樊瑞瑞 肖軍杰 蔣小珊 齊元?jiǎng)? 焦慧敏
摘要:目的—微液滴撞擊平面基底承印物表面的鋪展行為決定噴墨網(wǎng)點(diǎn)的大小,決定數(shù)字噴墨印刷成像的質(zhì)量,研究微液滴撞擊平面基底的鋪展行為對印刷行業(yè)具有重要意義。方法—研究Collings等人的液滴撞擊平面鋪展模型,基于能量平衡方程推導(dǎo)Collings模型表達(dá)式,得出最大鋪展直徑因數(shù)與韋伯?dāng)?shù)、接觸角的函數(shù)關(guān)系,而且將模型計(jì)算結(jié)果和試驗(yàn)數(shù)據(jù)進(jìn)行對比,分析總結(jié)Collings模型公式的適用范圍。結(jié)論—該模型在液滴直徑較小、撞擊速度較慢、液滴的韋伯?dāng)?shù)介于[15,115]、雷諾數(shù)遠(yuǎn)大于韋伯?dāng)?shù)的條件下,對液滴的最大鋪展直徑因數(shù)具有較好的預(yù)測能力;其它條件下,需要考慮更多的物性參數(shù)才能更準(zhǔn)確地預(yù)測微液滴最大鋪展直徑因數(shù)。
關(guān)鍵詞:Collings模型;液滴鋪展;最大鋪展直徑因數(shù);接觸角
中圖分類號(hào):TS853+.5;TS805.3 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1400 (2022) 01-0034-08
Prediction of Maximum Spreading Diameter Factor of Micro Droplets Based on Collings Model
FAN Rui-rui1, XIAO Jun-jie1,2,3,4, JIANG Xiao-shan1,3,4, QI Yuan-sheng1,2, JIAO Hui-min1(1.School of Mechanical and Electrical engineering, Beijing Institute of Graphic Communication, Beijing 102600, China; 2.Intelligent Manufacturing Laboratory, Beijing Institute of Graphic Communication, Beijing 102600, China; 3.Beijing Key Laboratory of Digital Printing Equipment, Beijing Institute of Graphic Communication, Beijing 102600, China; 4.Engineering Research Center of Printing Equipment of Beijing Universities, Beijing Institute of Graphic Communication, Beijing 102600, China)
Abstract: The spreading behavior of the droplets against the flat substrate determines the quality of the printing image, so the study of droplet spreading behavior is beneficial to improve the quality of printed products and is of great significance to the printing industry. In this paper, the Collings model to characterize the spreading behavior of droplets impacting on a plane substrate was investigated. It is deduced from the energy balance expression of Collings model, and the relationship among the maximum spreading diameter factor , the Weber number, and the contact angle is obtained and verified. The application scope of the formula is analyzed and summarized via the comparation between calculation results and the experimental data. Under the conditions of small droplet diameters, slow impact speeds, Weber number from 15 to 115, and Reynolds number much larger than Weber number, the model has a good prediction ability for the maximum spreading diameter factor of droplets; under other conditions, more physical parameters of liquids need to be considered to predict the maximum spreading diameter factor of droplets more accurately.
