易凱 付時(shí)雨
摘要:纖維素是一種來(lái)源廣泛的生物質(zhì)基材料,由于其生物相容性好、分子結(jié)構(gòu)中的羥基豐富、密度低等性質(zhì)而用于食品、醫(yī)藥、化學(xué)品等領(lǐng)域,備受科研工作者關(guān)注。近年來(lái),對(duì)纖維素進(jìn)行疏水化改性的研究使其應(yīng)用范圍進(jìn)一步拓寬。本文從纖維素構(gòu)建超疏水材料的表面能物質(zhì)、含微/納粗糙結(jié)構(gòu)的表面構(gòu)造等方面進(jìn)行了綜述,并歸納了該類(lèi)超疏水材料在油水分離、高效吸附、集水等領(lǐng)域的應(yīng)用。
關(guān)鍵詞:纖維素;超疏水材料;油水分離;高效吸附;集水
中圖分類(lèi)號(hào): TS721? 文獻(xiàn)標(biāo)識(shí)碼: A DOI:10.11980/j. issn.0254-508X.2022.02.017
Research Progress in Preparation and Application of Cellulose-based Superhydrophobic Materials
YI Kai? FUShiyu*
(State Key Lab ofPulp and Paper Engineering,South China University of Technology,Guangzhou,Guangdong Province,510640)
(*E-mail:shiyufu@scut. edu. cn)
Abstract:Cellulose is a kind of biomass based materials with a wide range of sources,which is used in food,medicine,chemicals,and oth? er fields due to its good biocompatibility,abundant hydroxyl groups in molecular structure,and low density. In recent years,the research on hydrophobic modification of cellulose has further broadened its application scope. In this paper,the surface energy materials and the surface structures containing micro/nano rough structures of cellulose-based superhydrophobic materials are reviewed,and the potential applications of superhydrophobic materials in oil-water separation,efficient adsorption,water collection,and other fields are summarized.
Key words:cellulose;superhydrophobic material;oil-water separation;efficient adsorption;water collection
纖維素是地球上來(lái)源廣泛的天然高分子聚合物,其廣泛存在于木材類(lèi)、棉類(lèi)、麻類(lèi)等植物中,結(jié)構(gòu)式如圖1所示,因具有可生物降解性、良好的生物相容性、可再生性、環(huán)境友好性和無(wú)毒性等優(yōu)點(diǎn),在各功能性材料領(lǐng)域受到越來(lái)越多的關(guān)注[1-2]。然而,由于纖維素結(jié)構(gòu)中含有豐富的羥基,賦予其極好的親水性,這使得纖維素在超疏水領(lǐng)域的應(yīng)用得到了極大的限制[3-4]。超疏水材料通常是指表面靜態(tài)水接觸角(WCA)大于150°、滾動(dòng)角(SA)小于10°的材料[5],對(duì)纖維素進(jìn)行疏水化改性,提高其在復(fù)合材料制備過(guò)程中的界面相容性,可為纖維素在更廣泛的應(yīng)用領(lǐng)域打開(kāi)新的大門(mén)[6]。目前,對(duì)纖維素進(jìn)行疏水化改性主要有兩種途徑:一是用低表面能物質(zhì)對(duì)纖維素進(jìn)行改性,低表面能物質(zhì)包括硅氧烷、氟代烷基硅烷、硬脂酸和一些合成聚合物;另一種方法是構(gòu)建含有微/納米粗糙結(jié)構(gòu)的疏水表面[7],方法包括蝕刻法[8]、靜電紡絲法[9]、氣相沉積法[10]、溶膠-凝膠法[11]、層層自組裝法[12]等。本文綜述了用低表面能物質(zhì)對(duì)纖維素進(jìn)行改性及構(gòu)建含微/納米粗糙結(jié)構(gòu)的疏水表面改性從而提高纖維素疏水性的研究現(xiàn)狀,并歸納了纖維素基超疏水材料在油水分離領(lǐng)域、吸附材料、功能性材料等領(lǐng)域的應(yīng)用,最后,指出了纖維素基超疏水材料面臨的主要挑戰(zhàn)及未來(lái)的發(fā)展方向。
