房昊源,楊亮,王洪壯,曹錦承,任萬(wàn)平,魏勝娟*,顏培實(shí)
夏季橫向交互送風(fēng)系統(tǒng)對(duì)肉牛生理和生產(chǎn)性能的影響
房昊源1,楊亮1,王洪壯1,曹錦承1,任萬(wàn)平2,魏勝娟1*,顏培實(shí)1
1南京農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,南京 210095;2新疆農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)學(xué)院, 烏魯木齊 830052
【目的】探討南方夏季高溫高濕氣候條件下,橫向交互送風(fēng)系統(tǒng)對(duì)肉牛舍溫?zé)岘h(huán)境、肉牛生理生化指標(biāo)及生產(chǎn)性能的影響,以期評(píng)價(jià)此肉牛防暑環(huán)境調(diào)控系統(tǒng)的技術(shù)經(jīng)濟(jì)效果?!痉椒ā吭囼?yàn)采用單因子完全隨機(jī)設(shè)計(jì),選擇健康、體重相近((290.05±7.60)kg)的8月齡西門(mén)塔爾公牛30頭,隨機(jī)區(qū)組飼養(yǎng)于2棟相鄰且構(gòu)造相同的鐘樓式棚舍中,試驗(yàn)組所在牛舍加裝橫向交互送風(fēng)系統(tǒng),對(duì)照組所在牛舍采用自然通風(fēng)。試驗(yàn)期為2019年6月30日至7月16日,共17 d,其中預(yù)試期為前3 d,正式期為后14 d。正式試驗(yàn)期內(nèi)前7 d,于每日的5:00、10:00、14:00、18:00、22:00測(cè)定舍內(nèi)風(fēng)速、干球溫度和濕球溫度,計(jì)算溫濕指數(shù)和體感溫度,并同時(shí)測(cè)定肉牛的直腸溫度和呼吸頻率。在全部正式試驗(yàn)期間,每天記錄每圈欄的投料量,并于次日上午6點(diǎn)對(duì)剩料進(jìn)行清理和稱(chēng)重,計(jì)算采食量。于正式試驗(yàn)期內(nèi)第1和14天的上午7:00—8:00,對(duì)所有試驗(yàn)牛進(jìn)行空腹稱(chēng)重,記錄始末體重,用于計(jì)算平均日增重和料重比等生產(chǎn)性能指標(biāo)并進(jìn)行經(jīng)濟(jì)效益評(píng)估;同時(shí)采集血液及糞便樣本,用于測(cè)定血清中的無(wú)機(jī)離子、生化指標(biāo)、激素水平及糞便中的皮質(zhì)醇水平。【結(jié)果】(1)試驗(yàn)組的橫向交互式送風(fēng)系統(tǒng)處理可顯著提高舍內(nèi)風(fēng)速(<0.01),從而極顯著的降低試驗(yàn)組肉牛的體感溫度、肉牛在10:00、14:00、18:00、22:00的直腸溫度以及肉牛在10:00、14:00、18:00的呼吸頻率(<0.01);與對(duì)照組肉牛相比,試驗(yàn)組肉牛直腸溫度和呼吸頻率隨環(huán)境溫度升高的增幅分別減少45%和42%;試驗(yàn)組與對(duì)照組的舍內(nèi)干球溫度、相對(duì)濕度及溫濕指數(shù)差異不顯著(>0.05)。(2)試驗(yàn)結(jié)束時(shí),試驗(yàn)組肉牛血清中鈣離子含量顯著低于對(duì)照組(<0.05),鉀離子、鈉離子、鎂離子及氯離子含量均差異不顯著(>0.05);血清生化指標(biāo)結(jié)果顯示,試驗(yàn)組肉牛血清中的熱應(yīng)激蛋白70、總蛋白、甘油三酯、葡萄糖含量均顯著高于對(duì)照組(<0.05),血清白蛋白、球蛋白及總膽固醇含量差異不顯著(>0.05);激素水平測(cè)定結(jié)果顯示,試驗(yàn)組肉牛的糞便及血清中皮質(zhì)醇水平均顯著低于對(duì)照組(<0.05),三碘甲狀腺原氨酸和甲狀腺素在試驗(yàn)組和對(duì)照組間差異均不顯著(>0.05)。