• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film

    2022-02-24 08:58:22XiangxianWang王向賢JianZhang張健JiankaiZhu朱劍凱ZaoYi易早andJianliYu余建立
    Chinese Physics B 2022年2期
    關(guān)鍵詞:張健

    Xiangxian Wang(王向賢) Jian Zhang(張健) Jiankai Zhu(朱劍凱) Zao Yi(易早) and Jianli Yu(余建立)

    1School of Science,Lanzhou University of Technology,Lanzhou 730050,China2Joint Laboratory for Extreme Conditions Matter Properties,Southwest University of Science and Technology,Mianyang 621010,China3School of Electronic Engineering,Chaohu University,Chaohu 238000,China

    We propose a hybrid structure of a nano-cube array coupled with multilayer full-dielectric thin films for refractive index sensing. In this structure,discrete states generated by two-dimensional grating and continuous states generated by a photonic crystal were coupled at a specific wavelength to form two Fano resonances. The transmission spectra and electric field distributions of the structure were obtained via the finite-difference time-domain method. We obtained the optimal structural parameters after optimizing the geometrical parameters.Under the optimal parameters,the figure of merit(FOM)values of the two Fano resonances reached 1.7×104 and 3.9×103,respectively. These results indicate that the proposed structure can achieve high FOM refractive index sensing,thus offering extensive application prospects in the biological and chemical fields.

    Keywords: Fano resonance,refractive index,nano-cube array,all-dielectric film

    1. Introduction

    Owing to rapid development in fabrication technology,complex micro-nano structures have become a reality in recent years. When the size of a material enters the micro-nano scale,it creates multiple new effects in micro-nano structures,such as those of the surface local field, quantum size, and macroscopic quantum tunneling. These effects cause micronano materials to exhibit specific mechanical,thermal,optical,electrical, and magnetic properties. Studying the novel properties of micro-nano materials is vital for optical physics research;it promotes the development of micro-nano materials.Micro-nano structures are widely used in photocatalysis,[1,2]photonic crystals,[3,4]surface-enhanced Raman scattering,[5,6]and solar absorption.[7–10]In addition,optical refractive index sensors[11–16]based on micro-nano structures have garnered significant interest as they can dynamically detect the refractive index of a sample by identifying the formant drift in the spectral curve.

    Spectral curves predominantly have a symmetric Lorentz line and an asymmetric Fano line.[17–19]However, when the sensing characteristics of the sensing structure are described using Lorentz lines, the optical characteristics are relatively simple, limiting the diversity of the sensing structures.[20]In contrast to the formation mode of Lorentz resonance,Fano resonance is caused by destructive interference between the discrete states and adjacent states. It has a very high slope spectrum and strong dispersion.[21,22]Strongly constrained electric fields can enhance the interaction between light and matter significantly. In addition, Fano resonance is very sensitive to geometric parameters and medium environment. Moreover,a multiple Fano resonance structure is advantageous when compared to a single Fano resonance structure as the former provides more reliable results than the latter and can even be implemented with multispectral sensors.[23]Therefore, its parallel processing capability offers tremendous advantages in chip-level optical circuits that can be applied in sensors and other fields.[24–28]

    This study proposed a hybrid structure coupled with multilayer full-dielectric thin films and a nano-cube array that can excite two independently tunable Fano resonances. We explain the cause of Fano resonance by using analogue simulation. In other words, upon satisfying the phase-matching condition,a guided-mode resonance that provides two narrowband discrete states was generated in the two-dimensional array grating structure. A photon gap was formed in the Fabry–Pérot-like(F–P-like)cavity containing periodic photonic crystals in order to establish a continuous state. Fano resonance is produced by destructive interference between the continuous state and the discrete state at a specific wavelength. In addition, the influence of geometrical variables on resonance behavior was discussed in detail,and suitable geometrical parameters for RI sensing were obtained. Finally, an important physical parameter, FOM, was used to describe the sensing performance of the structure.

    2. Structure model and analytical method

    Figure 1(a)presents a schematic diagram of the designed hybrid structure. The upper half is a cubic nano-array struc-ture, primarily comprising a two-dimensional grating layer and a waveguide layer. For the convenience of fabrication,SiO2dielectric material was used for the two-dimensional grating layer and waveguide layer. Figure 1(b) illustrates a top view of the structure in theX–Ysection.landware the length and width of the nano-cube,respectively;PxandPyrepresent the periods in thexandydirections, respectively. The lower half was the F–P-like cavity containing photonic crystals, composed of four layers of Si and TiO2. To ensure the optimal sensing performance of the structure,the thickness of the Si and TiO2layers was maintained at 36 nm and 65 nm,respectively. The bottom layer of the structure was manufactured using SiO2. The coupling layer consisted of MgF2and had a thickness ofdc=125 nm;it was located below the waveguide layer and adjacent to the Si layer. The refractive index of the selected MgF2is 1.37, which is lower than that of SiO2in the waveguide layer of 1.45. The refractive index of the analyte is also lower than that of the waveguide layer.Therefore, diffraction waves are generated in the waveguide layer when incident light passes through the cube array,resulting in total reflection. The thickness of MgF2simultaneously affects the transmission mode of incident light and the position of the formant,due to which MgF2is selected for the coupling layer.