1 纖維素疏水化改性方法
1.1 低表面能物質(zhì)改性
對(duì)纖維素進(jìn)行疏水化改性可通過(guò)低表面能物質(zhì)實(shí)現(xiàn),如聚二甲基硅氧烷(PDMS)[13]、氟代烷基硅烷[14]、硬脂酸[15]等被廣泛應(yīng)用于化學(xué)改性以制備超疏水表面,這些物質(zhì)可以明顯降低對(duì)水的表面親和力,后兩種化學(xué)物質(zhì)在化學(xué)吸附過(guò)程中會(huì)產(chǎn)生巨大的結(jié)合能,使其被牢固地吸附在基體表面。因此,利用低表面能物質(zhì)改性已成為超疏水材料制備的常用方法之一。
1.1.1 聚二甲基硅氧烷改性
聚二甲基硅氧烷(PDMS)是一種含硅的有機(jī)高分子聚合物,不僅具有光學(xué)性能佳、結(jié)構(gòu)彈性好、熱穩(wěn)定性良好等特性[16],還具有良好的生物相容性[17],在組織工程材料的制備、傳感器的開(kāi)發(fā)等領(lǐng)域得到廣泛應(yīng)用[18]。郝尚等人[19]先在棉織物表面涂覆聚二甲基硅氧烷(PDMS)來(lái)降低其表面能,然后利用鹽粒的沉積、溶解過(guò)程形成粗糙結(jié)構(gòu),測(cè)試結(jié)果表明,該棉織物的靜態(tài)水接觸角可達(dá)155.47°,滾動(dòng)角為5.5°,且經(jīng)強(qiáng)酸強(qiáng)堿溶液浸泡12 h后仍能保持較好的疏水性。此外,60℃水浴中浸泡60min后,其接觸角可保持為144.43°。Han 等人[20]在商業(yè)棉織物表面涂覆用 PDMS 層包裹的 SiO2納米顆粒,得到水接觸角大于160°并且經(jīng)過(guò)多次吸油-洗滌循環(huán)后疏水性幾乎沒(méi)有變化的超疏水織物,即使在用丙酮洗滌20次后,樣品依然保持超疏水性,該方法得到的超疏水織物有望應(yīng)用于油水分離領(lǐng)域。Foorginezhad等人[21]報(bào)道了采用噴涂法制備穩(wěn)定的非氟化超疏水棉的方法,先使用乙烯基三甲氧基硅烷(VTM)降低制備的TiO2溶膠表面能,然后在棉織物表面上噴灑TiO2溶膠,測(cè)試發(fā)現(xiàn)靜態(tài)水接觸角達(dá)134.1°,最后通過(guò)在棉織物表面覆蓋 PDMS層,可將靜態(tài)水接觸角提高至170°而滾動(dòng)角小于 10°。gzslib2022040416401.1.2 氟代烷基硅烷改性
研究表明氟代烷基硅烷比烷基硅烷具有更低的比表面能[22],其疏水化改性已經(jīng)吸引了大量研究人員的關(guān)注。Duan等人[23]采用溶膠-凝膠法制備了TiO2溶膠,將其負(fù)載在棉纖維表面,然后采用十二氟庚基丙基三甲氧基硅烷對(duì)棉織物進(jìn)行疏水化改性,改性后的棉織物水接觸角為158°,滾動(dòng)角小于14°。Leng等人[24]將草莓狀二氧化硅微粒負(fù)載在棉織物表面,再采用全氟烷基硅烷對(duì)棉纖維進(jìn)行疏水化表面改性得到具有超疏水、疏油性能的棉織物。Wang 等人[25]采用正硅酸乙酯和氟化烷基硅烷在氨水的條件下共縮合制備微粒硅溶膠,并將其涂覆在聚酯、羊毛和棉織物等不同基材表面上構(gòu)筑靜態(tài)接觸角大于170°,滾動(dòng)角小于7°的穩(wěn)定超疏水表面。
1.1.3 硬脂酸改性
硬脂酸(STA)是一種十八鏈飽和脂肪酸,其在自然界中廣泛存在,硬脂酸分子由其兩親性觸發(fā)形成自組裝單分子膜,可在親水表面的頂部產(chǎn)生疏水涂層[26]。由于其價(jià)格低、無(wú)毒、無(wú)害且優(yōu)異的疏水效果,硬脂酸作為疏水化改性劑已廣泛用于超疏水材料。Zhu 等人[27]通過(guò)簡(jiǎn)單的機(jī)械混合法制備出 CNC/ ZnO納米復(fù)合材料,然后用硬脂酸作為疏水改性劑獲得超疏水 CNC/ZnO納米復(fù)合材料。實(shí)驗(yàn)結(jié)果表明,硬脂酸的摩爾比對(duì)納米復(fù)合材料的表面潤(rùn)濕性有很大影響,當(dāng)硬脂酸的摩爾比為10%時(shí),CNC/ZnO納米復(fù)合材料的靜態(tài)水接觸角可以達(dá)到151.2°。Yin 等人[28]通過(guò)沉積 Fe2O3微/納米結(jié)構(gòu),然后將其浸入 STA 溶液中以降低其表面能來(lái)制造具有超疏水特性的改性纖維素膜。結(jié)果表明,該多功能纖維素膜具有優(yōu)異的超疏水和自清潔性能,不僅具有(167.2±2)°的高靜態(tài)水接觸角,還具有抗酸/堿溶液、抗磨損、抗高溫和隔熱性能。