(3)生產(chǎn)性能測(cè)定顯示,試驗(yàn)組與對(duì)照組肉牛的初始體重及結(jié)束體重均差異不顯著(>0.05),但試驗(yàn)組肉牛的平均日增重(<0.01)及平均干物質(zhì)采食量(<0.05)顯著高于對(duì)照組,料重比顯著低于對(duì)照組(<0.05),利潤(rùn)可提高10.68%?!窘Y(jié)論】橫向交互送風(fēng)可以顯著增加舍內(nèi)空氣流速,降低體感溫度,改善西門(mén)塔爾牛代謝,提高生產(chǎn)性能,增加高溫高濕環(huán)境下肉牛生產(chǎn)的經(jīng)濟(jì)效益。
橫向送風(fēng);肉牛;體溫調(diào)節(jié);生理生化指標(biāo);生產(chǎn)性能;經(jīng)濟(jì)效益
【研究意義】我國(guó)南方夏季高溫高濕的氣候條件下,家畜的可感散熱效率會(huì)隨著溫度的升高而下降,蒸發(fā)散熱成為散失體熱的主要甚至唯一途徑[1],此時(shí)空氣濕度的增加會(huì)進(jìn)一步抑制蒸發(fā)散熱,加劇家畜的熱應(yīng)激。如何通過(guò)簡(jiǎn)單有效的環(huán)境調(diào)控措施調(diào)節(jié)畜舍小氣候,幫助牛體調(diào)節(jié)體熱平衡、維持正常的體溫日節(jié)律,從而減少熱應(yīng)激的危害,具有重要意義?!厩叭搜芯窟M(jìn)展】大氣流通風(fēng)系統(tǒng)在高溫高濕條件下仍可促進(jìn)蒸發(fā)散熱,維持體熱平衡。牛的汗腺發(fā)達(dá),利用強(qiáng)制通風(fēng)措施增大氣流,可以促進(jìn)高溫高濕環(huán)境下牛體的蒸發(fā)散熱,緩解肉牛的熱應(yīng)激。相關(guān)研究表明,噴淋/噴霧與風(fēng)機(jī)結(jié)合的方式可緩解肉牛熱應(yīng)激,改善肉牛生產(chǎn)性能[2-5]。此外,單獨(dú)使用強(qiáng)制送風(fēng)也能一定程度上緩解牛的熱應(yīng)激狀況,且可避免噴淋或噴霧所造成的舍內(nèi)空氣濕度增加的問(wèn)題[6]。YOUNAS等[7]指出,吊扇送風(fēng)可降低奶牛直腸溫度并提高發(fā)情率。丁麗等[8]發(fā)現(xiàn),傳統(tǒng)吊扇吹風(fēng)可降低肉牛呼吸頻率并提高日增重。蔡景義等[9]表明,縱向接力送風(fēng)降低肉牛呼吸頻率并改善生產(chǎn)性能?!颈狙芯壳腥朦c(diǎn)】目前,關(guān)于橫向交互送風(fēng)系統(tǒng)對(duì)改善牛的熱應(yīng)激的相關(guān)研究較少,僅王深圳等[10]初步探討了橫向送風(fēng)對(duì)肉牛的生理指標(biāo)的影響,且該系統(tǒng)對(duì)牛的血清離子、血清生化指標(biāo)、激素水平及生產(chǎn)性能的影響均未見(jiàn)報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】本試驗(yàn)設(shè)計(jì)橫向交互送風(fēng)系統(tǒng),通過(guò)棚舍溫?zé)岘h(huán)境監(jiān)測(cè)、機(jī)體生理反應(yīng)、血清指標(biāo)、生產(chǎn)性能等多個(gè)方面,系統(tǒng)地探究該送風(fēng)模式對(duì)肉牛的防暑效果及經(jīng)濟(jì)效益的影響,以期為我國(guó)南方夏季肉牛生產(chǎn)提供簡(jiǎn)單有效的環(huán)境管理技術(shù)方略。
本試驗(yàn)于2019年6月30日至7月16日在湖北省荊門(mén)市沙洋縣漢江牛業(yè)發(fā)展有限公司進(jìn)行,預(yù)飼期3 d,正式試驗(yàn)期14 d,共計(jì)17 d。沙洋縣位于漢江中下游,江漢平原北端,地理位置在東經(jīng)112°02′—112°42′,北緯30°23′—30°55′,東臨漢江,西瀕漳水,南濱長(zhǎng)湖,北靠荊山余脈。地處北亞熱帶溫帶大陸季風(fēng)氣候區(qū),夏季受來(lái)自海洋的副熱帶高壓控制,多吹偏南季風(fēng),太陽(yáng)輻射強(qiáng)烈,氣溫高,空氣濕度大。該地區(qū)氣候數(shù)據(jù)顯示,7月平均氣溫33℃,最高可達(dá)38℃。