    Fig. 1. Schematic diagram of the sensing structure. (a) Three-dimensional structure. (b)Top view of the structure in the X–Y section. Px and Py are the periods in two directions, whereas w and l are the width and length of the nano-cube,respectively.

    The preparation process of the micro-nano structure is as follows. The quartz substrate is first ultrasonically cleaned using acetone,isopropanol,and deionized water. Subsequently,four layers of 36 nm Si film and 65 nm TiO2film are deposited on the quartz substrate using the electron beam evaporation method. A 125 nm MgF2film and a 90 nm SiO2film are then deposited on the Si film through electron beam evaporation.Following this, a layer of photoresists is spin-coated on the SiO2film using pre-baking, exposure, development, hardening and other steps. A cubic aperture array with a length of 330 nm and a width of 280 nm is formed on the photoresist layer, and a layer of 100 nm SiO2film is deposited via electron beam evaporation. Lastly, the lift-off process is used to obtain the complete structure.

    Fano resonance requires a dark mode that provides a discrete state and a light mode that provides a continuous state.First,the formation of discrete states is discussed.The diffraction condition of the grating can be expressed as[29]

    wherePrepresents the period of the SiO2cubes,nrepresents the refractive index of the waveguide layer,θmrepresents the diffraction angle,θiis the incident angle,andλ0represents the wavelength in the vacuum. A part of the light incident on the surface of the grating is transmitted directly due to the diffraction effect of the grating, and moiety light is propagated in the waveguide layer. Some of the light trapped in the waveguide layer is diffracted outwards and destructively interferes with the transmitted part of the beam,creating a guided-mode resonance.[29–32]The guided mode resonance condition can be expressed as

    whereφ1andφ2represent the phase differences caused by the total reflection between the waveguide layer and the coupling layer interface and sensing interface, respectively. This ensures that most of the light is confined to the waveguide layer.Figure 3 illustrates the electric field distribution of the guided mode resonance,and it can be observed that the energy of the electric field is concentrated in the waveguide and coupling layers. Consequently, the energy of the transmitted light reduces drastically, forming a narrow-band discrete state in the transmission spectrum that provided a discrete state for the formation of Fano resonance,as shown in Fig.2(a).

    Fig.2. Transmission spectrum of structures. (a)Discrete state spectral lines of two-dimensional gratings. (b)Continuous state spectral lines of the F–Plike cavity.

    Fig. 3. The electrical field intensity profile at the X–Z plane for the guided mode resonance at (a) 646 nm and (b) 731 nm. The electrical field intensity profile at X–Y plane for the guided mode resonance at(c)646 nm and(d)731 nm.

    Fig.4. The spectral curve of Fano resonance.

    Next, the formation of a continuous state is discussed.When the incident light propagated in the waveguide layer,part of the light passed through the waveguide layer and entered the F–P-like cavity. According to the structural characteristics of the F–P-like cavity, total reflection will occur in the cavity. However, photon localization will occur when the light wave propagates to the periodic photonic crystal,forming a photon gap.[33]Therefore, a wider frequency band was obtained,providing a continuous state for the formation of Fano resonance,as demonstrated in Fig.2(b).

    Consequently, the Fano resonance in the transmission spectrum of the entire structure was formed due to the interference of the narrow-band discrete state and wide-band continuous state. Figure 4 illustrates the transmission spectrum,denoted by the solid black line. Evidently, two Fano resonances with asymmetrical ultra-sharp line shapes occurred in this structure,represented as Fano 1 and Fano 2,respectively.

    We also calculated the electric field distribution at resonance wavelengths under the two Fano resonances. Figures 5(a)and 5(b)respectively show the electric field distributions of Fano 1 and Fano 2 in theX–Zplane along the grating center.Most of the energy was concentrated at the top and surrounding area of the grating. Figures 5(c)and 5(d),depicting the electric field distribution in theY–Zplane,indicate that almost all the energy was concentrated in the waveguide layer and grating. In addition,according to Figs.5(e)and 5(f),there was a large amount of electric field energy on the surface of the waveguide layer. Therefore, the surface electric field in the sensing area could be enhanced to determine the sensing characteristics of the sample to be tested.

    Fig.5. Electric field distribution at the resonance wavelengths of(a),(c),(e)654 nm(Fano 1)and(b),(d),(f)671 nm(Fano 2).

