• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      滹沱河地下水超采區(qū)人工回灌的水巖相互作用模擬

      2022-03-07 13:30耿新新張鳳娥朱譜成馬琳娜陳立郭春艷
      重慶大學學報(社會科學版) 2022年2期

      耿新新 張鳳娥 朱譜成 馬琳娜 陳立 郭春艷

      摘要:人工回灌條件下回灌水與地下水混合帶的水巖相互作用是決定地下水水質(zhì)演化和含水層發(fā)生化學堵塞的關(guān)鍵過程。為研究人工回灌對滹沱河地下水超采區(qū)水質(zhì)演化的影響,以石家莊市人工回灌場地為例,利用石津灌渠水作為回灌水源,通過室內(nèi)實驗結(jié)合反向水文地球化學模擬揭示回灌層位地表水與地下水混合帶的水

      關(guān)鍵詞:人工回灌;水巖反應;反向水文地球化學模擬;化學堵塞

      中圖分類號:P641.3

      文獻標志碼:A文章編號:1000-582X(2022)02-081-13

      Abstract: ? The water-rock interaction in the recharge water and groundwater mixed zone of aquifer under artificial recharge is the key process that determines the evolution of groundwater quality and leads to the chemical clogging of aquifer. To study the effect of artificial recharge on the groundwater quality evolution in the groundwater over-exploited area of the Hutuo River Basin, taking the groundwater artificia recharge site in Shijiazhuang as an example and using the Shijin irrigation canal water as the recharge water, we revealed the mechanism of water-rock interaction of surface water and groundwater mixed zone in the aquifer by carrying out the laboratory experiments and reverse hydrogeochemical simulation. The results show that the evolution characteristics of total dissolved solids(TDS) in the mixed zone firstly increase and then slowly decrease. The larger the proportion of surface water mixed with water is and the smaller the particle size of medium is, the larger the variation amplitude of TDS is. The change of main ion concentrations is controlled by mixing action, carbonic acid balance, dissolution-precipitation, cation exchange and nitrification. Among them, the concentrations of K+, Ca2+and SO2-4 are mainly controlled by dissolution-precipitation, the concentrations of Na+, Cl-, HCO-3, NO-3 are mainly controlled by mixing action, and the concentration of Mg2+ is mainly controlled by cation exchange. In the water-rock reaction, the dissolved minerals include anhydrite, albite, K-feldspar and halite, whereas the precipitated minerals included calcite, calcium montmorillonite and quartz. Moreover, in the aquifer with larger proportion of surface water and finer particle size of medium, the calcite precipitation is greater, indicating that there is a high risk of carbonate chemical clogging in the recharge aquifer with fine particle size when the surface water is the recharge source.

      Keywords: ?artificial recharge; water-rock reaction; inverse hydrochemical simulation; chemical clogging

      滹沱河淺層地下水超采區(qū)是華北平原地下水超采最強烈、地下水降落漏斗影響范圍最大的地區(qū)[1],嚴重制約了當?shù)亟?jīng)濟社會的可持續(xù)發(fā)展。利用回灌井人工補給地下水是提高地下水位、遏制地下水漏斗發(fā)展的有效手段[2,3]。再生水[4,5]、雨洪水[6,7]及地表水[8,9]均可作為回灌水源,但回灌水與地下水的水質(zhì)通常存在明顯差異,因此,人工回灌過程是否會對地下水環(huán)境質(zhì)量產(chǎn)生負面影響受到國內(nèi)外學者的廣泛關(guān)注。蘇小四等[10]利用TOUGHREACT模擬預測了人工回灌條件下地下水中多組分溶質(zhì)的遷移轉(zhuǎn)化過程,結(jié)果顯示地下水中化學成分變化趨勢主要受回灌水水質(zhì)及含水介質(zhì)礦物成分的影響。鄭凡東等[8]通過室內(nèi)實驗模擬了丹江口水庫水回灌北京西郊地下水的水巖作用過程,發(fā)現(xiàn)回灌過程中發(fā)生了明顯的硝化反應。李倩雯等[11]根據(jù)北京水源四廠的回灌試驗數(shù)據(jù),利用PHREEQC軟件進行了水質(zhì)混合模擬和水質(zhì)預測研究。回灌水源與地下水混合帶的水巖相互作用過程,不僅是影響地下水環(huán)境質(zhì)量的關(guān)鍵,還會導致含水層發(fā)生化學堵塞,從而影響回灌工程的運行效率,Pavelic等[12]利用再生水回灌時,發(fā)現(xiàn)含水層的化學堵塞主要受回灌水源水質(zhì)變化的影響。Vanderzalm等[13]研究城市雨洪水回灌碳酸鹽巖含水層的水文地球化學過程,指出回灌水源本身的反應活性是影響礦物溶解沉淀過程的主要因素。Medina等[14]指出地下水中含氧量的變化易導致回灌井壁周邊產(chǎn)生氫氧化鐵水垢形成堵塞。由于建造回灌井的耗資較大,在開展回灌之前采用室內(nèi)實驗和數(shù)值模擬對回灌過程的水質(zhì)演化進行預測,對維護和保障回灌工程安全高效地運行具有重要的指導意義。已往關(guān)于華北平原地下水回灌過程的研究多關(guān)注南水北調(diào)水對地下水水質(zhì)的影響[8,15],利用當?shù)氐乇硭毓嗟叵滤乃畮r相互作用研究較少,其機理尚不清楚。筆者以滹沱河地下水超采區(qū)人工回灌場地為例,通過室內(nèi)實驗結(jié)合反向水文地球化學模擬,分析回灌層位地表水與地下水混合帶的水巖相互作用機理,判別回灌過程是否存在化學堵塞風險,以期為安全高效地開展地下水人工回灌工程提供科學依據(jù)。