Key words: Collings model; micro droplet spreading; maximum spreading diameter factor; contact angle
微液滴撞擊固體表面的鋪展現(xiàn)象是現(xiàn)實(shí)生活中的常見現(xiàn)象,如噴墨打印、荷葉效應(yīng)、農(nóng)藥噴灑等,涉及多種應(yīng)用領(lǐng)域。在數(shù)字噴墨印刷領(lǐng)域,噴墨網(wǎng)點(diǎn)是構(gòu)成印刷圖像的最小結(jié)構(gòu)單元,即油墨在承印物表面依據(jù)圖像顏色的深淺形成大小不同或疏密程度不同的印刷墨點(diǎn);網(wǎng)點(diǎn)在轉(zhuǎn)移過程中的傳遞特性決定著印品質(zhì)量,如網(wǎng)點(diǎn)形狀、面積、立體形態(tài)、分布,在承印物表面的滲透、擴(kuò)散等屬性都會(huì)影響印品的質(zhì)量[1];其深層原因是,微墨滴著陸時(shí)發(fā)生的鋪展行為會(huì)引起物理網(wǎng)點(diǎn)的擴(kuò)大,網(wǎng)點(diǎn)擴(kuò)大一般發(fā)生在網(wǎng)點(diǎn)周邊,它決定著沉積成像的質(zhì)量。此外,在數(shù)碼印刷中,影響印刷質(zhì)量的還有其它因素,如溫度、紙張性能[2]、油墨性能[3]等。印刷紙張質(zhì)量的品質(zhì)直接決定著印品質(zhì)量的等級(jí)。E. W. Collings等人[4]研究了金屬液滴撞擊平面的鋪展特性,進(jìn)行了流體力學(xué)分析,但未推出顯式的液滴鋪展公式和使用條件。本文在對Colling模型詳細(xì)推導(dǎo)的基礎(chǔ)上,得出了(液滴最大鋪展直徑因數(shù))與韋伯?dāng)?shù)、接觸角的關(guān)系式,而且將計(jì)算結(jié)果和試驗(yàn)數(shù)據(jù)進(jìn)行對比驗(yàn)證,分析了Colling模型的預(yù)測能力和應(yīng)用范圍,為精準(zhǔn)研究微液滴的最大鋪展直徑因數(shù)奠定了基礎(chǔ),進(jìn)而提高印品質(zhì)量。
1 Collings理論模型
Collings模型研究的是金屬液滴在平面基底自由下落的濺射淬火凝固過程[4]。金屬液滴采用Nitronic 40,襯底材料分別采用銅、氧化鋁和熔融石英。在實(shí)驗(yàn)中,直徑為幾毫米的液滴從靜止?fàn)顟B(tài)下落入一根垂直安裝的長管中,管子抽成真空,或者充入各種壓力的惰性氣體。在真空環(huán)境下,用電子束熔煉金屬或合金導(dǎo)線的末端,產(chǎn)生液滴。
Collings實(shí)驗(yàn)假設(shè)球形液滴的初始密度為Q,初始半徑為r,最終液滴凝固為半徑為R的極薄圓柱形薄餅狀樣條,液滴初始下落高度為h,如圖1所示。
2 接觸角討論
接觸角是液滴撞擊鋪展實(shí)驗(yàn)中一個(gè)重要的參數(shù),它直接影響最終公式的精確度,因此,討論接觸角的取值具有十分重要的意義[4]。
接觸角基本理論描述的是接觸角和三個(gè)界面張力之間的聯(lián)系,是Young在1805年提出的Young方程[4]。接觸角是在氣液固三相交界處,γs1與γ1之間的夾角。當(dāng)達(dá)到平衡時(shí),有γs=γs1+γ1cosθ。
下圖為液滴撞擊到固體上達(dá)到平衡時(shí)的兩種形態(tài):
根據(jù)接觸線是否移動(dòng),可將接觸角分為靜態(tài)接觸角和動(dòng)態(tài)接觸角,實(shí)際上Young通過其理論定義的接觸角為靜態(tài)接觸角。
被潤濕的固體表面存在氣液固同時(shí)接觸的界面,稱為三相接觸線。當(dāng)三相接觸線靜止時(shí),即停止?jié)櫇駮r(shí),所測得的接觸角成為靜態(tài)接觸角。當(dāng)三相接觸線移動(dòng)時(shí)測得的接觸角稱為動(dòng)態(tài)接觸角。動(dòng)態(tài)接觸角隨接觸線的移動(dòng)速度變化而變化[5]。
接觸角的選擇有兩種情況。當(dāng)液體完全潤濕基底表面時(shí),接觸角為0°;當(dāng)液體沒有完全潤濕固體表面,也就是液體下落后撞擊在固體表面形成液滴時(shí),接觸角為非零[6]。
在理想情況下,當(dāng)氣體層將擴(kuò)散的液體與基底分離時(shí),液滴擴(kuò)散的邊緣曲線滿足Young方程,此時(shí)基于該方程可知,γs1與γ1之間的夾角為π,故可知接觸角θ的準(zhǔn)確值為π。Collings模型中,在真空條件下做的試驗(yàn),表面干凈、光滑、不易溶解,符合理想條件,故此時(shí)接觸角的取值為π。
3 Collings模型的試驗(yàn)數(shù)據(jù)驗(yàn)證
Collings模型中,由于初始球形液滴的表面能與勢能項(xiàng)相比通常很小,故被忽略;摩擦耗散的總能量也被忽略。但如果液滴下落過程中大量能量被耗散,或者如果測量的液滴半徑小于最大半徑Rmax,則得到的γ1的值將大大高于實(shí)際值,這些忽略的條件可能影響模型公式的預(yù)測精確度。
3.1 Collings模型及其試驗(yàn)數(shù)據(jù)對比