    3. Structural optimization

    We further explored the influences of geometric parameters on transmission characteristics and used refractive index sensing to determine optimal sensing characteristics for the proposed structure. According to Eqs.(1)and(2),guided mode resonance is related to grating period, waveguide refractive index and waveguide thickness. Different diffraction waves are generated when the light wave is incident on the cubic nano-array with different periods,thus affecting the generation of Fano resonance.Figure 6(a)demonstrates the changes in the spectral lines in the discrete state asPxincreased from 540 nm to 580 nm in increments of 10 nm. The first peak of the discrete state shows a redshift with the increase ofPx,while the second peak is unchanged,indicating thatPxprimarily affected the first peak. Simultaneously,the spectral line Fano 2 in the coupling state had a noticeable redshift and a downward trend in its transmittance with the increase inPx, as depicted in Fig.6(b). Remarkably,the spectral lines of Fano 1 did not change with thePxperiod. In addition, the coupling of the continuous state and first peak of the discrete state induced the formation of Fano 2, which was primarily affected by thePxperiod.This also explains the reason for the formation of Fano 2 from another aspect. ThePxperiod was selected at 560 nm as it provided the most favorable peak transmission for the two Fano resonances.

    Fig. 6. Influences of 2D grating period Px on (a) discrete spectral line, (b)Fano resonance spectral line.

    Figure 7(a) shows the variations in the spectral lines in the discrete state whenPyincreased from 590 nm to 630 nm in increments of 10 nm. The second peak of the discrete state showed a redshift phenomenon with the increase inPy.In contrast,as reflected in the spectral line of Fano resonance,Fano 1 showed a redshift with the increase inPy,and the transmission first increased and then decreased. However,Fano 2 remained almost unchanged. This indicates that the coupling of the continuous state and second peak of the discrete state caused the resonance of Fano 1, withPyperiod being the primary influencing factor. In addition, the spectral lines indicate that the sensing performance was best whenPy=610 nm.

    The coupling layer forms the mutual layer of the twodimensional grating and F–P-like cavity. The thickness of MgF2affects the transmission mode of the incident light and the position of the formant. Figure 8 illustrates the influence of the coupling layer thicknessdcon the Fano spectral curves whendcincreased from 115 nm to 135 nm in increments of 5 nm. As seen from the figure,the coupling layer was essential for the Fano effect.Although both Fano peaks showed redshift,the redshift of Fano 1 was more pronounced when compared to Fano 2.In addition,asdcincreased,the transmittance for Fano 1 decreased, whereas that for Fano 2 first increased and then decreased.Upon noting these observations,the thickness of the coupling layer was selected asdc=125 nm to obtain better sensing performance.

    Fig. 7. Influences of 2D grating period Py on (a) discrete spectral line, (b)Fano resonance spectral line.

    Fig.8. Influence of coupling layer thickness dc on transmission spectrum.

    We also explored the influence of the dimensions of cube nanoparticles on the transmittance spectra. Figures 9(a)–9(c)display the variation in transmission spectrum with the increase in grating width(w),length(l),and height(h),respectively.

    Initially,both Fano 1 and Fano 2 reported a slight redshift whenwincreased from 260 nm to 300 nm in increments of 10 nm. The transmittance intensity of Fano 1 remained unchanged;however,Fano 2 exhibited a pronounced variation in the transmittance. The Fano 1 and Fano 2 transmittance was lowest atw=270 nm and highest atw=280 nm. Therefore,optimal grating width was selected as 280 nm. Thereafter,the length of the grating changed. According to Fig.9(b),the two Fano peaks showed no displacement changes with an increase in grating length. The only noteworthy observation was the peak transmittance of Fano 2 atl=330 nm;therefore,the optimal grating length was selected as 330 nm.

    Fig. 9. Effect of grating geometry parameter on Fano resonance spectral curve. (a)Effect of grating width on Fano resonance spectral curve. (b)Effect of grating length on Fano resonance spectral curve. (c)Effect of grating height on Fano resonance spectral curve.

    The grating height was increased fromh= 80 nm toh=120 nm in increments of 10 nm. According to Fig. 9(c),both Fano peaks showed a redshift phenomenon. The transmittance of Fano 1 and Fano 2 increased first and then decreased, but the change of Fano 2 was more prominent than that of Fano 1. In addition,Fano 2 had the best transmittance whenh=100 nm. Consequently, the optimal grating height was selected as 100 nm.

    4. Sensing performance of the structure

    The abovementioned observations indicate that changing the geometric parameters of the structure can effectively tune the resonance wavelength and spectrum line shape of the Fano resonance.Accordingly,the optimum geometric parameters of the hybrid structure to be used for refractive index(RI)sensing werePx=560 nm,Py=610 nm,dc=125 nm,w=280 nm,l=330 nm,andh=100 nm.