試驗(yàn)用牛舍為2棟相鄰且構(gòu)造相同的鐘樓式棚舍,牛舍東西走向,長(zhǎng)84 m,跨24 m,頂高5.4 m,檐口高3.7 m,外圍圍欄高1.5 m,南北兩側(cè)各有7個(gè)圈欄,每個(gè)圈欄長(zhǎng)12 m、寬10 m,寬為3 m的東西向通道縱貫牛舍中部。選用體重相近(290.05±7.60)kg,健康狀況良好的8月齡西門(mén)塔爾公牛30頭,隨機(jī)分為2組,每組3個(gè)圈欄,每欄5頭牛,試驗(yàn)用牛分別散養(yǎng)在兩棟牛舍的同等位置的圈欄內(nèi)。試驗(yàn)采用單因子試驗(yàn)設(shè)計(jì),對(duì)照組牛舍采用自然通風(fēng),試驗(yàn)組牛舍加裝落地式風(fēng)機(jī),采用橫向交互式送風(fēng)。試驗(yàn)組牛舍風(fēng)機(jī)型號(hào)DMR-1100(四扇葉),扇葉直徑1 m,通風(fēng)量21 000 m3·h-1,轉(zhuǎn)速700 r/min,電機(jī)功率370 W。風(fēng)機(jī)安裝于南北兩側(cè)圈欄外0.6 m高的水泥臺(tái)上,每隔12 m安裝一臺(tái),垂直夾角為3°,朝向飼槽(圖1)。南北兩側(cè)各交錯(cuò)安裝7臺(tái),共計(jì)14臺(tái),試驗(yàn)期間風(fēng)機(jī)24 h全天開(kāi)啟。
試驗(yàn)期間所有試驗(yàn)用牛按照常規(guī)飼養(yǎng)方式進(jìn)行管理,所有試驗(yàn)牛只飼喂相同日糧,每日9:00和18:00飼喂,飼喂方式為先精后粗、自由采食、自由飲水。預(yù)飼期3 d,正試期14 d。每天稱(chēng)取并記錄每圈投料量和剩料量。試驗(yàn)日糧參考《肉牛飼養(yǎng)標(biāo)準(zhǔn)》NY/T 815—2004[11],飼糧精粗比為38﹕62,粗料為玉米青貯和少量麥秸,精料組成及營(yíng)養(yǎng)成分見(jiàn)表1。
表1 精料組成及營(yíng)養(yǎng)水平(風(fēng)干基礎(chǔ),%)
1)預(yù)混料為每千克精料包含:鐵70 mg,錳50 mg,鋅 50 mg,銅15 mg,碘0.3 mg,硒0.38 mg,VA 2500 IU,VD 1000 IU,VE 20 mg。2)增重凈能按照原料配比進(jìn)行計(jì)算,其余指標(biāo)為實(shí)測(cè)值
1)The premix for each kilogram of concentrate includes: iron 70 mg, manganese 50 mg, zinc 50 mg, copper 15 mg, iodine 0.3 mg, selenium 0.38 mg, VA 2500 IU, VD 1000 IU, VE 20 mg.2)The NEg value was calculated according to the material proportion, and other nutrient level indexes were measured values
p為環(huán)境指標(biāo)測(cè)量點(diǎn) pis measuring point of environmental indicators
1.4.1 溫?zé)岘h(huán)境指標(biāo)的測(cè)定 正式試驗(yàn)期間,連續(xù)測(cè)定前7天的牛舍溫?zé)岘h(huán)境指標(biāo)。測(cè)量時(shí)間點(diǎn)為每天的5:00、10:00、14:00、18:00、22:00,測(cè)定指標(biāo)包括風(fēng)速(V)、干球溫度(Td)和濕球溫度(Tw),計(jì)算溫濕指數(shù)(THI)和體感溫度(ET)。