1.2 構(gòu)建含微/納米粗糙結(jié)構(gòu)疏水表面
1.2.1 靜電紡絲法
靜電紡絲法是指在一個(gè)外加強(qiáng)電場(chǎng)的作用下,已配好的聚合物溶液或溶體在噴射孔進(jìn)行噴射,且在靜電場(chǎng)中拉伸后固化形成纖維的方法[29],通過(guò)該方法可得到高比表面積和孔隙率的紡絲,是生產(chǎn)具有微/納米級(jí)直徑纖維的常用方法,可構(gòu)造粗糙的疏水表面,進(jìn)一步加工可用于制備過(guò)濾的超疏水膜材料。鄧?yán)騕30]利用靜電紡絲法和浸漬法,先用聚偏二氟乙烯(PVDF)納米纖維素膜進(jìn)行氟硅烷溶液的前期浸漬處理,然后利用全氟十二烷基三氯硅烷(FTCS)和 PVDF 的親和作用附著在納米纖維素膜表面上,二者發(fā)生水解和自縮聚反應(yīng),經(jīng)過(guò)測(cè)量發(fā)現(xiàn)制備的納米纖維素膜水接觸角可高達(dá)(160.2±2.0)°。 Zhu等人[31]通過(guò)靜電紡絲技術(shù)成功制備了一種增強(qiáng)耐熱水性能的超疏水納米纖維素膜。測(cè)試結(jié)果表明,經(jīng)氟化處理得到的納米纖維素膜具有良好的超疏水性,其靜態(tài)水接觸角(WCA)為 152°,耐熱水(85℃)性能良好。Ma 等人[32]采用聚酰胺酸(PAA)和醋酸纖維素(CA)為原料,通過(guò)靜電紡絲技術(shù)得到了核-鞘結(jié)構(gòu)的聚酰亞胺(PI)-醋酸纖維素膜,其中由PAA 得到 PI過(guò)程如圖2所示,進(jìn)一步與重氟苯并噁嗪和納米二氧化硅復(fù)合制備了水接觸角高達(dá)162°、油接觸角接近于0°的表面潤(rùn)濕性獨(dú)立、高柔性纖維素膜。
1.2.2 化學(xué)氣相沉積法
化學(xué)氣相沉積是指將2種或2種以上氣相物質(zhì)在氣相或氣固界面由于發(fā)生化學(xué)反應(yīng)而生成所需固體薄膜的一項(xiàng)技術(shù),該方法可用于構(gòu)造粗糙的表面、制備微/納米顆粒,或者在粗糙的表面沉積一層具有疏水效應(yīng)的薄膜[33],因此廣泛應(yīng)用于金屬材料[34]、石墨烯材料[35]、超疏水材料[36]等的制備。Zheng 等人[37] 使用環(huán)保的冷凍干燥過(guò)程制備交聯(lián)聚乙烯醇(PVA)-纖維素納米纖絲(CNF)氣凝膠,并且通過(guò)工藝控制其粗糙結(jié)構(gòu),然后通過(guò)簡(jiǎn)單的熱化學(xué)氣相沉積工藝用甲基三氯硅烷處理后得到超疏水 PVA/ CNF 氣凝膠。該氣凝膠具有相當(dāng)于其自身干質(zhì)量44~96倍的油或有機(jī)溶劑吸收能力,也顯示出 Pb2+、 Hg2+、Cu2+、Ag+幾種類(lèi)型的重金屬離子的顯著清除能力及卓越的彈性和機(jī)械耐久性。Yang 等人[38]使用聚二烯丙基二甲基氯化銨和二氧化硅顆粒進(jìn)行多層沉積以構(gòu)造表面粗糙結(jié)構(gòu),進(jìn)而順利制備超疏水紙張,然后氟化處理,經(jīng)測(cè)試發(fā)現(xiàn)該紙張水接觸角大于150°,滾動(dòng)角小于5°,此外,除具有較高的抗水性能外,該紙制品在較高的相對(duì)濕度條件下也能保持較高的抗拉強(qiáng)度,對(duì)細(xì)菌污染也有很高的抵抗力。Lu 等人[39]通過(guò)化學(xué)氣相沉積法制備出水接觸角高達(dá)153.3°的復(fù)合納米纖維素氣凝膠( NFA),制備過(guò)程如圖3所示,復(fù)合 NFA 的表面粗糙,且硅氧烷顆粒肉眼可見(jiàn)。朱兆棟等人[40]以噴霧干燥得到的纖維素微納顆粒(CNCmp)為原料,經(jīng)化學(xué)氣相沉積法進(jìn)行硅烷化改性,進(jìn)而配制超疏水涂料,將其噴涂于濾紙表面制備出水接觸角大于150°的超疏水濾紙。
1.2.3 溶膠-凝膠法
溶膠-凝膠法是一種首先把金屬醇鹽、有機(jī)物前體等化合物水解為溶膠,然后再讓其發(fā)生縮合反應(yīng),最終形成穩(wěn)定凝膠的方法[41]。Deng 等人[42]利用溶膠- 凝膠法制備了大型柔性超疏水性聚酯棉織物,該棉織物涂層的水接觸角大于160°,滾動(dòng)角小于5°,經(jīng)過(guò)機(jī)械洗滌或浸入強(qiáng)酸、強(qiáng)堿中100 h,擦洗400次后仍保持疏水性。計(jì)強(qiáng)[43]利用溶膠-凝膠法制備了靜態(tài)水接觸角最大為156°,滾動(dòng)角為10°的超疏水棉織物涂層,測(cè)試發(fā)現(xiàn)該超疏水棉織物涂層有著良好的化學(xué)和機(jī)械穩(wěn)定性,此外,該涂層可有效分離正十二烷/水等油水混合物,分離效率高達(dá)96%以上,盡管經(jīng)過(guò)10次循環(huán)仍能保持94%的分離效率。Yuan等人[44]以劍麻纖維素為主要原料,利用溶膠-凝膠工藝成功制備了可壓縮、超疏水、多功能的分層生物質(zhì)碳@SiO2@MnO2氣凝膠(HBCSM 氣凝膠),如圖4所示,該 HBCSM氣凝膠具有出色的超疏水性,水接觸角為155°,對(duì)不同的油和有機(jī)溶劑顯示出非常高的吸收能力,對(duì) CCl4的最大吸收容量為120.4 g/g。gzslib2022040416401.3 其他方法