    These structural parameters could determine the sensing performance of the hybrid structure. Sensitivity (S) and figure of merit(FOM).[34,35]are essential parameters for sensors.They are calculated as follows:S=Δλ/Δn, where Δnrepresents the refractive index variation in the surrounding environment and Δλis the wavelength shift caused by the refractive index change;FOM=ΔT/(ΔnT),whereTis the transmission of the structure and ΔT/Δndenotes the transmission change at a fixed wavelength induced by a refractive index change.Figure 10(a)shows the changes in resonance wavelength corresponding to the analyte RI from 1.00 to 1.10 in incremental steps of 0.02. According to the figure, a slight increase in the refractive index led to a significant redshift in the entire spectrum. The above properties are described in detail in Fig. 10(b), which demonstrates the relationship between the resonance wavelength and analyte RI. Using the abovementioned formula,the sensitivity of Fano 1 and Fano 2 were calculated as 234.7 nm/RIU and 111.4 nm/RIU,respectively.Figure 10(c)presents the FOM curve.There is a maximum at each dip of the transmission spectrum. At refractive index 1.01,the values of FOM at 654 nm and 671 nm were 1.7×104and 3.9×103, respectively. The structure designed in this study can generate two mutually independent tunable Fano peaks,which can be used as a self-reference in sensing applications,unlike the subwavelength dielectric grating coupled photonic crystal structure proposed in reference[20]that can generate an ultra-high FOM value. Moreover, the proposed sensor structure is advantageous in terms of the maximum FOM value when compared to the sensing structures reported in previous studies.[24–28]Therefore, the proposed system is suitable for sensor applications. The resonance quality factorQ-factor is also a key parameter that affects the sensing performance. TheQ-factor of the resonances can be defined as the ratio between the wavelength of each resonance peak,λ,and the full-width at half-maximum(FWHM),i.e.Q=λ/FWHM. For the Fano resonances with asymmetric line shapes, the FWHM can be considered as the full width between the peak and the trough of each Fano resonance peak.[36]This study discusses the quality factors of two Fano resonances separately, as shown inFig.10(d). TheQ-factor of Fano 1 increases with the increase in the refractive index, and the maximumQ-factor can reach the value of 10592. TheQ-factor of Fano 2 also increases,but not as drastically as that of Fano 1. The maximumQ-factor of Fano 2 is 5374. TheQ-factor of the proposed structure is significantly improved when compared to those of previous studies.[36–39]Therefore,the proposed structure has good sensing performance and can be used as a gas sensor.

    Fig.10. (a)Transmission spectrum of the structure when the analyte RI varies from 1.0 to 1.1 in incremental intervals of 0.02. (b)The relationship between the resonance wavelength of Fano 1 and Fano 2 with analyte n. (c)FOM of Fano 1 and Fano 2. (d)Q-factor of Fano 1 and Fano 2.

    5. Conclusion

    We proposed a micro-nano-structure coupled with multilayer full-dielectric thin films and a nano-cube array that can excite two independently tunable Fano resonances to study gas sensors. Fano 1 and Fano 2 formant peaks were generated by coupling the discrete and continuous states at a particular wavelength. The effects of the structure parameters on the two Fano resonance spectra were analyzed by using numerical simulation,and the optimal structure parameters were obtained. The refractive index of the sample was dynamically detected at optimal structure parametersPx=560 nm,Py=610 nm,dc=125 nm,w=280 nm,l=330 nm, andh=100 nm. The FOM values of Fano 1 and Fano 2 were 1.7×104and 3.9×103,respectively. These results show that the proposed structure can achieve refractive index sensing with high FOM and has broad application prospects in biology and chemistry.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant No.61865008)and the Hong Liu First-Class Disciplines Development Program of Lanzhou University of Technology.