風(fēng)速(V):在牛舍中選取10個(gè)風(fēng)速指標(biāo)測(cè)量點(diǎn)(圖1-a),用手持式電子風(fēng)速計(jì)在距離地面1.5 m的垂直高度上測(cè)量風(fēng)速。待風(fēng)速計(jì)示數(shù)穩(wěn)定后讀數(shù),每個(gè)點(diǎn)測(cè)量3次并取平均值,連續(xù)測(cè)量7 d。
干球溫度(Td)和濕球溫度(Tw):在上述的風(fēng)速指標(biāo)測(cè)量點(diǎn),在距離地面1.5 m的垂直高度上用機(jī)械通風(fēng)干濕表測(cè)量該點(diǎn)的干球溫度(環(huán)境溫度)和濕球溫度。
溫濕指數(shù)(THI)= 0.72×(Td+Tw)+40.6[12]
體感溫度(ET)= 0.28Td+0.72Tw-1.93V[13]
1.4.2 生理指標(biāo)的測(cè)定 正式試驗(yàn)開(kāi)始后,連續(xù)測(cè)
定前7 d的生理指標(biāo)。測(cè)量時(shí)間點(diǎn)為每天的5:00、10:00、14:00、18:00、22:00,測(cè)定指標(biāo)包括直腸溫度(RT)和呼吸頻率(RR)。直腸溫度測(cè)定使用獸用直腸溫度計(jì)。呼吸頻率需記錄牛在安靜狀態(tài)下1 min內(nèi)的胸廓起伏次數(shù),每頭牛連續(xù)觀察3次取平均值。
1.4.3 血液生化指標(biāo)及激素水平的測(cè)定 每組牛中隨機(jī)選取6頭,分別在正式試驗(yàn)第1天和第14天早晨7:00到8:00進(jìn)行空腹頸靜脈采血并采集糞便。血液采集利用一次性真空采血管,每頭采血10 ml,3 500 r/min離心10 min,將上層血清轉(zhuǎn)至1.5 ml的離心管中,-20℃冷凍保存?zhèn)溆?。糞便中皮質(zhì)醇提取方法參考Khan[14]和Karen[15]的方法,在65℃條件下烘干后,用90%乙醇和甲醇提取。皮質(zhì)醇(COR)、熱休克蛋白70(HSP70)、三碘甲狀腺原氨酸(T3)和甲狀腺素(T4)的含量采用酶聯(lián)免疫分析法測(cè)定;總蛋白(TP)采用BCA法測(cè)定,白蛋白(ALB)采用溴甲酚綠法測(cè)定,同時(shí)計(jì)算出球蛋白(GLB)的含量(GLB = TP - ALB);總膽固醇(T-CHO)采用COD-PAP法測(cè)定;甘油三酯(TG)采用GPO-PAP法測(cè)定;葡萄糖(Glu)使用氧化酶法測(cè)定;無(wú)機(jī)離子包括Ca2+、K+、Na+、Mg2+、Cl-采用原子分光光度計(jì)測(cè)量。測(cè)定COR、HSP70、T3、T4所用的ELISA試劑盒購(gòu)自上海酶聯(lián)生物科技有限公司,測(cè)定TP、ALB、T-CHO、TG、Glu及無(wú)機(jī)離子所用試劑盒購(gòu)自南京建成生物工程研究所。
1.4.4 生產(chǎn)性能的測(cè)定 試驗(yàn)期間每天記錄每圈欄的投料量,并于次日上午6點(diǎn)對(duì)剩料進(jìn)行清理和稱(chēng)重,分別在正式試驗(yàn)第1天和第14天上午7:00到8:00進(jìn)行空腹稱(chēng)重,計(jì)算平均日增重、干物質(zhì)采食量和料重比。
平均日增重=(試驗(yàn)?zāi)┲?試驗(yàn)初始重)/試驗(yàn)天數(shù);
平均日采食量=(試驗(yàn)期內(nèi)每組牛投料量-試驗(yàn)期內(nèi)每組牛剩料量)/(試驗(yàn)天數(shù)×每組牛的數(shù)量);
料重比= 平均日采食量/平均日增重。
1.4.5 經(jīng)濟(jì)效益評(píng)估 每頭牛每日飼料成本(元/(頭·d))=每日飼料消耗量(kg/(頭·d))×飼料單價(jià)(元/kg);