除了上述方法,噴涂法、浸漬法、水熱法以及刻蝕法等也可用來(lái)制備纖維素基超疏水材料,Huang等人[45]采用一鍋法水熱反應(yīng)在棉織物表面制備了 TiO2顆粒,此外,通過(guò)氟代烷基硅烷改性賦予棉織物超疏水及紫外屏蔽功能,該織物表面具有優(yōu)異的超疏水性,接觸角為160°,滾動(dòng)角低于10°。Zha等人[46]一方面先通過(guò)直接氟化碳納米纖維素得到氟化納米纖維素(F-CNF),另一方面氟化聚合物如聚偏氟乙烯(PVDF)和疏水聚合物如聚苯乙烯(PS)分別與氟化納米纖維素來(lái)制備納米復(fù)合材料,采用飛秒激光燒蝕后的 F-CNF/PVDF 納米復(fù)合材料和 F- CNF/PS 納米復(fù)合材料獲得了穩(wěn)定的超疏水性能,水接觸角分別為157°和155°,其中激光燒蝕作用的機(jī)理為通過(guò)增加材料表面的粗糙度從而提高其疏水性能。
2 纖維素基超疏水材料的應(yīng)用
2.1 油水分離領(lǐng)域
通過(guò)在紙張或棉織物等纖維素基原料表面涂覆一層具有超疏水特性的物質(zhì),使其具有良好的超疏水性能,從而應(yīng)用于油水分離等領(lǐng)域。Ahuja 等人[47]利用溶膠-凝膠法將廢棄黃麻袋用來(lái)制作纖維素海綿,然后采用正硅酸乙酯/十六烷基三甲氧基硅烷對(duì)海綿表面進(jìn)行超疏水處理,靜態(tài)水接觸角高達(dá)151.71°,油水分離實(shí)驗(yàn)表明海綿對(duì)柴油和機(jī)油的油水分離效率分別為98.5%和97.2%,平衡吸附效率分別為35.55 g/g 和31.37 g/g。Lu 等人[48]通過(guò)冷凍干燥法制備了低密度、高孔隙率的超疏水磁性海綿,海綿的超疏水性和磁性是通過(guò)用十六烷基三甲氧基硅烷進(jìn)行硅烷化并與 Fe3O4納米粒子混合來(lái)實(shí)現(xiàn)的。改性后的海綿靜態(tài)水接觸角為152.8°,并在酸性、堿性和鹽水條件下保持其超疏水性,這表明該海綿可用于分離腐蝕性溶液,而磁性使在磁鐵吸收后從油/水混合物中去除海綿變得容易。Zhang 等人[49]利用“超疏水涂層+黏合劑”的方法制備了堅(jiān)固的超疏水??? TiO2納米顆粒涂層纖維素海綿,TiO2納米顆粒是經(jīng)過(guò)十八烷基三甲氧基硅烷改性從而得到超疏水性,復(fù)合海綿的靜態(tài)水接觸角為171°,油接觸角為0°,并在腐蝕性溶液中仍然保持其超疏水性。Peng 等人[50]通過(guò)用 Fe3O4和十六烷基三甲氧基硅烷修飾纖維素海綿來(lái)制造磁性超疏水海綿,F(xiàn)e3O4涂在海綿上以賦予其磁性,并增加表面粗糙度,由于 Fe3O4與纖維素海綿之間的氫鍵作用,F(xiàn)e3O4納米顆粒牢固地附著在海綿上,涂覆3遍 Fe3O4后 WCA 為156°,對(duì)石油醚、正己烷、石蠟油、甲苯、環(huán)己烷等各種油和有機(jī)溶劑的分離效率均大于95%,并且改性海綿在5個(gè)循環(huán)中仍保持較高的分離效率。
2.2 吸附材料
漏油和含油廢水會(huì)對(duì)水生動(dòng)植物以及生態(tài)系統(tǒng)產(chǎn)生嚴(yán)重影響,因此,有效的除油和廢水凈化顯得至關(guān)重要。目前,膜、改性織物、多孔材料等已經(jīng)開(kāi)發(fā)出來(lái)用于廢油吸附分離及水質(zhì)凈化,其中纖維素多孔材料不僅具有多孔材料低密度、高孔隙率、優(yōu)異的吸油能力和油水選擇性等特性,而且來(lái)源廣泛、可再生且易于表面功能化。但大多數(shù)用于吸附廢油的纖維素多孔材料僅具有單向潤(rùn)濕性,限制了其實(shí)際應(yīng)用。針對(duì)這一現(xiàn)狀,眾多科研工作者對(duì)纖維素多孔材料的疏水化改性進(jìn)行了探索。Feng 等人[51]通過(guò)化學(xué)氣相沉積法在纖維素氣凝膠表面涂覆甲基三甲氧基硅烷(MTMS)后,發(fā)現(xiàn)回收的纖維素氣凝膠在5個(gè)月以上的時(shí)間內(nèi)表現(xiàn)出優(yōu)異的吸油能力和非常穩(wěn)定的超疏水性,質(zhì)量分?jǐn)?shù)0.25%的纖維素氣凝膠具有高達(dá)95 g/g 的出色吸油量。