• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SSP IMEX Runge-Kutta WENO Scheme for Generalized Rosenau-KdV-RLW Equation

    2022-04-15 08:23:10MuyassarAhmatandJianxianQiu
    Journal of Mathematical Study 2022年1期

    Muyassar Ahmat and Jianxian Qiu

    School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing,Xiamen University,Xiamen 361005,China.

    Abstract.In this article,we present a third-order weighted essentially non-oscillatory(WENO)method for generalized Rosenau-KdV-RLW equation.The third order finite difference WENO reconstruction and central finite differences are applied to discrete advection terms and other terms,respectively,in spatial discretization.In order to achieve the third order accuracy both in space and time,four stage third-order L-stable SSP Implicit-Explicit Runge-Kutta method(Third-order SSP EXRK method and thirdorder DIRK method)is applied to temporal discretization.The high order accuracy and essentially non-oscillatory property of finite difference WENO reconstruction are shown for solitary wave and shock wave for Rosenau-KdV and Rosenau-KdV-RLW equations.The efficiency,reliability and excellent SSP property of the numerical scheme are demonstrated by several numerical experiments with large CFL number.

    Key words:Rosenau-KdV-RLW equation,WENO reconstruction, finite difference method,SSP implicit-explicit Runge-Kutta method.

    1 Introduction

    The nonlinear wave behavior is one of the active scientific research areas during the past several decades.Numerical solution of nonlinear wave equations is significantly necessary since most of these types of equations are not solvable analytically in the case of the nonlinear terms are included.

    Many mathematical models,especially nonlinear partial differential equations describe various types of wave behavior in nature.Typically,the KdV equation(Kortewegde Vries equation)is suitable for small-amplitude long waves on the surface of the subject,such as shallow water waves,ion sound waves,and longitudinal astigmatic waves.RLW equation(Regularized Long-Wave equation)can describe not only shallow water waves,but also nonlinear dispersive waves,ion-acoustic plasma waves,magnetohydrodynamic plasma waves.The Rosenau equation[1]was proposed for explaining the dynamic of dense discrete systems since the case of wave-wave and wave-wall interactions can not be explained by the KdV and RLW equations.

    In order to further consider the nonlinear wave behavior,the viscous termuxxxoruxxtneed to be included in Rosenau equation,which leads to the achievement of Rosenau-RLW equation:

    or Rosenau-KdV equation:

    There have been many difficulties in evaluating analytical solutions of nonlinear dispersive wave equations and so on the development of numerical schemes.Even so,one derived the solitary wave solution and singular soliton solution for the Rosenau-KdV equation by the ansatz method as well as the semi-inverse variational principle[2]while the shock wave solution of this equation was determined for two particular values of the power law nonlinearity parameterp=3 andp=5 by Ebadi[3].

    Significant numerical studies have been done on the Rosenau-KdV equation[4,5].Two-level nonlinear implicit Crank-Nicolson difference scheme and three-level linearimplicit difference scheme were presented to solve two-dimensional generalized Rosenau-KdV equation by Atouani[4].Their experiment proved that both schemes were uniquely solvable,unconditionally stable and second-order convergent inL1norm,the linearized scheme was more effective in terms of accuracy and computational cost.Wang and Dai[5]proposed a conservative unconditionally stable finite difference scheme withO(h4+τ2)for the generalized Rosenau-KdV equation in both one and two dimension,wherehis spatial step andτis temporal step,respectively.

    A mass-preserving scheme which combined a high-order compact scheme and a threelevel average difference iterative algorithm was analyzed and tested for the Rosenau-RLW equation in[6].In their work,they focused on the development of the approach for solving the nonlinear implicit scheme in aim to improve the accuracy of approximate solutions.The Rosenau-RLW equation was also solved by second-order nonlinear finite element Galerkin-Crank-Nicolson method which was linearized by predictor-correction extrapolation technique in[7].An energy conservative two-level fourth-order nonlinear implicit compact difference scheme for three dimensional Rosenau-RLW equation was designed by Li[8]and an iterative algorithm was introduced to generate this nonlinear algebraical system.

    In this paper,we focus on one-dimensional generalized Rosenau-KdV-RLW equation.This model is difficult to solve numerically because of the excessive computational cost caused by high order mixed derivative term and the selective wave behavior caused by the power law nonlinearity term.In order to keep this model in a generalized setting,the Rosenau-KdV-RLW equation is written as:

    whereu(x,t)denote the profile of the wave whilexandtare the spatial and temporal variables,respectively.α>0,ε>0 are the parameters of linear and nonlinear advection terms,p≥2 is the parameter of power law nonlinearity.θ,δ,νare the parameters of KdV,RLW,Rosenau terms,respectively.