      1 實驗背景與實驗方法

      1.1 場地概況及含水層特征

      回灌試驗場地位于石家莊市藁城區(qū)梨園莊村東北角(圖1),東西寬約400 m,南北長約500 m,由4個回灌井和8個觀測井組成?;毓嗄繕撕畬訛槁裆?9~60 m處的砂層,產(chǎn)狀近水平,巖性由灰白色細砂、灰黃色中粗砂、灰黃色含礫粗砂及少量礫石組成,該含水層橫向延伸性好,富水性強,單井涌水量1 000~3 000 m3/d,具有較強的回灌潛力[16]。

      對回灌目標含水層的3段粒徑差異較大的巖芯進行了粒徑分析(表1),其中砂樣1中粗砂占比最大;砂樣2中中砂占比最大;砂樣3中細砂占比最大。將砂樣送至實驗室以5∶1的水土比浸泡并振蕩3 min后進行砂樣鹽分測定,全鹽量采用蒸干法測定,HCO-3采用雙指示劑中和法測定,Ca2+、Mg2+、Cl-、SO2-4采用滴定法測定,Na+、K+采用火焰光度計測定,pH采用點位法測定。各砂樣的可溶鹽測試結(jié)果顯示(表2),目標含水介質(zhì)的pH為8.18,其中砂樣1中的易溶鹽成分含量最少,砂樣3中的易溶鹽成分含量最多,并且3種砂樣中都呈現(xiàn)出Ca2+、SO2-4、HCO-3含量較多,Na+、Cl-、K+、Mg2+含量較少。通過X射線衍射和電鏡掃描分析確定含水介質(zhì)的主要礦物為石英、鉀長石、鈉長石、方解石、白云石、鹽巖、石膏、伊利石、高嶺石和蒙脫石。

      1.2 場地地下水與回灌水水質(zhì)特征

      回灌水源采用石津灌渠水,其來源為滹沱河上游的黃壁莊水庫。灌渠水和回灌場地地下水的水質(zhì)均良好,pH分別為7.55和8.18,均偏堿性,水化學類型分別為HCO3·SO4-Ca和SO4·HCO3-Ca型。對比灌渠水與地下水中的水化學測試結(jié)果(表3),灌渠水中的溶解氧(DO)、氧化還原電位(Eh)、Ca2+、Mg2+、HCO-3、NO-3和NH+4高于地下水,地下水的K+、Na+、Cl-和SO2-4質(zhì)量濃度高于灌渠水。

      3.6 討 論

      1)碳酸巖鹽沉淀是地下水人工回灌過程中導致化學堵塞的主要因素之一[23],但回灌過程中水化學演化導致的化學堵塞的時間尺度跨度非常大,因此通常采用水文地球化學模型開展礦物沉淀風險的評估[24,25]。對比表5中反向水文地球化學模擬結(jié)果可知,在相同介質(zhì)不同混合比條件下水中的方解石沉淀量大小依次均為3∶1>1∶1>1∶3,相同混合比水樣與不同粒徑的介質(zhì)作用后方解石沉淀量大小依次均為砂樣3>砂樣2>砂樣1,表明地表水占比越大、含水介質(zhì)粒徑越細方解石的沉淀量越高。由此可推斷在場地回灌過程中,長期利用當?shù)氐乇硭ㄟ^回灌井補給地下水時,在井壁附近粒徑較細的含水層位發(fā)生碳酸巖鹽類型化學堵塞的風險較高。

      2)本次模擬的回灌含水層中不同混合比水樣的SO2-4與NO-3質(zhì)量濃度均在水

      4 結(jié) 論

      1)隨著回灌層位混合帶水

      2)回灌含水層中主要離子濃度的變化特征受混合、碳酸平衡、溶解

      3)水

      參考文獻:

      [1] 田夏, 李亞松, 費宇紅, 等. 滹沱河超采區(qū)地下水硫酸鹽來源識別及遷移轉(zhuǎn)化[J]. 科學技術(shù)與工程, 2020, 20(7): 2583-2589.