每頭牛每日風(fēng)機(jī)用電成本(元/d)=風(fēng)機(jī)功率(kw)×風(fēng)機(jī)數(shù)量×每日使用時(shí)間(h/d)×電價(jià)(元/(kWh))/牛只數(shù)量;
每日增重收入(元/(頭·d))=平均日增重(kg/(頭·d))×活牛價(jià)格(元/kg);
每日利潤(rùn)(元/(頭·d))=每日增重收入(元/(頭·d))-每日飼料成本(元/(頭·d))-風(fēng)機(jī)每日用電成本(元/(頭·d))。
數(shù)據(jù)經(jīng)Excel 2016初步整理后,采用SPSS 21.0軟件進(jìn)行單因素方差分析,LSD檢驗(yàn)各組之間的統(tǒng)計(jì)學(xué)顯著性。兩樣本間的統(tǒng)計(jì)學(xué)檢驗(yàn)采用檢驗(yàn)。所有數(shù)據(jù)均采用平均值±標(biāo)準(zhǔn)誤(Mean±SEM)的方式表示,<0.05為差異顯著,<0.01為差異極顯著。
由圖2中THI數(shù)據(jù)可知,牛在試驗(yàn)期間處于輕度或中度熱應(yīng)激狀態(tài)。橫向交互送風(fēng)對(duì)舍內(nèi)干球溫度、相對(duì)濕度及THI的影響差異不顯著(>0.05),但相比對(duì)照舍,試驗(yàn)舍風(fēng)速顯著提高了7.74倍(<0.01),并顯著降低了肉牛體感溫度(<0.01,表2)。
圖2 不同時(shí)間段兩組牛舍的溫濕指數(shù)
表2 兩組牛舍的溫?zé)岘h(huán)境對(duì)比
同列數(shù)據(jù)無(wú)字母表示差異不顯著(P>0.05),不同大寫(xiě)字母表示差異極顯著(P<0.01)
Values with no letter mean no significant difference (P>0.05), while with different uppercase letter indicate very significant difference (P<0.01) in the same column
2.2.1 對(duì)直腸溫度和呼吸頻率的影響 圖3結(jié)果表明,橫向交互送風(fēng)極顯著降低了牛在10:00、14:00、18:00、22:00的RT以及10:00、14:00、18:00的RR(<0.01),對(duì)5:00的RT及5:00和22:00的RR影響不顯著(>0.05)。此外,將RT和RR分別與Td進(jìn)行線性回歸分析(圖4)可得,RT對(duì)=0.1048 Td+36.437(=0.8422),RT試=0.0573 Td+ 37.55(=0.9042);RR對(duì)=2.2435 Td-27.685(= 0.9692),RR試=1.2957 Td-8.1612(=0.9138),由此可知,RT和RR分別與Td呈正相關(guān),且試驗(yàn)組RT和RR隨環(huán)境溫度升高的增幅減少分別為45%和42%。
圖3 兩組牛的直腸溫度和呼吸頻率
圖4 干球溫度與直腸溫度或呼吸頻率的相關(guān)性分析
2.2.2 橫向交互送風(fēng)對(duì)血清無(wú)機(jī)離子含量的影響 表3結(jié)果表明,試驗(yàn)組的血清Ca2+含量在試驗(yàn)前后無(wú)顯著性變化(>0.05),但對(duì)照組第14天的血清Ca2+含量比第1天顯著上升(<0.05),且顯著高于試驗(yàn)組(<0.05)。其余無(wú)機(jī)離子包括K+、Na+、Mg2+、Cl-在兩組間及試驗(yàn)前后均無(wú)顯著差異(>0.05)。
2.2.3 橫向交互送風(fēng)對(duì)血液生化指標(biāo)及激素水平的