    Rosenau-KdV-RLW equation has been studied both theoretically and numerically in recent years.Ansatz approach and semi-inverse variational principle were used to determine the solitary and shock solution,and the conservation laws of the Rosenau-KdVRLW equation with power law nonlinearity were computed by the aid of multiplier approach in Lie symmetry analysis in[9]and[10].A three-level second-order accurate weighted average implicit finite difference scheme was presented by Wongsaijai[11]to solve the Rosenau-KdV-RLW equation.Wang[12]introduced a three-level linear conservative implicit finite difference scheme for solving this equation which was easy to implement and had simple computational structure.A multi-symplectic scheme and an energy-preserving scheme based on the multi-symplectic Hamiltonian formulation of the equation were tested for the generalized Rosenau-type equation in[13].These methods were implemented efficiently by the discrete fast Fourier transform with spectral accuracy in space while second-order accuracy in time.

    To the best of our knowledge,many numerical schemes are employed to simulate the solitary wave of the Rosenau-KdV and Rosenau-KdV-RLW equations.But as far as we know,there is very few numerical scheme has bees presented for the shock wave of these equations.In this paper,We’re going to fill this gap effectively.

    The Implicit-Explicit(IMEX)Runge-Kutta method is an effective time solver with the advantages of loosening the CFL restriction caused by the Explicit scheme and reducing the computational cost caused by Implicit method reasonably for PDEs which contains stiff and non-stiff terms all together,and applied generally for this type of PDEs[15–17].In order to ensure the stability stands for this type of large ODE system obtained from spatial discretization,It is much safer to use IMEX Runge-Kutta methods with strong stability preserving(SSP)properties[18–20].

    The weighted essentially non-oscillatory(WENO)method is mostly applied for hyperbolic conservation laws with the advantages of the capability to achieve high-order accuracy in smooth regions while maintaining stable,non-oscillatory property in sharp or stiff region[21–23].Here,we use the same approach for the solitary wave solution and shock wave solution of Rosenau-KdV-RLW equation.

    The advantages of finite difference WENO reconstruction[22]is exploited in wave motions,especially shock wave for Rosenau-KdV equation and Rosenau-KdV-RLW equation with power law nonlinearity parameterp=3 andp=5 as given in[3,9]to deal with stiff wave motion.Instead of using third order TVD Runge-Kutta scheme in time direction,we choose the SSP IMEX Runge-Kutta scheme[20]to avoid the strict CFL restriction and large computational cost.To be specific,we use third-order finite difference WENO scheme for advection terms of(1.3)and treat explicitly in the time direction.The rest of(1.3)is treated by high order central finite difference method in space and treated implicitly in time.

    The paper is arranged as follows.In Section 2,the third-order finite difference WENO scheme and high order finite difference method are performed.In Section 3,the thirdorder SSP IMEX Runge-Kutta scheme is given for the treatment in time.Extensive numerical results are proposed in Section 4 to illustrate the accuracy and efficiency of the present method.Concluding remarks are given in the final section.

    2 Spatial discretization

    3 The third order SSP IMEX Runge-Kutta method

    4 Numerical results

    In this section,we will discuss computational results of the scheme(3.9)on some numerical examples for the solitary wave solution and shock wave solution of Rosenau-KdV equation and Rosenau-KdV-RLW equation.

    wave velocity

    and wave amplitude

    Errors and rates of convergence in terms ofL1andL∞atT=20 forτ=CFL·hwithCFL=1 in intervalx∈[?70,100]are listed in Table 1 for Example 4.1.The third order accuracy of the numerical method is achieved as we expected in the theoretical procedure,and works well with large time step.We can observe from the left of Figure 1 that the solitary wave curve matches excellently with exact solution whenh=τ=0.1 atT=20.From the right of Figure 1,it can be seen that error mostly generates at two sides of the solidary wave.

    Figure 1:Wave graph of u(x,t)at T=20 and numerical solution of Rosenau-KdV equation with h=τ=0.1 at T=20(left)and error(right)for Example 4.1.

    Table 1:Errors and rates of convergence when CFL=1,h=τ at T=20 for Example 4.1.

    We compare theL∞errors of our scheme with the results of other three numerical schemes[11,12]under various mesh stepsh=τatT=20 in Table 2.The better computational accuracy of the present scheme can be seen with the smallest error among other schemes referred above.The solitary wave graphs atT=10,20 agree with the one atT=0 quite well.The solitary wave curve propagates with constant speed V to the right through time T in Figure 2.

    Figure 2:Numerical solution of Rosenau-KdV equation with h=τ=0.1 at T=0,10,20 for Example 4.1.]

    Table 2:Comparison of L∞errors at T=20 for Example 4.1.

    To observe the effect of power law nonlinear term to the solitary wave of Rosenau-KdV equation,we draw the wave curves forp=2,4,6,8,10 andwithh=τ=0.1 atT=20 in Figure 3,The wave amplitude and width are increasing whilepincreases.We computeL1,L∞errors forp=2,4,6,8,10 andatT=20 on three different meshes in Table 3 and also achieve third-order convergence in each case.

    Figure 3:Numerical solution of Rosenau-KdV equation with p=2,4,6,8,10,?=and h=τ=0.1 at T=20 for Example 4.1.

    Table 3:L1,L∞ errors of numerical solutions for Rosenau-KdV equation with h=τ,T=20,ε=1pfor Example 4.1.