3.2 液滴撞擊水平壁面的最大鋪展因數(shù)試驗(yàn)數(shù)據(jù)[8-21]
為了研究Collings模型的泛化能力,采用公式(4)對文獻(xiàn)[7]的試驗(yàn)數(shù)據(jù)進(jìn)行對比,模型的預(yù)測結(jié)果及偏差率見表1。
2)農(nóng)藥/枸杞葉[14]中農(nóng)藥為稀釋800倍的4.5%高效氯氰菊酯乳油劑。試驗(yàn)中為使乳液穩(wěn)定,提高藥效,將4.5%高效氯氰菊酯乳油劑加水稀釋800倍,故液滴表面張力降低到36mN/m,從而導(dǎo)致液滴的韋伯?dāng)?shù)增大,雷諾數(shù)與韋伯?dāng)?shù)的比值過小,故Collings模型公式對農(nóng)藥最大鋪展直徑因數(shù)的預(yù)測精度較低。
4 結(jié)論
基于能量平衡關(guān)系式對Collings模型公式進(jìn)行了理論推導(dǎo),總結(jié)出了最大鋪展直徑因數(shù)與韋伯?dāng)?shù)、液滴/承印物表面形成的接觸角的關(guān)系式,對其代入試驗(yàn)數(shù)據(jù)進(jìn)行驗(yàn)證,并總結(jié)分析出其適用范圍:液滴直徑較小、撞擊速度較慢、液滴的韋伯?dāng)?shù)介于[15,115]、雷諾數(shù)遠(yuǎn)大于韋伯?dāng)?shù)的情況下,Collings模型預(yù)測精度較好。其它條件下,需要考慮雷諾數(shù)等更多的液體物性參數(shù)才能準(zhǔn)確表征液滴的鋪展行為;同時(shí),對液滴撞擊鋪展最大直徑因數(shù)的深入研究,為今后開展微液滴斜面、曲面鋪展特性研究奠定了理論基礎(chǔ)。
參考文獻(xiàn):
[1] 王茜,王琪.基于網(wǎng)點(diǎn)的噴墨印刷質(zhì)量評(píng)價(jià)體系研究[J].包裝工程,2015,36(21):115-121. WANG Qian, WANG Qi. Research on Quality Evaluation System of Inkjet Printing based on Dot[J]. Packaging Engineer ing,2015,36(21):115-121.
[2] 楊群.數(shù)碼印刷紙張性能對印刷質(zhì)量控制影響的研究[D].株洲:湖南工業(yè)大學(xué),2017. YANG Qun. Study on the Effect of Digital Printing Paper Properties on Printing Quality Control[D]. Zhu Zhou: Hunan University of Technology,2017.
[3] 林定武.數(shù)碼印刷電子液體油墨印刷性能的研究[D].西安:西安理工大學(xué),2008. LIN Ding Wu. Study on the Printing Performance of Electronic Liquid Ink in Digital Printing[D]. Xi An: Xian University of Technology,2008.
[4] COLLINGS E W, MARKWORTH A J, MCCOY J K, et al. Splat-quench Solidification of Freely Falling Liquid-metal Drops by Impact on a Planar Substrate[J]. Journal of Materials Science,1990,25(8):3677-3682.
[5] 陸軍軍.液滴撞擊過程的實(shí)驗(yàn)研究[D].上海:華東理工大學(xué),2008. LU Jun Jun. Experimental Study of Droplet Impingement Process[D]. Shang Hai: East China University of Science and Technology,2008.
[6] 丁曉峰,管蓉,陳沛智.接觸角測量技術(shù)的最新進(jìn)展[J].理化檢驗(yàn)(物理分冊),2008(02):84-89. DING Xiao Feng, GUAN Rong, CHEN Pei Zhi. The Latest Development of Contact Angle Measurement Technology[J]. Physical and Chemical Examination (Physical Volume),2008(02):84-89.
[7] 溫原,陳葉茹,唐宇航.液滴碰撞水平壁面的最大鋪展系數(shù)[J].力學(xué)研究,2019,8(1):1-12. WEN Yuan, CHEN Ye Ru, TANG Yu Hang. Maximum Spreading Coefficient of Droplet Impact Horizontal Wall[J]. Mechanics Research,2019,8(1):1-12.
[8] ROISMAN, ILIA V. Inertia Dominated Drop Collisions. II. An Analytical Solution of the Navier-Stokes Equations for a Spreading Viscous Film[J]. Physics of Fluids,2009,21(5):296.