    猜你喜歡
    張健
    秋峪
    Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
    張健書(shū)法作品
    廣告大觀(2020年3期)2020-10-20 12:34:00
    張健書(shū)法作品
    青年生活(2020年23期)2020-08-04 10:27:43
    張健書(shū)法作品集
    青年生活(2019年14期)2019-10-21 02:04:56
    Transient air-water flow patterns in the vent tube in hydropower tailrace system simulated by 1-D-3-D coupling method *
    張健的傳銷邪教
    “勾股定理”之我見(jiàn)
    張?。禾剿骱厢t(yī)改惠民模式
    “意義”的問(wèn)題所在
    九九热线精品视视频播放| 成人av一区二区三区在线看| 可以在线观看的亚洲视频| 免费观看人在逋| 国产一区二区三区av在线 | 亚洲精品国产av成人精品 | 成人二区视频| 免费高清视频大片| 久久精品国产亚洲av香蕉五月| 无遮挡黄片免费观看| 亚洲一区二区三区色噜噜| a级毛色黄片| 亚洲无线在线观看| 午夜福利18| 色综合色国产| 亚洲美女搞黄在线观看 | 91狼人影院| 人妻制服诱惑在线中文字幕| 亚洲在线观看片| 午夜福利成人在线免费观看| 非洲黑人性xxxx精品又粗又长| 男人的好看免费观看在线视频| 观看美女的网站| 国产国拍精品亚洲av在线观看| 草草在线视频免费看| 精品国产三级普通话版| 日本与韩国留学比较| 黄色日韩在线| 国产极品精品免费视频能看的| av在线亚洲专区| 最新在线观看一区二区三区| 亚洲精品国产av成人精品 | 国产单亲对白刺激| av女优亚洲男人天堂| 亚洲va在线va天堂va国产| 91久久精品国产一区二区成人| 精品久久久久久久久av| 成年女人看的毛片在线观看| 亚洲一区高清亚洲精品| 听说在线观看完整版免费高清| 国产精品无大码| 人人妻人人澡人人爽人人夜夜 | 中国国产av一级| 99热只有精品国产| 精品一区二区免费观看| 久久精品久久久久久噜噜老黄 | 日韩亚洲欧美综合| 成人性生交大片免费视频hd| 91午夜精品亚洲一区二区三区| 内射极品少妇av片p| 直男gayav资源| 日本免费a在线| 日韩欧美精品v在线| 亚洲中文字幕日韩| 免费看光身美女| 午夜爱爱视频在线播放| 18禁在线播放成人免费| 九九热线精品视视频播放| 免费高清视频大片| 九色成人免费人妻av| 一进一出好大好爽视频| 久久精品国产自在天天线| ponron亚洲| 22中文网久久字幕| 国产 一区 欧美 日韩| 亚洲成a人片在线一区二区| 精品乱码久久久久久99久播| 看十八女毛片水多多多| 欧美高清性xxxxhd video| 乱系列少妇在线播放| 国产精品久久视频播放| 91久久精品国产一区二区三区| 亚洲一级一片aⅴ在线观看| 日韩av不卡免费在线播放| 精品少妇黑人巨大在线播放 | 欧美+亚洲+日韩+国产| 看片在线看免费视频| 欧美高清性xxxxhd video| 久久九九热精品免费| 午夜福利视频1000在线观看| 夜夜爽天天搞| 69人妻影院| 一夜夜www| 免费不卡的大黄色大毛片视频在线观看 | 国产精品无大码| 国产一级毛片七仙女欲春2| 国内精品久久久久精免费| 麻豆精品久久久久久蜜桃| 成人av在线播放网站| 亚洲人与动物交配视频| 可以在线观看的亚洲视频| 国产精品一区www在线观看| 日韩 亚洲 欧美在线| 桃色一区二区三区在线观看| 夜夜夜夜夜久久久久| 女人被狂操c到高潮| 一级毛片久久久久久久久女| АⅤ资源中文在线天堂| 成人毛片a级毛片在线播放| 波多野结衣巨乳人妻| 精品99又大又爽又粗少妇毛片| 乱系列少妇在线播放| 噜噜噜噜噜久久久久久91| 成人高潮视频无遮挡免费网站| 成人美女网站在线观看视频| 亚洲成a人片在线一区二区| 久久人人爽人人片av| 亚洲一区高清亚洲精品| 中文字幕精品亚洲无线码一区| 麻豆av噜噜一区二区三区| 国产v大片淫在线免费观看| 极品教师在线视频| 国产精品久久电影中文字幕| 亚洲一区高清亚洲精品| 久久久久国内视频| or卡值多少钱| 少妇的逼好多水| 亚洲美女黄片视频| 日韩精品中文字幕看吧| av专区在线播放| 久久久a久久爽久久v久久| 高清毛片免费看| 蜜桃亚洲精品一区二区三区| 久久久久性生活片| 麻豆国产av国片精品| 欧美一区二区亚洲| 国产精品一及| 