    Next,we refer shock wave solutions of Rosenau-KdV equation from[3]which is available only for two particular values of power law nonlinearity parameterp=3,5.Our scheme simulates this wave phenomena efficiently with its essentially non-oscillatory property.

    Example 4.2.Consider Rosenau-KdV equation(1.2)with parametersδ=0,ν= ?10,α=0.05,θ=0.001,?=?5,p=5:

    and choose the initial condition to beu0(x)=Mtanh(Wx),so that the analytical shock wave solution of Rosenau-KdV equation forp=5 isu(x,t)=Mtanh[W(x?Vt)]as in[3]with

    These parameters have to be chosen carefully to make sure that the three quantities are all real.In Table 4,we show errors and rates of convergence to highlight the efficiency of the WENO reconstruction for shock wave in the case ofp=5.Figure 4 displays the shock wave atT=10 withh=τ=0.1 on the left and error on the right.As we can see there is no oscillatory nearby the stiff region.

    Table 4:Errors and rates of convergence when CFL=1,h=τ at T=10 for Example 4.2.

    Figure 4:Wave graph of u(x,t)at T=10 and numerical solution of Rosenau-KdV equation with h=τ=0.1,p=5 at T=10(left)and error(right)for Example 4.2.

    Example 4.3.Consider Rosenau-KdV equation(1.2)with parametersδ=0,ν= ?10,α=0.4,θ=0.01,?=?3,p=3:

    and choose the initial condition to beu0(x)=Mtanh2(Wx),so that the analytical shock wave solution of Rosenau-KdV equation forp=3 isu(x,t)=Mtanh2[W(x?Vt)]as in[3]with

    In Table 5,we give error and rate of convergence for shock wave whenp=3.Obviously here we achieve order that smaller than three at first,but it will converge to three eventually as the mesh is refined.Figure 5 displays the shock wave atT=10 whenh=τ=0.1 on the left and error on the right.

    Table 5:Errors and rates of convergence when CFL=1,h=τ at T=10 for Example 4.3.

    Figure 5:Wave graph of u(x,t)at T=10 and numerical solution of Rosenau-KdV equation with h=τ=0.1,p=3 at T=10(left)and error(right)for Example 4.3.

    TheL∞errors of the numerical solutions atT=10 under various mesh stepsh=τare listed in Table 6 and compare with other three types of schemes studied earlier about the same equation,which shows that our scheme has the smallest error in any cases.

    Table 6:The Comparison of L∞ errors with CFL=1,h=τ at T=10 between four different schemes for Example 4.4.

    On the left of Figure 6,the numerical wave curve totally matches with the analytical solidary solution atT=10 with meshh=τ=0.1 over the intervalx∈[?40,60]and the corresponding distribution of the error is drawn for solitary wave in the right of Figure 6.

    Figure 6:Wave graph of u(x,t)at T=10 and numerical solution of Rosenau-KdV-RLW equation with h=τ=0.1 at T=10(left)and error(right)for Example 4.4.

    As shown in Table 7, the third-order convergence of the numerical solutions is verified atT=10 for the solitary wave problem of the Rosenau-KdV-RLW equation.In Figure 7,perspective views of the traveling solutions are graphed at various time levels forh=τ=0.1.

    Table 7:Errors and rates of convergence with CFL=1,h=τ at T=10 for Example 4.4.

    Figure 7:Numerical solution of Rosenau-KdV-RLW equation with h=τ=0.1 at T=2,4,6,8,10 for Example 4.4.

    In order to observe the effect of power law nonlinear term to the solidary wave of Rosenau-KdV-RLW equation,TheL1,L∞errors and third-order convergence forp=2,4,6,8,10 andε=1/pon three different mesh are listed in Table 8.We draw the wave curves for thesepatT=10 withCFL=1,h=τ=0.1 andε=1/pin the intervalx∈[?40,60]for give further description in Figure 8.It can be observed that wave amplitude and speed decreases along withpincreases,this also fits the power law.

    Figure 8:Numerical solution of Rosenau-KdV-RLW equation with p=2,4,6,8,10,?=and h=τ=0.1 at T=10 for Example 4.4.

    Table 8:L1,L∞ errors of numerical solutions for Rosenau-KdV-RLW equation with h=τ,T=10,ε=for Example 4.4.

    Table 8:L1,L∞ errors of numerical solutions for Rosenau-KdV-RLW equation with h=τ,T=10,ε=for Example 4.4.

    L1 L∞p h 0.2 0.1 0.05 0.2 0.1 0.05 2 8.4789e-04 1.1027e-04 1.3908e-05 7.6075e-03 9.8854e-04 1.2479e-04 2.9428 2.9871 2.9440 2.9858 4 1.9237e-03 2.5823e-04 3.2477e-05 2.1641e-02 2.8915e-03 3.6262e-04 2.8971 2.9912 2.9039 2.9953 6 1.9993e-03 2.7505e-04 3.4557e-05 2.3003e-02 3.1681e-03 3.9806e-04 2.8617 2.9926 2.8601 2.9925 8 1.8389e-03 2.5682e-04 3.2327e-05 2.0847e-02 2.9226e-03 3.6689e-04 2.8400 2.9899 2.8345 2.9938 10 1.6504e-03 2.3332e-04 3.0234e-05 1.8439e-02 2.6109e-03 3.2730e-04 2.8224 2.9481 2.8202 2.9958

    Based on earlier studies on the shock solution of the Rosenau-KdV equation,the shock wave solutions for the Rosenau-KdV-RLW equation were extracted by balancing principle only forp=3 andp=5 in[9].Here we will review related formulation for wave amplitude,width,velocity mentioned in[9,10],and then simulate both cases numerically as example.