[9] 石慶杰.微墨滴撞擊光滑陶瓷曲面的鋪展研究[D].北京:北京印刷學(xué)院,2019. SHI Qing Jie. Study on the Spreading of a Smooth Ceramic Surface Impacted by a Microink Droplet[D]. Bei Jing: Beijing Institute of Graphic Communication,2019.
[10] 周龍玉.液滴碰撞試驗(yàn)與數(shù)值研究[D].哈爾濱:哈爾濱工程大學(xué),2013. ZHOU Long Yu. Droplet Collision Test and Numerical Study[D]. Harbin: Harbin Engineering University,2013.
[11] 畢菲菲,郭亞麗,沈勝強(qiáng),等.液滴撞擊固體表面鋪展特性的實(shí)驗(yàn)研究[J].物理學(xué)報(bào),2012,61(18):295-300. BI Fei Fei, GUO Ya Li, SHEN Sheng Qiang, et al. Experimental Study on Spreading Characteristics of Liquid Droplet Impinging on Solid Surface[J]. Journal of Physics,2012,61(18):295-300.
[12] 楊寶海,朱恂,王宏,等.不同直徑液滴撞擊親水壁面動(dòng)態(tài)特性實(shí)驗(yàn)研究[J].工程熱物理學(xué)報(bào),2014,35(1):91-94. YANG Bao Hai, ZHU Xun, WANG Hong, et al. Experimental Study on Dynamic Characteristics of Droplets with Different Diameters Impinging on a Hydrophilic Wall[J]. Journal of Engineering Thermophysics,2014,35(1):91-94.
[13] 張帆,陳鳳,薄涵亮.不同親疏水表面液滴動(dòng)力學(xué)行為實(shí)驗(yàn)研究[J].原子能科學(xué)技術(shù),2015,49(1):288-293. ZHANG Fan, CHEN Feng, BO Han Liang. Experimental Study on Droplet Dynamics on Different Hydrophilic and Hydrophobic Surfaces[J]. Atomic Energy Science and Technology,2015,49(1):288-293.
[14] 崔潔,陸軍軍,陳雪莉.液滴高速撞擊固體板面過程的研究[J].化學(xué)反應(yīng)工程與工藝,2008,24(5):390-394. CUI Jie, LU Jun Jun, CHEN Xue Li. Study on the Process of Liquid Droplet Impinging on Solid Surface at High Speed[J]. Chemical Reaction Engineering and Process,2008,24(5):390-394.
[15] 謝亞星,慕松,陳星名.液滴撞擊枸杞葉片鋪展特性實(shí)驗(yàn)研究與仿真分析[J].中國農(nóng)機(jī)化學(xué)報(bào),2017,38(9):70-74. XIE Ya Xing, MU Song, CHEN Xing Ming. Experimental Study and Simulation Analysis on Spreading Characteristics of Lycium Barbarum Leaf Impacted by Droplet[J]. Chinese Journal of Agricultural Mechanization, 2017,38(9):70-74.
[16] 郭亞麗,陳桂影,沈勝強(qiáng),等.鹽水液滴撞擊固體壁面接觸特性實(shí)驗(yàn)研究[J].工程熱物理學(xué)報(bào),2015,36(7):1547-1552. GUO Ya Li, CHEN Gui Ying, SHEN Sheng Qiang, et al. Experimental Study on the Contact Characteristics of Saline Droplet Impinging on a Solid Wall [J]. Journal of Engineering Thermophysics,2015,36(7):1547-1552.
[17] 李長寧,夏振炎,李建軍,等.液滴撞擊有機(jī)玻璃固壁的實(shí)驗(yàn)和數(shù)值研究[J].工程塑料應(yīng)用,2014,42(3):39-43. LI Chang Ning, XIA Zhen Yan, LI Jian Jun, et al. Experimental and Numerical Study of Droplet Impinging on the Solid Wall of Plexiglass [J]. Application of Engineering Plastics,2014,42(3):39-43.
[18] FORD R E, FURMIDGE C G L. Impact and Spreading of Spray Drops on Foliar Surfaces. Society of Chemical Industry, London,1967,417-432.
[19] CHANDRA S, AVEDISIAN C T. On the Collision of a Droplet with a Solid Surface[C]. Proceedings: Mathematical and Physical Sciences,1991,432,13-41.
[20] BHOLA R, CHANDRA S. Freezing of Droplets Colliding with a Cold Surface[J]. ASME HTD, Vol.1995,306,181.
[21] PASANDIDEH-FARD M, QIAO Y M and CHANDRA S. Capillary Effects during Droplet Impact on a Solid Surface[J]. Physics of Fluids,1996,8(3):650-659.