久久久久久九九精品二区国产| 国内精品一区二区在线观看| 18+在线观看网站| 中文在线观看免费www的网站| 午夜久久久久精精品| 99精品在免费线老司机午夜| 国产精品人妻久久久久久| 国内精品一区二区在线观看| 色5月婷婷丁香| 观看免费一级毛片| 色视频www国产| 国产亚洲av嫩草精品影院| 欧美在线一区亚洲| 中国美女看黄片| 久久久久久国产a免费观看| 亚洲内射少妇av| 一级毛片久久久久久久久女| 美女内射精品一级片tv| 好男人在线观看高清免费视频| 精品欧美国产一区二区三| 免费在线观看成人毛片| 一卡2卡三卡四卡精品乱码亚洲| 真实男女啪啪啪动态图| a级一级毛片免费在线观看| 熟女人妻精品中文字幕| 97热精品久久久久久| 91久久精品国产一区二区三区| 国产一区二区在线观看日韩| 国产高清视频在线播放一区| 三级男女做爰猛烈吃奶摸视频| av专区在线播放| 久久久久精品国产欧美久久久| 免费看日本二区| 国产大屁股一区二区在线视频| 级片在线观看| 免费一级毛片在线播放高清视频| 亚洲精华国产精华液的使用体验 | 少妇人妻精品综合一区二区 | 色噜噜av男人的天堂激情| 悠悠久久av| 欧美日本视频| 欧美另类亚洲清纯唯美| 熟女人妻精品中文字幕| 久久国内精品自在自线图片| 禁无遮挡网站| 麻豆成人午夜福利视频| 国产真实乱freesex| 亚洲四区av| 日韩亚洲欧美综合| 国产精品久久久久久av不卡| 少妇裸体淫交视频免费看高清| 九九热线精品视视频播放| 欧美性猛交黑人性爽| 床上黄色一级片| 国产伦精品一区二区三区视频9| 免费不卡的大黄色大毛片视频在线观看 | 免费看a级黄色片| 男女下面进入的视频免费午夜| 亚洲自偷自拍三级| 欧美精品国产亚洲| 国产黄a三级三级三级人| 欧美日韩乱码在线| 老司机影院成人| 免费看av在线观看网站| 乱码一卡2卡4卡精品| 国产午夜精品论理片| 精品一区二区三区人妻视频| 国产高清激情床上av| 国产高清激情床上av| 丰满乱子伦码专区| 亚洲av熟女| 亚洲人与动物交配视频| 久久久久久久亚洲中文字幕| av专区在线播放| 国产av在哪里看| 欧美日韩乱码在线| 啦啦啦啦在线视频资源| 亚洲欧美成人精品一区二区| 久久亚洲国产成人精品v| 中国美白少妇内射xxxbb| 亚洲欧美日韩东京热| .国产精品久久| 久久欧美精品欧美久久欧美| 91久久精品电影网| 午夜福利18| 国产精品av视频在线免费观看| 97超视频在线观看视频| 亚洲最大成人av| 一夜夜www| av视频在线观看入口| 亚洲五月天丁香| 在线观看午夜福利视频| 午夜激情福利司机影院| 成年女人毛片免费观看观看9| 亚洲美女搞黄在线观看 | 亚洲精品一区av在线观看| 色在线成人网| 香蕉av资源在线| 亚洲精品国产成人久久av| 免费观看人在逋| 97热精品久久久久久| 日本黄色片子视频| 亚洲图色成人| 欧美最黄视频在线播放免费| 尾随美女入室| 亚洲成人av在线免费| 日韩av不卡免费在线播放| 成人毛片a级毛片在线播放| 久久欧美精品欧美久久欧美| 美女免费视频网站| 久久久久久国产a免费观看| 91精品国产九色| 少妇熟女aⅴ在线视频| 国产乱人视频| 在线观看av片永久免费下载| 男人舔奶头视频| 午夜福利18| 国产精品久久久久久精品电影| 国产成年人精品一区二区| 亚洲内射少妇av| 狠狠狠狠99中文字幕| 男人的好看免费观看在线视频| 久久精品夜色国产| 91精品国产九色| 国产激情偷乱视频一区二区| 大又大粗又爽又黄少妇毛片口| 国产精品野战在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 欧美+日韩+精品| 国产视频一区二区在线看| 欧美又色又爽又黄视频| 男人舔女人下体高潮全视频| 亚洲av免费在线观看| 天堂√8在线中文| 日韩av在线大香蕉| 精品一区二区三区视频在线| 久久久国产成人精品二区| 国产乱人偷精品视频| 赤兔流量卡办理| 国产又黄又爽又无遮挡在线| 精品久久久久久久久久免费视频| 蜜桃亚洲精品一区二区三区| 99热这里只有是精品50| 尾随美女入室| 精品熟女少妇av免费看| 欧美又色又爽又黄视频| 久久这里只有精品中国| 少妇的逼好多水| 一个人观看的视频www高清免费观看| 国产成人aa在线观看| 尤物成人国产欧美一区二区三区| 99热精品在线国产| 内射极品少妇av片p| 国产高清不卡午夜福利| 亚洲精品一区av在线观看| 黑人高潮一二区| 99国产精品一区二区蜜桃av| 亚洲国产色片| 国产精品久久电影中文字幕| 老女人水多毛片| 色综合色国产| 久久久午夜欧美精品| 国产蜜桃级精品一区二区三区| 