    Example 4.5.Consider Rosenau-KdV-RLW equation(1.3)with parametersδ=1,ν=?0.001,α=0.01,θ=0.001,ε=?1,p=3:

    and choose the initial condition to beu0(x)=Mtanh2(Wx),so that the analytical shock wave solution of Rosenau-KdV-RLW equation forp=3 isu(x,t)=Mtanh2[W(x?Vt)]as in[9]with

    In Table 9,the error comparisons inL∞,L1are obtained by present method for shock wave solution in the case ofp=3 of the Rosenau-KdV-RLW equation in intervalx∈[?10,10]withh=τ=0.2,0.1,0.05,0.025 respectively and the simulations are run up to timeT=10 to obtain the error norms.It can be easily found that the errors are small,and the third-order convergence of the numerical solutions are also verified.From Figure 9,we can catch the point that numerical solution fits with exact one,and numerical method approximate the exact solution even in stiff concave region successfully.

    Table 9:Errors and rates of convergence with CFL=1,h=τ at T=10 for Example 4.5.

    Figure 9:Wave graph of u(x,t)at T=10 and numerical solution of Rosenau-KdV-RLW equation with h=τ=0.1,p=3 at T=10(left)and error(right)for Example 4.5.

    Example 4.6.Consider Rosenau-KdV-RLW equation(1.3)with parametersδ=1,ν=?10,α=0.05,θ=0.001,ε=?5,p=5:

    and choose the initial condition to beu0(x)=Mtanh(Wx)so that the analytical shock wave solution of Rosenau-KdV-RLW equation forp=5 isu(x,t)=Mtanh[W(x?Vt)]as in[9]with

    The computation of error and order is completed at timet=10 whenCFL=1,h=τon various mesh in intervalx∈[?10,10]and displayed in Table 10.The numerical shock wave curve of Rosenau-KdV-RLW equation forp=5 is agree with exact solution with no oscillatory near the pointx=0 whenh=τ=0.1 atT=10 on the left of Figure 10.

    Table 10:Errors and rates of convergence with CFL=1,h=τ at T=10 for Example 4.6.

    Figure 10:Wave graph of u(x,t)at T=10 and numerical solution of Rosenau-KdV-RLW equation with h=τ=0.1,p=5 at T=10(left)and error(right)for Example 4.6.

    Example 4.7.Consider Rosenau-KdV-RLW equation(1.3)with parametersδ=?0.01,ν=0.01,α=0.01,θ=0.01,ε=1,p=3:

    and Maxwellian initial condition to beu0(x)=exp(?0.005(x?60)2).

    As a final example,we plot a high-frequency oscillatory behavior ofu(x,t)with above Maxwell initial condition in Figure 11 to illustrate the characteristic of dispersive shock wave behavior of(1.3).The steepening of the leading front repeats several times and decays until it is no longer present on the back of the wave.

    Figure 11:Wave graph of Rosenau-KdV-RLW equation at T=0,5,10 with the Maxwellian initial condition u0=exp(?0.005(x?60)2)for Example 4.7.

    5 Concluding Remark

    To solve the solitary wave and shock wave problem of Rosenau-KdV equation and Rosenau-KdV-RLW equation,we use the third-order finite difference WENO reconstruction for advection terms,and central finite difference method for other terms in spatial discretization,then we use third-order SSP IMEX Runge-Kutta method for time discretization,in which the advection terms are treated by explicitly and remaining terms are treated by implicitly.In order to verify the effectiveness of the numerical scheme,some numerical examples are given for numerical experiment.Numerical simulations show that the method is very efficient with the advantages of non-oscillatory and looselyrestricted CFL condition.