影響 血液生化指標(biāo)數(shù)據(jù)(表4)顯示,與同組內(nèi)第1天相比,試驗(yàn)組第14天血清TG顯著升高(<0.05),對(duì)照組第14天HSP70顯著升高(<0.05)、TP顯著降低(<0.05);與第14天的對(duì)照組相比,試驗(yàn)組第14天的TP、TG、Glu含量顯著升高(<0.05)、HSP70顯著降低(<0.05);其余指標(biāo)差異不顯著(>0.05)。
表3 兩組牛的血清無(wú)機(jī)離子
同一行數(shù)據(jù)無(wú)字母表示差異不顯著(>0.05),不同小寫(xiě)字母(a/b)表示第14天與第1天相比差異顯著(<0.05);同一列數(shù)據(jù)無(wú)字母標(biāo)注表示差異不顯著(>0.05),有不同小寫(xiě)字母(x/y)標(biāo)注表示試驗(yàn)組與對(duì)照組相比差異顯著(<0.05)。同表4
In the same row, values with no letter mean no significant difference (>0.05), while with different lowercase letter (a/b) mean significant difference between the first day and the fourteenth day (<0.05).In the same column, values with no letter mean no significant difference (>0.05), while with different lowercase letter (x/y) mean significant difference between different groups (<0.05).The same as table 4
表4 兩組牛的血液生化指標(biāo)
激素含量測(cè)定(表5)表明,對(duì)照組第14天糞便中COR水平顯著高于第1天(<0.05),且試驗(yàn)組第14天血液和糞便中COR水平與同期對(duì)照組相比均顯著降低(<0.05);血液中T3和T4含量在兩組間及試驗(yàn)前后均無(wú)顯著差異(>0.05)。
由表6可知,與對(duì)照組相比,試驗(yàn)組的IW和LW的差異均不顯著(>0.05),但試驗(yàn)組的DMI提高了1.8%(<0.05),ADG提高了15.04%(<0.01),F(xiàn)/G降低了12.43%(<0.05),顯著提高了牛的生產(chǎn)性能。
表5 兩組牛的激素水平
表6 兩組牛的生產(chǎn)性能
同行數(shù)據(jù)無(wú)字母表示差異不顯著(>0.05),不同小寫(xiě)字母和大寫(xiě)字母分別表示差異顯著(<0.05)和差異極顯著(<0.01)
In the same row of data, values with no letter mean no significant difference (>0.05), while with different lowercase and uppercase letter indicate significant difference (<0.05) or very significant difference (<0.01), respectively2.4 橫向交互送風(fēng)對(duì)經(jīng)濟(jì)效益的影響
根據(jù)肉牛的增重,記錄試驗(yàn)期用電量和日糧消耗量,并將風(fēng)機(jī)設(shè)備按7年(4%殘值)進(jìn)行折舊,計(jì)算經(jīng)濟(jì)效益。由表7可知,試驗(yàn)期內(nèi)對(duì)照組和試驗(yàn)組每頭牛平均日增重分別為1.43 kg和1.64 kg,按照30元/kg的市場(chǎng)價(jià)格,每頭牛每天的增重利潤(rùn)分別為42.90元和49.20元。