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.21.005 http://www.tcsae.org

      2022-06-10

      2022-10-27

      江蘇省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(BE2021379);江蘇省現(xiàn)代農(nóng)機(jī)裝備與技術(shù)示范推廣項(xiàng)目(NJ2021-24)

      湯攀,博士,副研究員,研究方向?yàn)檗r(nóng)業(yè)灌溉及水肥一體化設(shè)備。Email:tangpan19@163.com

      猜你喜歡
      流槽肥液吸液
      混合肥液電導(dǎo)率預(yù)測(cè)模型構(gòu)建研究
      透析濃縮液吸管蓋聯(lián)合清洗槽改良在血透機(jī)吸液棒中的應(yīng)用
      肥液濃度對(duì)雙點(diǎn)源涌泉根灌土壤入滲特征及水分運(yùn)移的影響
      基于正交試驗(yàn)法下對(duì)噴灌均勻性影響因子的綜合分析
      新型梯級(jí)式浮沫抑除裝置在鹽水精制過程的應(yīng)用
      應(yīng)用電導(dǎo)法實(shí)時(shí)測(cè)定磷酸氫二銨和氯化鉀混合肥液濃度
      高爐出鐵場(chǎng)擺動(dòng)流槽優(yōu)化改造
      山西冶金(2020年4期)2020-09-17 18:10:48
      鋰在熱管反應(yīng)器吸液芯上毛細(xì)作用的理論分析
      預(yù)埋式電加熱流槽開發(fā)與測(cè)試
      Numerical simulation for solid-liquid phase change of metal sodium in combined wick
      定安县| 惠水县| 哈尔滨市| 清水县| 灵璧县| 罗江县| 高尔夫| 来凤县| 大竹县| 辉南县| 和静县| 如东县| 永善县| 泾源县| 南康市| 泰州市| 雷山县| 龙胜| 新泰市| 凯里市| 汉阴县| 曲阜市| 安远县| 湾仔区| 巴林左旗| 东丽区| 贡山| 都昌县| 陆良县| 陇西县| 鸡东县| 葵青区| 广河县| 西盟| 二连浩特市| 婺源县| 巢湖市| 梨树县| 尖扎县| 巴里| 晋城|