    国产欧美日韩精品一区二区| 我要搜黄色片| 一区二区三区高清视频在线| 国产一区二区三区视频了| 亚洲成人免费电影在线观看| 亚洲中文字幕一区二区三区有码在线看| 男人舔奶头视频| avwww免费| 一级a爱片免费观看的视频| 精品久久久久久,| 日韩成人在线观看一区二区三区| 国产高清激情床上av| 国产三级中文精品| 国产综合懂色| 成年女人毛片免费观看观看9| 日本在线视频免费播放| 成人av在线播放网站| 久久精品国产99精品国产亚洲性色| 又爽又黄无遮挡网站| 精品一区二区三区av网在线观看| 国产熟女xx| 国产精品亚洲一级av第二区| 亚洲精品亚洲一区二区| 国产蜜桃级精品一区二区三区| 精品久久久久久久毛片微露脸| www.www免费av| 桃色一区二区三区在线观看| 天堂网av新在线| 婷婷亚洲欧美| 嫩草影视91久久| 3wmmmm亚洲av在线观看| 国产亚洲欧美在线一区二区| 日日干狠狠操夜夜爽| 日日干狠狠操夜夜爽| 99国产综合亚洲精品| 亚洲精品色激情综合| 美女免费视频网站| 少妇丰满av| 热99在线观看视频| 日本 av在线| 国产精品久久久久久精品电影| 国产不卡一卡二| 久久精品夜夜夜夜夜久久蜜豆| 国产精品香港三级国产av潘金莲| 热99在线观看视频| 日韩欧美三级三区| 国内毛片毛片毛片毛片毛片| 国内精品久久久久久久电影| 99国产精品一区二区三区| 国产精品影院久久| 国产精品女同一区二区软件 | 12—13女人毛片做爰片一| 久久中文看片网| 国产精品久久视频播放| 精品久久久久久成人av| 国产精品一区二区三区四区免费观看 | 欧美日韩黄片免| 18禁国产床啪视频网站| 最后的刺客免费高清国语| 色尼玛亚洲综合影院| 国产精品国产高清国产av| 亚洲精品日韩av片在线观看 | 国内精品久久久久精免费| 一区二区三区激情视频| 亚洲内射少妇av| 麻豆国产av国片精品| 两个人看的免费小视频| 国产精品久久久久久久电影 | 中文字幕高清在线视频| 人人妻人人澡欧美一区二区| 欧美成人性av电影在线观看| 熟女少妇亚洲综合色aaa.| 日本熟妇午夜| 他把我摸到了高潮在线观看| 最近最新免费中文字幕在线| 国产色爽女视频免费观看| 欧美日韩综合久久久久久 | 亚洲最大成人中文| 草草在线视频免费看| 久久6这里有精品| 91麻豆av在线| 又黄又爽又免费观看的视频| 国产欧美日韩一区二区三| 午夜福利在线观看吧| 国产成人啪精品午夜网站| 网址你懂的国产日韩在线| 国内揄拍国产精品人妻在线| 男人的好看免费观看在线视频| 丰满人妻熟妇乱又伦精品不卡| 搡老岳熟女国产| 欧美日韩乱码在线| 成人亚洲精品av一区二区| 成人高潮视频无遮挡免费网站| 五月伊人婷婷丁香| 午夜老司机福利剧场| 国产高清videossex| 欧美日韩综合久久久久久 | 婷婷精品国产亚洲av| 国产高清激情床上av| 欧美xxxx黑人xx丫x性爽| 成人18禁在线播放| 久久香蕉精品热| 国产91精品成人一区二区三区| 性色avwww在线观看| 一本精品99久久精品77| 精品国产超薄肉色丝袜足j| 中文字幕人妻丝袜一区二区| 女警被强在线播放| www日本在线高清视频| 亚洲精品日韩av片在线观看 | 午夜日韩欧美国产| 国产成人系列免费观看| 18美女黄网站色大片免费观看| 日韩欧美国产在线观看| 好男人电影高清在线观看| 一个人免费在线观看的高清视频| 亚洲av不卡在线观看| 欧美精品啪啪一区二区三区| 国产私拍福利视频在线观看| 一进一出抽搐动态| 亚洲国产欧美网| 2021天堂中文幕一二区在线观| 欧美日韩乱码在线| 中文在线观看免费www的网站| 成人特级黄色片久久久久久久| 亚洲18禁久久av| 欧美日韩一级在线毛片| 免费看光身美女| 午夜a级毛片| 免费看十八禁软件| 精品久久久久久久人妻蜜臀av| 人人妻,人人澡人人爽秒播| 香蕉丝袜av| 午夜福利视频1000在线观看| 亚洲av成人精品一区久久| 黄色日韩在线| 精品人妻1区二区| 69人妻影院| 亚洲第一电影网av| 成人国产一区最新在线观看| 国产黄色小视频在线观看| 欧美中文综合在线视频| 熟女电影av网| 亚洲性夜色夜夜综合| av片东京热男人的天堂| 欧美日韩综合久久久久久 | 不卡一级毛片| 乱人视频在线观看| 欧美成人免费av一区二区三区| 国产午夜精品论理片| 国产精品亚洲一级av第二区| www国产在线视频色| 怎么达到女性高潮| 亚洲色图av天堂| 