試驗(yàn)組因加裝橫向交互式送風(fēng)系統(tǒng),需考慮風(fēng)機(jī)用電成本及折舊成本,按舍內(nèi)飼養(yǎng)70頭肉牛計(jì)算,每頭牛每天的用電量為1.78 kWh,電費(fèi)為0.94元,加上每頭牛每天的風(fēng)機(jī)折舊成本2.56元,試驗(yàn)期間每頭牛每天的風(fēng)機(jī)投入總成本為3.50元。對(duì)照組和試驗(yàn)組每頭牛的日糧消耗量分別為22.90 kg和23.32 kg,日糧成本按照單位日糧折合價(jià)格0.88元/kg計(jì)算,每頭牛每天的日糧成本分別為20.15元和20.52元。用每日增重收入減去每日飼料成本及風(fēng)機(jī)成本后,得到每日利潤(rùn),試驗(yàn)組為25.18元/(頭·d),對(duì)照組為22.75元/(頭·d),毛利潤(rùn)提高了10.68%。
表7 經(jīng)濟(jì)效益對(duì)比
溫?zé)岘h(huán)境包括溫度、濕度、風(fēng)速等因素,這些因素共同作用于動(dòng)物,使其產(chǎn)生冷或熱、舒適與否的感受。風(fēng)機(jī)通風(fēng)是通過(guò)提高空氣流速以增加家畜的對(duì)流和蒸發(fā)散熱,提高肉牛的舒適感受,其對(duì)舍內(nèi)溫濕度的影響與牛舍結(jié)構(gòu)特點(diǎn)及外界環(huán)境氣候條件有關(guān)。本試驗(yàn)研究發(fā)現(xiàn),橫向交互式送風(fēng)系統(tǒng)對(duì)棚舍內(nèi)溫度、相對(duì)濕度無(wú)顯著影響,這與AHMAD等[16]在棚舍中利用風(fēng)扇送風(fēng)的研究結(jié)果一致。溫濕指數(shù)和體感溫度是溫?zé)岘h(huán)境的綜合評(píng)價(jià)指標(biāo),前者將氣溫和氣濕兩者相結(jié)合,后者綜合考慮了氣溫、氣濕及風(fēng)速的影響。本試驗(yàn)表明,橫向交互送風(fēng)系統(tǒng)可以顯著增加舍內(nèi)風(fēng)速,繼而顯著降低了牛的體感溫度,雖然對(duì)溫濕指數(shù)影響差異不顯著,但各個(gè)時(shí)間點(diǎn)均較低,結(jié)合試驗(yàn)舍小幅的溫度降低和相對(duì)濕度增加,反映通風(fēng)促進(jìn)蒸發(fā)散熱,有利于蒸發(fā)冷卻。這與王深圳等[10]的研究結(jié)果相似,說(shuō)明橫向交互送風(fēng)系統(tǒng)可以改善高溫高濕氣候下的舍內(nèi)溫?zé)岘h(huán)境。
在高溫高濕的環(huán)境下,動(dòng)物為維持體熱平衡,會(huì)加快呼吸頻率、升高體溫,從而加強(qiáng)顯熱散熱及通過(guò)呼吸道和皮膚的蒸發(fā)散熱。本試驗(yàn)表明,橫向送風(fēng)顯著降低了試驗(yàn)組肉牛的直腸溫度和呼吸頻率,與王深圳[10]的研究結(jié)果一致;同時(shí),橫向送風(fēng)降低了肉牛直腸溫度及呼吸頻率隨溫度升高而上升的增幅,這與孫凱佳等[3]利用噴淋與吹風(fēng)相結(jié)合的方式得到的研究結(jié)果相似。熱性喘息意味著家畜的不舒適,由圖4可知,在25℃時(shí),試驗(yàn)組體溫在39℃的臨界體溫之下,而對(duì)照組已經(jīng)超過(guò)臨界體溫,且其呼吸數(shù)與試驗(yàn)組29℃時(shí)的呼吸數(shù)相當(dāng)。以上結(jié)果表明,橫向交互式送風(fēng)系統(tǒng)作為強(qiáng)制通風(fēng)措施,可以通過(guò)增加機(jī)體散熱,改善肉牛在高溫高濕環(huán)境中的體溫調(diào)節(jié)生理反應(yīng)。