Zhang 等人[52]基于烷氧基硅烷改性的化學(xué)方法,利用甲基三甲氧基硅烷(MTMS)對(duì)納米微纖化纖維素(NFC)進(jìn)行改性從而制備出集疏水性、柔性和超輕型于一體的納米纖維素海綿,發(fā)現(xiàn)其對(duì)各種有機(jī)溶劑及油的吸附能力最高達(dá)102 g/g,且在10次循環(huán)使用后仍具有較強(qiáng)的吸附能力。Korhonen 等人[53]通過(guò)用 TiO2 涂覆納米纖維素的方法而獲得疏水化納米纖維素氣凝膠,該氣凝膠對(duì)非極性液體和油的吸收具有高度選擇性,吸油量可達(dá)20~40 g/g,反復(fù)浸泡和干燥后,氣凝膠的吸附能力不會(huì)改變,因此氣凝膠可重復(fù)使用,這使其適用于吸附領(lǐng)域。
2.3 功能性材料
由于全球嚴(yán)重缺水,具有集水能力的材料開(kāi)發(fā)最近受到了相當(dāng)多的關(guān)注,在各種方法中,通過(guò)生物啟發(fā)性的超潤(rùn)濕性表面來(lái)控制冷凝水微滴的形成已成為可行的有效集水方法。Huang等人[54]通過(guò)結(jié)合沙漠甲蟲(chóng)和荷葉的獨(dú)特表面特征,對(duì)纖維素基超疏水材料的表面進(jìn)行基團(tuán)調(diào)控,該基團(tuán)為具有適度親水的氨基,可以使水分子聚集成液核而構(gòu)成集水表面,該表面具有優(yōu)異的液滴成核和疏水功能,可以平衡水滴之間成水過(guò)程中的成核和液滴滾動(dòng),因?yàn)楹羞m度親水性氨基的表面仍保持超疏水性,這種材料的集水量高達(dá)(696.4±72.6) mg/(h ·cm2)。Thakur 等人[55]制備了溫度觸發(fā)的可切換醋酸纖維素-聚 N-異丙基丙烯酰胺(PNIPAM)核-殼材料,隨著溫度的升高,PNIPAM 中的酰胺和羥基不利于與相鄰的水分子形成氫鍵,從而導(dǎo)致其吸濕效率降低,反之則有利于收集水分,因此,纖維的表面形態(tài)在控制其潤(rùn)濕性特征方面發(fā)揮著重要作用。Xiong等人[56]報(bào)道了一種用于水能收集的可穿戴全織物基摩擦發(fā)電機(jī),不僅具有自清潔和防污性能,還可實(shí)現(xiàn)對(duì)水能量的收集。該方法是通過(guò)無(wú)毒酯化法和基于微晶纖維素(MCC)的納米沉淀技術(shù)制備疏水纖維素油酰酯納米顆粒(HCOENPs),然后將 HCOENPs涂覆在超親水超細(xì)聚對(duì)苯二甲酸乙二醇酯(PET)織物上,形成具有粗糙結(jié)構(gòu)和低表面能的疏水表面,從而獲得超疏水和良好的透氣性織物。同時(shí),涂有 HCOENPs 的 PET織物對(duì)灰塵、有機(jī)染料甚至細(xì)菌具有顯著的自清潔和防污性能,此外,這些環(huán)保防水PET織物被用作摩擦電基底,以構(gòu)建用于收集水能的水摩擦發(fā)電機(jī),可以收集水流的靜電能和機(jī)械能。gzslib2022040416403 結(jié)語(yǔ)
對(duì)纖維素進(jìn)行必要的超疏水化改性可使纖維素具有更大的應(yīng)用價(jià)值。通過(guò)靜電紡絲法、化學(xué)氣相沉積法、溶膠-凝膠法可以構(gòu)建含微/納米粗糙結(jié)構(gòu)的疏水表面,以聚二甲基硅氧烷、氟代烷基硅烷處理,可以得到低表面能物質(zhì),從而構(gòu)建超疏水材料。調(diào)控低表面能物質(zhì)的基團(tuán),可以賦予超疏水材料的特殊功能,因此基于纖維素制備的超疏水材料在油水分離、吸附、集水等領(lǐng)域具有應(yīng)用價(jià)值。然而,對(duì)纖維素進(jìn)行疏水化改性也存在一些問(wèn)題及挑戰(zhàn):①目前改性的大部分都是硅烷類(lèi)有機(jī)溶劑,后續(xù)處理比較困難,給環(huán)境帶來(lái)較大壓力;②使用的試劑及方法成本較高,很難實(shí)現(xiàn)工業(yè)化大規(guī)模生產(chǎn)。采用更加環(huán)保綠色的試劑替代有毒的有機(jī)溶劑,采用耗能低、便捷的方法進(jìn)行疏水化改性具有更好的實(shí)用價(jià)值。
參考文獻(xiàn)
[1]???? Klemm D,Kramer F,Moritz S,et al. Nanocelluloses: A New Family of Nature-Based Materials[J]. AngewandteChemie-Interna ?tional Edition,2011,50(24):5438-5466.
[2]???? Dufresne A. Preparation and Properties of Cellulose Nanomaterials [J]. Paper and Biomaterials,2020,5(3):1-13.