欧美+亚洲+日韩+国产| 好男人电影高清在线观看| 男女做爰动态图高潮gif福利片| 99在线人妻在线中文字幕| 免费电影在线观看免费观看| 在线观看美女被高潮喷水网站 | 中文字幕人妻熟人妻熟丝袜美 | 黄片小视频在线播放| 深爱激情五月婷婷| 中国美女看黄片| 久9热在线精品视频| 色av中文字幕| 免费观看精品视频网站| 内射极品少妇av片p| 久久久久久人人人人人| 18禁国产床啪视频网站| 在线观看美女被高潮喷水网站 | 嫩草影院精品99| 最近在线观看免费完整版| 中文字幕av在线有码专区| 午夜福利18| 久久久久久久精品吃奶| 亚洲av中文字字幕乱码综合| 一a级毛片在线观看| 欧美成人a在线观看| 日本在线视频免费播放| 国产极品精品免费视频能看的| 国产三级黄色录像| 91麻豆av在线| 亚洲国产高清在线一区二区三| 综合色av麻豆| 蜜桃久久精品国产亚洲av| 亚洲精品在线美女| а√天堂www在线а√下载| 中文字幕人妻熟人妻熟丝袜美 | 欧美中文日本在线观看视频| 两个人的视频大全免费| 免费搜索国产男女视频| 日韩欧美在线乱码| 黄片小视频在线播放| 很黄的视频免费| h日本视频在线播放| 亚洲熟妇中文字幕五十中出| 日本撒尿小便嘘嘘汇集6| 免费无遮挡裸体视频| 国产国拍精品亚洲av在线观看 | 一进一出抽搐gif免费好疼| 听说在线观看完整版免费高清| 特大巨黑吊av在线直播| 身体一侧抽搐| 成人午夜高清在线视频| 国产精品电影一区二区三区| 国产蜜桃级精品一区二区三区| 午夜精品久久久久久毛片777| 又黄又粗又硬又大视频| 久久香蕉国产精品| 99久久成人亚洲精品观看| 中文字幕av成人在线电影| 超碰av人人做人人爽久久 | 欧美在线黄色| 美女 人体艺术 gogo| 亚洲av免费在线观看| 一级作爱视频免费观看| 天堂av国产一区二区熟女人妻| 国产亚洲精品久久久久久毛片| 午夜免费观看网址| 久久精品91无色码中文字幕| 亚洲国产中文字幕在线视频| 国产黄片美女视频| 亚洲av美国av| 熟女人妻精品中文字幕| 好看av亚洲va欧美ⅴa在| 成人三级黄色视频| 欧美zozozo另类| 国内久久婷婷六月综合欲色啪| 757午夜福利合集在线观看| eeuss影院久久| 禁无遮挡网站| 99国产精品一区二区三区| 深夜精品福利| 日本三级黄在线观看| 日韩免费av在线播放| 亚洲七黄色美女视频| 人妻丰满熟妇av一区二区三区| 亚洲国产精品sss在线观看| 毛片女人毛片| 成年版毛片免费区| 国内毛片毛片毛片毛片毛片| 免费一级毛片在线播放高清视频| av欧美777| 国产淫片久久久久久久久 | 一区二区三区激情视频| 一夜夜www| 午夜精品一区二区三区免费看| 亚洲精品日韩av片在线观看 | 麻豆成人av在线观看| 久久久久久久午夜电影| 亚洲av成人精品一区久久| 亚洲精品日韩av片在线观看 | 欧美激情久久久久久爽电影| 一个人免费在线观看的高清视频| 国产色婷婷99| 久久精品国产清高在天天线| 老司机午夜福利在线观看视频| 三级国产精品欧美在线观看| 中国美女看黄片| 久久久久免费精品人妻一区二区| 国产一区二区在线av高清观看| 国产精品久久电影中文字幕| 无遮挡黄片免费观看| 亚洲av免费高清在线观看| 欧美精品啪啪一区二区三区| 18禁在线播放成人免费| 可以在线观看毛片的网站| 国产高清激情床上av| 99在线视频只有这里精品首页| 在线十欧美十亚洲十日本专区| 亚洲国产欧美人成| 日韩大尺度精品在线看网址| 国产精品免费一区二区三区在线| 国产精品 欧美亚洲| 日本五十路高清| 亚洲最大成人手机在线| 网址你懂的国产日韩在线| 听说在线观看完整版免费高清| 国产成人av激情在线播放| 少妇丰满av| 亚洲欧美激情综合另类| 老熟妇仑乱视频hdxx| 色播亚洲综合网| 看黄色毛片网站| 美女高潮喷水抽搐中文字幕| 高清在线国产一区| av欧美777| 成年免费大片在线观看| 男人舔奶头视频| 国产亚洲av嫩草精品影院| 国产免费男女视频| av在线天堂中文字幕| 久久久精品大字幕| 免费电影在线观看免费观看| 国内久久婷婷六月综合欲色啪| 村上凉子中文字幕在线| 在线观看日韩欧美| 两个人的视频大全免费| tocl精华| 亚洲国产精品合色在线| 国产三级黄色录像| 国产欧美日韩精品一区二区| 久久久久久久久久黄片| 中文字幕人妻熟人妻熟丝袜美 | 国产在线精品亚洲第一网站| 国产主播在线观看一区二区| 