      Tian X, Li Y S, Fei Y H, et al. Sulfate source identification, migration and transformation in the groundwater over-exploited area of the Hutuo River Basin[J]. Science Technology and Engineering, 2020, 20(7): 2583-2589. (in Chinese)

      [2] Zeng C F, Zheng G, Xue X L, et al. Combined recharge: a method to prevent ground settlement induced by redevelopment of recharge Wells[J]. Journal of Hydrology, 2019, 568: 1-11.

      [3] Hussain F, Hussain R, Wu R S, et al. Rainwater harvesting potential and utilization for artificial recharge of groundwater using recharge Wells[J]. Processes, 2019, 7(9): 623.

      [4] Yang Y, Zhang D S, Li B H, et al. Study on the influence of multi-source recharge on groundwater environment[J]. Environmental Engineering and Management Journal, 2019, 18(6): 1367-1378.

      [5] Li C Z, Li B H, Bi E P. Characteristics of hydrochemistry and nitrogen behavior under long-term managed aquifer recharge with reclaimed water: a case study in North China[J]. Science of the Total Environment, 2019, 668: 1030-1037.

      [6] 李賀強, 邢國平, 王超. 雨水回灌對深層承壓含水層水質(zhì)影響的模擬研究[J]. 水土保持通報, 2015, 35(1): 139-142.

      Li H Q, Xing G P, Wang C. Simulation study on effects of stormwater recharge on deep confined aquifer water quality[J]. Bulletin of Soil and Water Conservation, 2015, 35(1): 139-142. (in Chinese)

      [7] Hashemi H, Berndtsson R, Persson M. Artificial recharge by floodwater spreading estimated by water balances and groundwater modelling in arid Iran[J]. Hydrological Sciences Journal, 2015, 60(2): 336-350.

      [8] 鄭凡東, 劉立才, 楊牧騎, 等. 南水北調(diào)水源北京西郊回灌的水巖相互作用模擬[J]. 水文地質(zhì)工程地質(zhì), 2012(6): 22-28.

      Zheng F D, Liu L C, Yang M Q, et al. Simulation of water-rock interaction in the injection of water from the Southto-North Diversion Project to the aquifer in the western suburb of Beijing[J]. Hydrogeology & Engineering Geology, 2012(6): 22-28. (in Chinese)

      [9] Shi X Q, Jiang S M, Xu H X, et al. The effects of artificial recharge of groundwater on controlling land subsidence and its influence on groundwater quality and aquifer energy storage in Shanghai, China[J]. Environmental Earth Sciences, 2016, 75(3): 195.

      [10] 蘇小四, 谷小溪, 孟婧瑩, 等. 人工回灌條件下多組分溶質(zhì)的反應遷移模擬[J]. 吉林大學學報(地球科學版), 2012, 42(2): 485-491.

      Su X S, Gu X X, Meng J Y, et al. Fate and transptort simulation of multi-component solute under artificial recharge conditions[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(2): 485-491.(in Chinese)

      [11] 李倩雯, 邢國章, 孫紅福, 等. 北京西郊淺層地下水回灌的水質(zhì)預測[J]. 南水北調(diào)與水利科技, 2019, 17(3): 105-114, 115.

      Li Q W, Xing G Z, Sun H F, et al. Water quality prediction of shallow groundwater recharge in the western suburbs of Beijing[J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(3): 105-114, 115. (in Chinese)

      [12] Pavelic P, Dillon P J, Barry K E, et al. Water quality effects on clogging rates during reclaimed water ASR in a carbonate aquifer[J]. Journal of Hydrology, 2007, 334(1/2): 1-16.

      [13] Vanderzalm J L, Page D W, Barry K E, et al. A comparison of the geochemical response to different managed aquifer recharge operations for injection of urban stormwater in a carbonate aquifer[J]. Applied Geochemistry, 2010, 25(9): 1350-1360.

      [14] Medina D A B, Berg G A V D, Breukelen B M V, et al. Colmatao com hidróxidos de ferro de furos de abastecimento público que recebem recarga artificial: observaes hidrogeológicas e hidroquímicas na vizinhana e no interior do furo[J]. Hydrogeology Journal, 2013, 21(7): 1393-1412.

      [15] 劉立才, 鄭凡東, 李炳華, 等. 南水北調(diào)水源在密懷順水源地回灌的地下水水質(zhì)變化試驗[J]. 水文地質(zhì)工程地質(zhì), 2015, 42(4): 18-22, 55.