我要看日韩黄色一级片| 午夜精品在线福利| 免费黄网站久久成人精品| 看片在线看免费视频| 国产视频一区二区在线看| 亚洲精品日韩av片在线观看| 长腿黑丝高跟| av卡一久久| 乱系列少妇在线播放| 极品教师在线视频| 免费人成在线观看视频色| 欧美不卡视频在线免费观看| 日韩人妻高清精品专区| 日日撸夜夜添| 最近视频中文字幕2019在线8| 毛片女人毛片| 精品国内亚洲2022精品成人| 波野结衣二区三区在线| 国产精品综合久久久久久久免费| 精华霜和精华液先用哪个| 国产一区二区在线av高清观看| 欧美成人a在线观看| 成年女人毛片免费观看观看9| 亚洲三级黄色毛片| 亚洲国产精品合色在线| 日韩av不卡免费在线播放| 国产精品国产三级国产av玫瑰| 在线观看美女被高潮喷水网站| 免费观看的影片在线观看| 老司机午夜福利在线观看视频| 欧美潮喷喷水| 国产高潮美女av| 婷婷六月久久综合丁香| 久久综合国产亚洲精品| 人妻少妇偷人精品九色| 内地一区二区视频在线| 欧美高清成人免费视频www| 亚洲电影在线观看av| 国产蜜桃级精品一区二区三区| 日韩成人av中文字幕在线观看 | 免费av不卡在线播放| 男人舔奶头视频| 久久中文看片网| 亚洲欧美日韩卡通动漫| 麻豆乱淫一区二区| 大又大粗又爽又黄少妇毛片口| 在线观看免费视频日本深夜| 一级a爱片免费观看的视频| 九色成人免费人妻av| 午夜亚洲福利在线播放| 可以在线观看的亚洲视频| 尤物成人国产欧美一区二区三区| 特级一级黄色大片| 又粗又爽又猛毛片免费看| 日本 av在线| 我要搜黄色片| 色视频www国产| 黄色欧美视频在线观看| 欧美激情久久久久久爽电影| 亚洲国产精品sss在线观看| 我要看日韩黄色一级片| 男人的好看免费观看在线视频| 国产精品久久久久久久久免| 成人一区二区视频在线观看| 国产精品一区二区性色av| 99久久中文字幕三级久久日本| 嫩草影院入口| 晚上一个人看的免费电影| 国产黄片美女视频| 国产一区二区在线观看日韩| 岛国在线免费视频观看| 中文字幕免费在线视频6| 日韩精品中文字幕看吧| 一区福利在线观看| а√天堂www在线а√下载| 国产精品伦人一区二区| 久久久久免费精品人妻一区二区| 日日啪夜夜撸| 久久久久久大精品| 免费观看人在逋| 欧美色欧美亚洲另类二区| 尾随美女入室| 国产一区二区三区av在线 | 亚洲国产欧洲综合997久久,| 久久午夜福利片| 久久久久精品国产欧美久久久| 黄色日韩在线| 丰满的人妻完整版| 一个人观看的视频www高清免费观看| 亚洲人成网站在线播| av天堂中文字幕网| 婷婷色综合大香蕉| 国产成人a∨麻豆精品| 别揉我奶头 嗯啊视频| 在线观看66精品国产| 亚洲自偷自拍三级| 在线免费十八禁| 赤兔流量卡办理| 亚洲精品一区av在线观看| 最近中文字幕高清免费大全6| 国产亚洲欧美98| 成人永久免费在线观看视频| 国产 一区精品| 国产高清有码在线观看视频| 国产精品永久免费网站| 99视频精品全部免费 在线| 美女黄网站色视频| 日韩亚洲欧美综合| 看片在线看免费视频| 一级a爱片免费观看的视频| 丝袜美腿在线中文| 国产精品久久电影中文字幕| 变态另类成人亚洲欧美熟女| 久久99热这里只有精品18| 插阴视频在线观看视频| 日韩大尺度精品在线看网址| 99久久久亚洲精品蜜臀av| 欧美性猛交╳xxx乱大交人| 如何舔出高潮| 在线观看免费视频日本深夜| 免费电影在线观看免费观看| 男人和女人高潮做爰伦理| 成人一区二区视频在线观看| 欧美又色又爽又黄视频| 日日干狠狠操夜夜爽| 欧美国产日韩亚洲一区| 九九在线视频观看精品| 免费高清视频大片| 非洲黑人性xxxx精品又粗又长| 欧美+日韩+精品| 日韩精品有码人妻一区| 亚洲精品久久国产高清桃花| 久久久精品大字幕| 97碰自拍视频| 一个人免费在线观看电影| 精品久久久久久久久久久久久| 成年女人看的毛片在线观看| 有码 亚洲区| 亚洲一区高清亚洲精品| 国产精品一区二区三区四区免费观看 | 亚洲av美国av| 可以在线观看的亚洲视频| 国产色爽女视频免费观看| 中文字幕av成人在线电影| 禁无遮挡网站| 国产精品野战在线观看| 亚洲一级一片aⅴ在线观看| 麻豆精品久久久久久蜜桃| 色5月婷婷丁香| 日韩一本色道免费dvd| 欧美性猛交╳xxx乱大交人| 中文字幕免费在线视频6| 欧美三级亚洲精品| 黄色视频,在线免费观看| 亚洲第一电影网av| 日本与韩国留学比较| 精品无人区乱码1区二区| 久久久久久九九精品二区国产| 国模一区二区三区四区视频| 中文资源天堂在线| 国产精品,欧美在线| 夜夜夜夜夜久久久久| 国产午夜福利久久久久久| 免费观看人在逋| 