婷婷丁香在线五月| 神马国产精品三级电影在线观看| 一进一出抽搐动态| 日韩人妻高清精品专区| 国产真实乱freesex| 99视频精品全部免费 在线| 99国产精品一区二区蜜桃av| 日韩国内少妇激情av| or卡值多少钱| 99久久99久久久精品蜜桃| 九色成人免费人妻av| 精品久久久久久久久久久久久| 美女大奶头视频| 少妇人妻精品综合一区二区 | 1000部很黄的大片| 国产精品嫩草影院av在线观看 | 欧美中文日本在线观看视频| 欧美日本亚洲视频在线播放| 亚洲成a人片在线一区二区| 午夜福利高清视频| av女优亚洲男人天堂| 日韩中文字幕欧美一区二区| 性色avwww在线观看| 成年版毛片免费区| 欧美黑人巨大hd| 又黄又粗又硬又大视频| 搡老妇女老女人老熟妇| 免费看光身美女| 欧美性感艳星| 亚洲无线观看免费| 免费大片18禁| 一本综合久久免费| 综合色av麻豆| 日韩欧美在线乱码| 欧美性猛交╳xxx乱大交人| 两个人看的免费小视频| 他把我摸到了高潮在线观看| 亚洲avbb在线观看| 男女午夜视频在线观看| 在线观看日韩欧美| 国内少妇人妻偷人精品xxx网站| 黄片大片在线免费观看| 一区二区三区激情视频| 成年人黄色毛片网站| 亚洲中文字幕日韩| 国产精华一区二区三区| 久久精品91蜜桃| 免费看十八禁软件| 国产精品久久久久久久电影 | 中文字幕av成人在线电影| 最近在线观看免费完整版| 成年女人看的毛片在线观看| 一本一本综合久久| 12—13女人毛片做爰片一| 久久九九热精品免费| 一级黄色大片毛片| 免费看十八禁软件| 久久精品91蜜桃| 嫁个100分男人电影在线观看| 欧美最新免费一区二区三区 | 男人的好看免费观看在线视频| 亚洲专区国产一区二区| 国产黄色小视频在线观看| 少妇的逼水好多| 19禁男女啪啪无遮挡网站| 亚洲欧美日韩高清在线视频| 久久精品影院6| 怎么达到女性高潮| 久久精品综合一区二区三区| 亚洲午夜理论影院| 免费看美女性在线毛片视频| 午夜精品久久久久久毛片777| 日本黄大片高清| 给我免费播放毛片高清在线观看| 中文亚洲av片在线观看爽| 日韩欧美精品免费久久 | 18禁国产床啪视频网站| 国产成人a区在线观看| 深夜精品福利| 国产欧美日韩精品一区二区| a级毛片a级免费在线| 国产激情偷乱视频一区二区| 亚洲av日韩精品久久久久久密| 成人精品一区二区免费| 欧美性感艳星| 亚洲欧美日韩东京热| 亚洲七黄色美女视频| 久久久久国产精品人妻aⅴ院| 亚洲欧美日韩卡通动漫| 日韩精品中文字幕看吧| 中国美女看黄片| 九九在线视频观看精品| 给我免费播放毛片高清在线观看| 91久久精品电影网| aaaaa片日本免费| 男女午夜视频在线观看| 欧美成人免费av一区二区三区| 国产真人三级小视频在线观看| 欧美极品一区二区三区四区| 九九久久精品国产亚洲av麻豆| 色尼玛亚洲综合影院| 一进一出好大好爽视频| 人妻丰满熟妇av一区二区三区| 99在线人妻在线中文字幕| 国产精品野战在线观看| 叶爱在线成人免费视频播放| 国产精品乱码一区二三区的特点| 日本 欧美在线| 久久香蕉精品热| 亚洲成av人片免费观看| 国产精品综合久久久久久久免费| 精品无人区乱码1区二区| 女人高潮潮喷娇喘18禁视频| 人妻久久中文字幕网| 搡女人真爽免费视频火全软件 | 亚洲乱码一区二区免费版| 国产成人欧美在线观看| avwww免费| 级片在线观看| 少妇的逼好多水| 中文字幕av在线有码专区| 最近视频中文字幕2019在线8| 欧美+日韩+精品| 欧美成人性av电影在线观看| 国产老妇女一区| 成年人黄色毛片网站| 久久久久久人人人人人| 夜夜夜夜夜久久久久| 亚洲国产精品999在线| 亚洲久久久久久中文字幕| 欧美午夜高清在线| 亚洲在线自拍视频| 成人特级av手机在线观看| 在线播放无遮挡| 18禁美女被吸乳视频| 久久久久久久久中文| 美女黄网站色视频| 淫妇啪啪啪对白视频| 亚洲精品粉嫩美女一区| 欧美一级a爱片免费观看看| 精品国产三级普通话版| 国产aⅴ精品一区二区三区波| 亚洲精品色激情综合| 日日摸夜夜添夜夜添小说| 国产精品精品国产色婷婷| 欧美日韩瑟瑟在线播放| 日韩高清综合在线| 午夜福利高清视频| 欧美中文日本在线观看视频| 黄色女人牲交| 免费在线观看日本一区| 欧美性猛交╳xxx乱大交人| 亚洲国产精品合色在线| 黄片大片在线免费观看| 国产伦精品一区二区三区四那| 久久精品人妻少妇| 