      Liu L C, Zheng F D, Li B H, et al. Experiment of groundwater quality change for simulating the South-to-North water into the Mihuaishun aquifer[J]. Hydrogeology and Engineering Geology, 2015, 42(4): 18-22, 55.(in Chinese)

      [16] 劉鵬飛, 劉少玉, 王哲, 等. 滹沱河沖洪積扇淺部回灌層井灌動態(tài)分析及回滲能力探究[J]. 科學技術(shù)與工程, 2016, 16(30): 27-31.

      Liu P F, Liu S Y, Wang Z, et al. Analysis of dynamics of the well recharge and exploration of the recharge infiltration ability in the shallow recharge layer of the alluvial fan of Hutuo river[J]. Science Technology and Engineering, 2016, 16(30): 27-31. (in Chinese)

      [17] Magaritz M, Nadler A, Koyumdjisky H, et al. The use of Na/Cl ratios to trace solute sources in a semiarid zone[J]. Water Resources Research, 1981, 17(3): 602-608.

      [18] Lakshmanan E, Kannan R, Senthil Kumar M. Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India[J]. Environmental Geosciences, 2003, 10(4): 157-166.

      [19] Kumar P, Singh C K, Saraswat C, et al. Evaluation of aqueous geochemistry of fluoride enriched groundwater: a case study of the Patan district, Gujarat, Western India[J]. Water Science, 2017, 31(2): 215-229.

      [20] Salcedo Sánchez E R, Garrido Hoyos S E, Esteller M V, et al. Hydrogeochemistry and water-rock interactions in the urban area of Puebla Valley aquifer (Mexico)[J]. Journal of Geochemical Exploration, 2017, 181: 219-235.

      [21] 趙蓓, 李玉仙, 王敏, 等. 北方某市供水管網(wǎng)對丹江口水適應性預測方法研究[J]. 給水排水, 2015, 41(4): 104-109.

      Zhao B, Li Y X, Wang M, et al. Study on the prediction method on the adaptability of the water supply network on the raw water from Danjiangkou reservoir in a North China City[J]. Water & Wastewater Engineering, 2015, 41(4): 104-109.(in Chinese)

      [22] 閆雅妮, 馬騰, 張俊文, 等. 地下水與地表水相互作用下硝態(tài)氮的遷移轉(zhuǎn)化實驗[J]. 地球科學, 2017, 42(5): 783-792.

      Yan Y N, Ma T, Zhang J W, et al. Experiment on migration and transformation of nitrate under interaction of groundwater and surface water[J]. Earth Science, 2017, 42(5): 783-792. (in Chinese)

      [23] Jeong H Y, Jun S C, Cheon J Y, et al. A review on clogging mechanisms and managements in aquifer storage and recovery (ASR) applications[J]. Geosciences Journal, 2018, 22(4): 667-679.

      [24] Du X Q, Wang Z J, Ye X Y. Potential clogging and dissolution effects during artificial recharge of groundwater using potable water[J]. Water Resources Management, 2013, 27(10): 3573-3583.

      [25] Lu Y, Du X Q, Yang Y S, et al. Compatibility assessment of recharge water with native groundwater using reactive hydrogeochemical modeling in Pinggu, Beijing[J]. CLEAN: Soil, Air, Water, 2014, 42(6): 722-730.

      [26] 鐘佐燊. 地下水有機污染控制及就地恢復技術(shù)研究進展(二)[J]. 水文地質(zhì)工程地質(zhì), 2001, 28(4):26-31.

      Zhong Z S. Research progress of groundwater organic pollution control and on-site restoration technology (II)[J]. Hydrogeology & Engineering Geology, 2001, 28(4):26-31. (in Chinese)

      [27] 李軍, 張翠云, 藍芙寧,等. 區(qū)域地下水不同深度微生物群落結(jié)構(gòu)特征[J]. 中國環(huán)境科學, 2019, 39(6): 2614-2623.

      Li J, Zhang C Y, Lan F N, et al. Structure characteristics of microbial community at different depths of groundwater[J]. China Environmental Science, 2019, 39(6): 2614-2623. (in Chinese)

      (編輯 鄭 潔)

      贞丰县| 上思县| 盘锦市| 泽库县| 定安县| 景谷| 柳林县| 永福县| 喀喇| 鹿泉市| 宝丰县| 丹凤县| 化德县| 广丰县| 梓潼县| 手游| 浑源县| 高密市| 钟山县| 新龙县| 神木县| 和平区| 来安县| 进贤县| 上犹县| 蕉岭县| 衡南县| 霍山县| 临安市| 白山市| 九江市| 新巴尔虎左旗| 缙云县| 三都| 和政县| 石柱| 峨眉山市| 韶关市| 扶沟县| 安新县| 射阳县|