青春草视频在线免费观看| 日本三级黄在线观看| 亚洲最大成人中文| 国产高清视频在线观看网站| 日本撒尿小便嘘嘘汇集6| 亚洲色图av天堂| 色哟哟·www| 色av中文字幕| 91久久精品电影网| 少妇猛男粗大的猛烈进出视频 | 久久人人爽人人爽人人片va| 亚洲欧美精品综合久久99| 三级国产精品欧美在线观看| 狠狠狠狠99中文字幕| 亚洲精华国产精华液的使用体验 | 日韩精品有码人妻一区| 禁无遮挡网站| 国产精品99久久久久久久久| 国产精品久久久久久精品电影| 最近在线观看免费完整版| 欧美三级亚洲精品| 69人妻影院| 精品久久久久久久久久免费视频| 精品国产三级普通话版| 亚洲欧美精品综合久久99| 欧美日韩在线观看h| 欧美色欧美亚洲另类二区| 亚洲精品一区av在线观看| 亚洲成a人片在线一区二区| 午夜福利18| 欧美成人免费av一区二区三区| 男人舔女人下体高潮全视频| 亚洲人成网站在线播| 成人三级黄色视频| 国产麻豆成人av免费视频| 国产精品久久久久久久电影| av免费在线看不卡| 晚上一个人看的免费电影| 国产一区二区在线观看日韩| 午夜福利成人在线免费观看| 婷婷六月久久综合丁香| 99久久成人亚洲精品观看| 日韩欧美一区二区三区在线观看| 国产69精品久久久久777片| 精品熟女少妇av免费看| 我要搜黄色片| 免费观看精品视频网站| 日韩欧美一区二区三区在线观看| 高清毛片免费看| 日韩欧美精品v在线| 亚洲人与动物交配视频| 亚洲电影在线观看av| 亚洲婷婷狠狠爱综合网| 国产精品一区二区三区四区免费观看 | 禁无遮挡网站| 亚洲国产高清在线一区二区三| 嫩草影院新地址| 欧美一级a爱片免费观看看| 久久婷婷人人爽人人干人人爱| 国产中年淑女户外野战色| 成人特级黄色片久久久久久久| 一个人免费在线观看电影| 国产激情偷乱视频一区二区| 国产精品免费一区二区三区在线| 国产v大片淫在线免费观看| 日韩欧美 国产精品| 舔av片在线| 亚洲,欧美,日韩| 一夜夜www| 亚洲色图av天堂| 最后的刺客免费高清国语| 国产黄片美女视频| 亚洲va在线va天堂va国产| 国产极品精品免费视频能看的| 久久国内精品自在自线图片| 寂寞人妻少妇视频99o| 麻豆成人午夜福利视频| 中文字幕av成人在线电影| 久99久视频精品免费| 身体一侧抽搐| av女优亚洲男人天堂| 精品人妻偷拍中文字幕| 精品人妻熟女av久视频| 午夜福利高清视频| 国产黄色视频一区二区在线观看 | 卡戴珊不雅视频在线播放| 国产伦在线观看视频一区| 激情 狠狠 欧美| 日韩欧美在线乱码| 亚洲国产欧美人成| 黄色欧美视频在线观看| 国产精品一区二区三区四区久久| 国产 一区 欧美 日韩| 国产高清视频在线观看网站| 亚洲av中文字字幕乱码综合| 观看美女的网站| 久久久久免费精品人妻一区二区| 久久久久久大精品| 中文资源天堂在线| 免费观看人在逋| 人妻制服诱惑在线中文字幕| 色播亚洲综合网| 免费观看在线日韩| 国产真实乱freesex| 大型黄色视频在线免费观看| 亚洲国产精品成人久久小说 | 国产午夜精品论理片| 舔av片在线| 99久久精品一区二区三区| 久久久久久国产a免费观看| av专区在线播放| 九色成人免费人妻av| 亚洲欧美日韩高清在线视频| 国产欧美日韩精品亚洲av| 中文字幕av在线有码专区| 欧美一区二区国产精品久久精品| 看黄色毛片网站| 18禁在线播放成人免费| 国产亚洲精品综合一区在线观看| 国产高清视频在线观看网站| 国产在线精品亚洲第一网站| 美女黄网站色视频| 亚洲人成网站高清观看| 国产精品无大码| 老司机午夜福利在线观看视频| 欧美日韩在线观看h| 欧美中文日本在线观看视频| 午夜影院日韩av| 日本黄色片子视频| 国产午夜精品久久久久久一区二区三区 | 两个人视频免费观看高清| 在线a可以看的网站| 国产亚洲av嫩草精品影院| 欧美一区二区精品小视频在线| 欧美色视频一区免费| 成人毛片a级毛片在线播放| 成人性生交大片免费视频hd| 亚洲欧美精品自产自拍| 欧美色视频一区免费| 欧美一区二区精品小视频在线| 热99re8久久精品国产| 无遮挡黄片免费观看| 在线看三级毛片| 中文字幕av成人在线电影| 少妇人妻精品综合一区二区 | 国产 一区 欧美 日韩| 久久99热这里只有精品18| 欧美另类亚洲清纯唯美| 深夜a级毛片| 在线播放国产精品三级| 精品国产三级普通话版| 校园春色视频在线观看| 少妇被粗大猛烈的视频| 国产av一区在线观看免费| 久久精品国产亚洲av香蕉五月| 人妻久久中文字幕网| 99久久精品热视频| 欧洲精品卡2卡3卡4卡5卡区| 99久久精品热视频| 国产精品一区二区免费欧美| 国产av不卡久久|