[3]???? 孫琳,劉華玉,劉坤,等.納米纖維素的疏水改性及應(yīng)用研究進(jìn)展[J].生物質(zhì)化學(xué)工程,2020,54(4):57-66.
SUN L,LIU H Y,LIU K,et al. Research Progress in Nanocellulose Hydrophobic Modification and Applications[J]. Biomass Chemical Engineering,2020,54(4):57-66.
[4]???? 張松,李薇,楊喻,等.具有反應(yīng)活性的纖維素基微/納米顆粒功能化超疏水表面的制備與表征[J].中國(guó)造紙學(xué)報(bào),2020,35(2):23-28.
ZAHNG S,LI W,YANG Y,et al. Preparation and Characterization of Reactive Superhydrophobic Surface Based on Cellulose-derived Mi?cro/Nanoparticle[J]. Transactions of China Pulp and Paper,2020,35(2):23-28.
[5]???? 王秋雨,烏日娜,王高升.纖維素基超疏水材料的研究概況[J].中國(guó)造紙,2019,38(9):69-73.
WANG Q Y,WU R N,WANG G S. Research Progress of Cellulose Based Super-hydrophobic Materials [J]. China Pulp & Paper,2019,38(9):69-73.
[6]???? 凌新龍,陽(yáng)辰峰,寧軍霞.纖維素的改性及應(yīng)用研究進(jìn)展[J].紡織科學(xué)與工程學(xué)報(bào),2020,37(3):60-85.
LING X L,YANG C F,NING J X. Research progress in modifica?tion of cellulose and application[J]. Journal of Textile Science and Engineering,2020,37(3):60-85.
[7]???? 翟健玉,郭榮輝,王毓.棉纖維的研究進(jìn)展[J].紡織科學(xué)與工程學(xué)報(bào),2021,38(1):59-72.
ZHAI J Y,GUO R H,WANG Y. Research progress of cotton fiber [J]. Journal of Textile Science and Engineering,2021,38(1):59-72.
[8]???? Dimitrakellis P,Travlos A,Psycharis V P,et al. SuperhydrophobicPaper by Facile and Fast Atmospheric Pressure Plasma Etching[J]. Plasma Processes and Polymers,doi:10.1002/ppap.201600069.
[9]Ying Z,Jing C Z,Jin Z,et al. Multifunctional carbon nanofiberswith conductive,magnetic and superhydrophobic properties[J]. Chemphyschem,2006,7(2):336-341.
[10]Jin H,Kettunen M,Laiho A,et al. Superhydrophobic andSuperoleophobic Nanocellulose Aerogel Membranes as Bioinspired Cargo Carriers on Water and Oil[J]. Langmuir,2011,27(5):1930-1934.gzslib202204041641[11]高琴文,劉玉勇,朱泉,等.棉織物無(wú)氟超疏水整理[J].紡織學(xué)報(bào),2009,30(5):78-81.
GAO Q W,LIU Y Y,ZHU Q,et al. Non-fluorinated superhydro?phobic finish of cotton fabric[J]. Journal of Textile Research,2009,30(5):78-81.
[12]Guo X J,Xue C H,Li M,et al. Fabrication of robust,superhydrophobic,electrically conductive and UV-blocking fabrics via layer-by-layer assembly of carbon nanotubes[J]. Rsc Advances,2017,7(41):25560-25565.
[13]Toru I,Ruzi M,Er F,et al. Superhydrophobic coatings made frombiocompatible polydimethylsiloxane and natural wax[J]. Progress in Organic Coatings,doi:10.1016/j. porgcoat.2019.105279.
[14]Cheng Y,Zhu T,Li S,et al. A novel strategy for fabricating robustsuperhydrophobic fabrics by? environmentally-friendly? enzyme etching[J]. Chemical Engineering Journal,2019,355:290-298.
[15]Hu J,He S,Wang Z,et al. Stearic acid-coated superhydrophobicFe2O3/Fe3O4 composite film on N80 steel for corrosion protection [J]. Surface & Coatings Technology,2019,359:47-54.
[16]陳明慧,卜智翔,耿陽(yáng),等.納米碳纖維/聚二甲基硅氧烷復(fù)合材料的制備及其力學(xué)性能[J].云南師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,35(1):41-45.
CHEN M H,BU Z X,GENG Y,et al. Preparation and Mechanical Properties of Carbon Nanofibers/Polydimethylsiloxane Composite [J]. Journal of Yunnan Normal University(Natural Science Edi?tion),2015,35(1):41-45.
[17]孫海峰.單端雙羥烴基聚二甲基硅氧烷的合成及研究[D].濟(jì)南:山東輕工業(yè)學(xué)院,2009.
SUN H F. Synthesis and Study of Polydimethylsiloxane with a diol end group[D].Jinan:Shandong Institute of Light Industry,2009.
[18]陳楚楚,王怡仁,卜香婷,等.聚二甲基硅氧烷/納米纖維素復(fù)合膜的制備及性能分析[J].纖維素科學(xué)與技術(shù),2018,26(4):39-44.
CHEN C C,WANG Y R,BU X T,et al. Preparation and Charac?terization of polydimethylsiloxane/Cellulose Nanofiber Nanocompos?ite[J]. Journal of Cellulose Science and Technology,2018,26(4):39-44.