少妇的丰满在线观看| 免费看a级黄色片| 成人亚洲精品av一区二区| 高清日韩中文字幕在线| 国产伦精品一区二区三区四那| 欧美一区二区亚洲| 在线观看66精品国产| 久久午夜亚洲精品久久| 人人妻人人澡欧美一区二区| 亚洲国产精品久久男人天堂| 一二三四社区在线视频社区8| 国产精品野战在线观看| 亚洲欧美一区二区三区黑人| 全区人妻精品视频| 精品无人区乱码1区二区| 精华霜和精华液先用哪个| 高清在线国产一区| 成年女人永久免费观看视频| 在线十欧美十亚洲十日本专区| 最后的刺客免费高清国语| 成人av一区二区三区在线看| 欧美丝袜亚洲另类 | 老汉色∧v一级毛片| 亚洲人成伊人成综合网2020| 久久精品夜夜夜夜夜久久蜜豆| 久久人妻av系列| 亚洲国产欧洲综合997久久,| 91九色精品人成在线观看| 欧美黑人巨大hd| 我的老师免费观看完整版| 两人在一起打扑克的视频| 一区福利在线观看| 脱女人内裤的视频| 18禁美女被吸乳视频| 九九在线视频观看精品| 非洲黑人性xxxx精品又粗又长| 国产一区二区在线观看日韩 | 日韩欧美精品v在线| 日本在线视频免费播放| 久久久久久国产a免费观看| 亚洲最大成人中文| 国产精华一区二区三区| 亚洲精品一区av在线观看| 久久伊人香网站| 变态另类丝袜制服| 成人高潮视频无遮挡免费网站| 桃红色精品国产亚洲av| 国产av在哪里看| 亚洲国产精品久久男人天堂| 国产三级黄色录像| 99久久九九国产精品国产免费| 午夜精品在线福利| 国产午夜精品久久久久久一区二区三区 | 最新美女视频免费是黄的| 九九热线精品视视频播放| 又黄又爽又免费观看的视频| 好男人在线观看高清免费视频| 亚洲自拍偷在线| 国产又黄又爽又无遮挡在线| 国产精品自产拍在线观看55亚洲| 网址你懂的国产日韩在线| 国产真实乱freesex| 亚洲精品成人久久久久久| 久久婷婷人人爽人人干人人爱| 老司机在亚洲福利影院| 国产伦人伦偷精品视频| 国产午夜精品论理片| 国产精品女同一区二区软件 | 国产精品日韩av在线免费观看| 免费在线观看日本一区| 九色成人免费人妻av| 丁香六月欧美| 久久久国产精品麻豆| 一级毛片高清免费大全| 黄片小视频在线播放| 男女那种视频在线观看| 99热只有精品国产| 国内精品久久久久精免费| 九色成人免费人妻av| 麻豆一二三区av精品| 乱人视频在线观看| 熟妇人妻久久中文字幕3abv| 日本a在线网址| 手机成人av网站| 久久九九热精品免费| 97碰自拍视频| 亚洲第一欧美日韩一区二区三区| av欧美777| 一本精品99久久精品77| 十八禁网站免费在线| 国产成+人综合+亚洲专区| 久久天躁狠狠躁夜夜2o2o| 嫩草影视91久久| 色尼玛亚洲综合影院| 亚洲av电影在线进入| av天堂中文字幕网| 午夜激情欧美在线| 亚洲激情在线av| 国产亚洲精品av在线| 嫁个100分男人电影在线观看| 亚洲美女黄片视频| 亚洲在线观看片| 亚洲欧美一区二区三区黑人| 一进一出抽搐gif免费好疼| 亚洲久久久久久中文字幕| 欧美日韩中文字幕国产精品一区二区三区| 亚洲色图av天堂| 少妇人妻精品综合一区二区 | 哪里可以看免费的av片| 搡老熟女国产l中国老女人| 久久性视频一级片| 97人妻精品一区二区三区麻豆| 一级毛片女人18水好多| 国产精品久久久久久人妻精品电影| 精品人妻偷拍中文字幕| 黄色丝袜av网址大全| 亚洲性夜色夜夜综合| 精品一区二区三区视频在线观看免费| 蜜桃亚洲精品一区二区三区| 亚洲精品国产精品久久久不卡| 国产精品98久久久久久宅男小说| 在线看三级毛片| 国产成年人精品一区二区| 少妇熟女aⅴ在线视频| 可以在线观看的亚洲视频| www.色视频.com| 久久精品国产综合久久久| 亚洲最大成人手机在线| 欧美bdsm另类| 日韩大尺度精品在线看网址| 久久亚洲真实| 国产av在哪里看| 欧美一级a爱片免费观看看| 色播亚洲综合网| 国产av在哪里看| 亚洲欧美日韩高清在线视频| 一个人观看的视频www高清免费观看| 男人舔奶头视频| 男女那种视频在线观看| 久久6这里有精品| 日韩精品青青久久久久久| 观看免费一级毛片| av视频在线观看入口| 又粗又爽又猛毛片免费看| 最近最新中文字幕大全电影3| 91在线精品国自产拍蜜月 | 欧美另类亚洲清纯唯美| 国产精品爽爽va在线观看网站| 亚洲国产高清在线一区二区三| 人妻久久中文字幕网| 噜噜噜噜噜久久久久久91| 欧美日韩黄片免|