[19]郝尚,謝源,翁佳麗,等.溶解刻蝕輔助構(gòu)建棉織物超疏水表面[J].紡織學(xué)報(bào),2021,42(2):168-173.
HAO S,XIE Y,WENG J L,et al. Construction of superhydropho?bic surface of cotton fabrics via dissolving etching[J]. Journal of Textile Research,2021,42(2):168-173.
[20]Han S W,Park E J,Jeong M G,et al. Fabrication of recyclablesuperhydrophobic cotton fabrics[J]. Appl. Surf. Sci.,2017,400:405-412.
[21]Foorginezhad S,Zerafat M M. Fabrication of stable fluorine-freesuperhydrophobic fabrics for anti-adhesion and self-cleaning properties[J]. Appl. Surf. Sci.,2019,464:458-471.
[22]肖珍.不銹鋼表面烷基硅烷自組裝膜緩蝕性能研究[D].武漢:湖北大學(xué),2013.
XIAO Z. Study on Corrosion Resistance of Stainless Steel Surfaces Modified by Alkylsilane Self-Assembled Monolayers[D]. Wuhan: Hubei University,2013.gzslib202204041641[23]Duan W,Xie A,Shen Y,et al. Fabrication of SuperhydrophobicCotton Fabrics with UV Protection Based on CeO2 Particles[J]. Industrial & Engineering Chemistry Research,2011,50(8):4441-4445.
[24]Leng B,Shao Z,De With G,et al. Superoleophobic CottonTextiles[J]. Langmuir,2009,25(4):2456-2460.
[25]Wang H,F(xiàn)ang J,Cheng T,et al. One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity[J]. Chemical Communications,2008,7:877-879.
[26]Sauthier G,Segura J J,F(xiàn)raxedas J,et al. Hydrophobic coating ofmica by stearic acid vapor deposition[J]. Colloids and Surfaces a- Physicochemical and Engineering Aspects,2014,443:331-337.
[27]Zhu W K,Zhang Y,Wu Y. Synthesis and characterisation ofsuperhydrophobic CNC/ZnO nanocomposites by using stearic acid [J]. Micro Nano Lett,2019,14(13):1317-1321.
[28]Yin Z Z,Yuan F,Li M,et al. Self-cleaning,underwater writable,heat-insulated and photocatalytic cellulose membrane for high- efficient oil/water separation and removal of hazardous organic pollutants[J]. Progress in Organic Coatings,doi:10.1016/j. porgcoat.2021.106311.
[29]吳延鵬,鐘喬洋,邢奕,等.靜電紡絲納米纖維膜空氣過(guò)濾研究進(jìn)展[J].精細(xì)化工,2021,38(8):1-15.
WU Y P,ZHONG Q Y,XING Y,et al. Research progress of elec?trospinning nanofiber membranes in air filtration[J]. Fine Chemi?cals,2021,38(8):1-15.
[30]鄧?yán)?膜蒸餾用超疏水納米纖維膜的結(jié)構(gòu)設(shè)計(jì)及性能研究
[D].上海:東華大學(xué),2020.
DENG L. Structrual design and performance investigation of super? hydrophobic nanofibrous membranes for membrane distillation[D]. Shanghai:Donghua University,2020.
[31]Zhu Z,Liu Y,Hou H,et al. Dual-Bioinspired Design forConstructing Membranes with Superhydrophobicity for Direct Contact Membrane Distillation[J]. Environmental Science & Technology,2018,52(5):3027-3036.
[32]Ma W,Guo Z,Zhao J,et al. Polyimide/cellulose acetate core/shellelectrospun fibrous membranes for oil-water separation[J]. Sepa? ration and Purification Technology,2017,177:71-85.
[33]林曉雪,張妍,張大帥,等.超疏水材料制備研究進(jìn)展[J].應(yīng)用化工,2020,49(11):2847-2852.
LIN X X,ZHANG Y,ZHANG D S,et al. Research progress in preparation of super hydrophobic materials[J]. Applied Chemical Industry,2020,49(11):2847-2852.
[34]許冠辰,盧至行,張琪,等.化學(xué)氣相沉積法合成二維過(guò)渡金屬硫族化合物研究進(jìn)展[J].化學(xué)學(xué)報(bào),2015,73(9):895-901. XU G C,LU Z X,ZHANG Q,et al. Synthesis of Two-dimensional Transition Metal Dichalcogenides with Chemical Vapor Deposition [J]. Acta ChimicaSinica,2015,73(9):895-901.
[35]慈海娜,孫靖宇.基于化學(xué)氣相沉積技術(shù)的粉體石墨烯的制備及能源領(lǐng)域應(yīng)用[J].科學(xué)通報(bào),2019,64(32):3327-3339.gzslib202204041641CI H N,SUN J Y. Chemical vapor deposition design of graphene powders towardenergy applications[J]. Chinese Science Bulletin,2019,64(32):3327-3339.
[36]張家恒,蘇鵬程,許曉璐,等.超疏水材料在油水分離領(lǐng)域的研究應(yīng)用[J].浙江化工,2017,48(9):41-44.
ZHANG J H,SU P C,XU X L,et al. Research and Application of Super-hydrophobic Materials in Oil/Water Separation[J]. Zhejiang Chemical Industry,2017,48(9):41-44.
[37]Zheng Q,Cai Z,Gong S. Green synthesis of polyvinyl alcohol(PVA)-cellulose nanofibril(CNF) hybrid aerogels and their use as superabsorbents[J]. Journal of Materials Chemistry A,2014,2(9):3110-3118.
[38]Yang H, Deng Y. Preparation and physical properties ofsuperhydrophobic papers[J]. Journal of Colloid and Interface Science,2008,325(2):588-593.
[39]Lu J,Yan S,Song W,et al. Construction and characterization ofversatile? flexible? composite? nanofibrous? aerogels? based? onthermoplastic polymeric nanofibers[J]. Journal of Materials Science,2020,55(19):8155-8169.
[40]朱兆棟,鄭學(xué)梅,付時(shí)雨,等.纖維素微納顆粒的硅烷化改性對(duì)制備超疏水材料的影響[J].中國(guó)造紙,2018,37(12):14-20.
ZHU Z D,ZHENG X M,F(xiàn)U S Y,et al. Effect of Silane Modified Cellulosic Micro-nano Particles on Super-hydrophobicity of Material [J]. China Pulp & Paper,2018,37(12):14-20.
[41]李國(guó)濱,劉海峰,李金輝,等.超疏水材料的研究進(jìn)展[J].高分子材料科學(xué)與工程,2020,36(12):142-150.
LI G B,LIU H F,LI J H,et al. Progress in Research of Prepara?tion of Superhydrophobic[J]. Polymer Materials Science and Eng?neering,2020,36(12):142-150.
[42]Deng Z Y,Wang W,Mao L H,et al. Versatile superhydrophobicand photocatalytic films generated from TiO2-SiO2@PDMS and their applications on fabrics[J]. Journal of Materials Chemistry A,2014,2(12):4178-4184.
[43]計(jì)強(qiáng).浸漬法和溶膠-凝膠法超疏水棉織物涂層的制備及其油水分離性能[D].廣州:華南理工大學(xué),2018.
JI Q. Preparation and oil-water separation properties of superhydro? phobic coating on fabrics through the dip-coating and sol-gel method [D]. Guangzhou:South China University of Technology,2018.
[44]Yuan D, Zhang T, Guo Q, et al. Recyclable biomasscarbon@SiO2@MnO2 aerogel with hierarchical structures for fast and selective oil-water separation[J]. Chemical Engineering Journal,2018,351:622-630.
[45]Huang J Y,Li S H,Ge M Z,et al. Robust superhydrophobicTiO2@fabrics for UV shielding, self-cleaning and oil-water separation[J]. Journal of Materials Chemistry A,2015,3(6):2825-2832.
[46]Zha J,Ali S S,Peyroux J,et al. Superhydrophobicity of polymerfilms via fluorine atoms covalent attachment and surface nano- texturing[J]. Journal of Fluorine Chemistry,2017,200:123-132.gzslib202204041642[47]Ahuja D, Dhiman S, Rattan G, et al. Superhydrophobicmodification of cellulose sponge fabricated from discarded jute bags for oil water separation[J]. Journal of Environmental Chemical Engineering,doi:10.1016/j. jece.2021.105063.
[48]Lu Y,Wang Y,Liu L,et al. Environmental-friendly and magnetic/silanized ethyl cellulose sponges as effective and recyclable oil- absorption materials[J]. Carbohydrate Polymers,2017,173:422-430.
[49]Zhang H,Li Y,Lu Z,et al. A robust superhydrophobic TiO2 NPscoated cellulose sponge for highly efficient oil-water separation[J]. Scientific Reports,doi:10.1038/s41598-017-09912-9.
[50]Peng H,Wang H,Wu J,et al. Preparation of SuperhydrophobicMagnetic Cellulose Sponge for Removing Oil from Water[J]. Industrial & Engineering Chemistry Research ,2016,55(3):832-838.
[51]Feng J,Nguyen S T,F(xiàn)an Z,et al. Advanced fabrication and oilabsorption properties of super-hydrophobic recycled cellulose aerogels[J]. Chemical Engineering Journal,2015,270:168-175.
[52]Zhang Z,Sebe G,Rentsch D,et al. Ultralightweight and FlexibleSilylated Nanocellulose Sponges for the Selective Removal of Oil from Water[J]. Chemistry of Materials,2014,26(8):2659-2668.
[53]Korhonen J T,Kettunen M,Ras R H A,et al. HydrophobicNanocellulose Aerogels as Floating,Sustainable,Reusable,and Recyclable Oil Absorbents[J]. ACS Appl. Mater Interfaces,2011,3(6):1813-1816.
[54]Huang? W, Tang? X,Qiu? Z, et? al. Cellulose-basedSuperhydrophobic Surface Decorated with Functional Groups Showing Distinct Wetting Abilities to Manipulate Water Harvesting [J]. ACS Appl. Mater Interfaces,2020,12(36):40968-40978.
[55]Thakur N,Baji A,Ranganath A S. Thermoresponsiveelectrospunfibers for water harvesting applications[J]. Appl. Surf. Sci., 2018,433:1018-1024.
[56]Xiong J,Lin M F,Wang J,et al. Wearable All-Fabric-basedTriboelectric Generator for Water Energy Harvesting[J]. Advanced Energy Materials,doi:10.1002/aenm.201701243.