血清生化指標(biāo)的變化通常與機(jī)體營(yíng)養(yǎng)水平及生理狀態(tài)密切相關(guān)[17]。MADER等[18]的研究結(jié)果顯示,處于熱應(yīng)激狀態(tài)下的肉牛,會(huì)通過(guò)口角流涎、排汗增加等導(dǎo)致體內(nèi)K+、Na+、Cl-等離子的流失,但有學(xué)者研究發(fā)現(xiàn)熱應(yīng)激期肉牛血清中K+、Na+、Cl-等離子水平與非熱應(yīng)激期相比并沒(méi)有顯著變化[19]。本研究發(fā)現(xiàn),送風(fēng)對(duì)血清中K+、Na+、Cl-、Mg2+并沒(méi)有顯著影響,這可能與青年牛的出汗速率小且均沒(méi)有出現(xiàn)口角流涎等情況有關(guān)。有研究報(bào)道熱應(yīng)激狀態(tài)下血清中Ca2+會(huì)與機(jī)體產(chǎn)生的過(guò)量有機(jī)酸結(jié)合而導(dǎo)致血鈣濃度下降[20]。熱應(yīng)激狀態(tài)下呼吸速率加快產(chǎn)生呼吸性堿中毒,亦會(huì)導(dǎo)致血液中游離Ca2+下降[21-22],而金鑫等[23]在噴淋?chē)婌F防暑試驗(yàn)中發(fā)現(xiàn)Ca2+含量并未產(chǎn)生顯著變化。本研究發(fā)現(xiàn)對(duì)照組Ca2+顯著升高且高于試驗(yàn)組,與Srikandakumar等[24]報(bào)道中熱應(yīng)激導(dǎo)致荷斯坦牛和娟姍牛的血清Ca2+濃度上升相一致,其原因可能與熱應(yīng)激狀態(tài)下動(dòng)物體內(nèi)酸堿失衡有關(guān)。本試驗(yàn)中送風(fēng)維持了試驗(yàn)組肉牛血鈣水平的穩(wěn)定,表明送風(fēng)通過(guò)改善高溫高濕條件下肉牛的體溫調(diào)節(jié)生理反應(yīng),有助于肉牛保持體內(nèi)的酸堿平衡,維持內(nèi)環(huán)境穩(wěn)態(tài)。
Shiao等[25]利用濕簾通風(fēng)為奶牛舍降溫時(shí)發(fā)現(xiàn),濕簾通風(fēng)會(huì)增加奶牛血清中的TP水平,這與本試驗(yàn)利用橫向通風(fēng)對(duì)血清TP含量影響的結(jié)果相一致。血清中的Glu水平是機(jī)體中糖分吸收、轉(zhuǎn)運(yùn)和利用等動(dòng)態(tài)平衡的表現(xiàn)[26]。有關(guān)熱應(yīng)激期間血糖變化的報(bào)道并不一致。有研究表明高溫高濕環(huán)境會(huì)導(dǎo)致機(jī)體腎上腺皮質(zhì)及髓質(zhì)機(jī)能亢進(jìn),一方面腎上腺分泌水平上升,促進(jìn)肝糖原的分解,另一方面,糖皮質(zhì)激素會(huì)降低胰島素的分泌,最終導(dǎo)致血清中Glu含量上升[27]。也有學(xué)者發(fā)現(xiàn),慢性熱應(yīng)激會(huì)導(dǎo)致血糖下降,而急性熱應(yīng)激會(huì)導(dǎo)致血糖上升[28]。本研究發(fā)現(xiàn),送風(fēng)使肉牛血清Glu水平顯著高于對(duì)照組,與吳武平等[5]利用屋面噴淋通風(fēng)對(duì)Glu的影響結(jié)果一致,原因可能是因?yàn)榻禍卮胧┦箘?dòng)物的采食量增加,血液中糖異生前體物質(zhì)的增多,加強(qiáng)了肝臟糖異生的功能[29],使血糖水平升高,同時(shí)試驗(yàn)組肉牛血清TG含量的顯著增高也可能來(lái)自于通風(fēng)對(duì)采食的促進(jìn)。HSP70的快速表達(dá)對(duì)細(xì)胞保護(hù)至關(guān)重要[30],通過(guò)維持細(xì)胞的正常結(jié)構(gòu)[31],以應(yīng)對(duì)環(huán)境應(yīng)激。本試驗(yàn)中,對(duì)照組血清HSP70含量顯著下降且高于試驗(yàn)組,通風(fēng)組HSP70含量無(wú)顯著變化,反映了通風(fēng)對(duì)試驗(yàn)組牛的熱應(yīng)激有一定的改善作用。
T3、T4是機(jī)體代謝率的主要決定因素[32],與機(jī)體產(chǎn)熱密切相關(guān)[33]。在本試驗(yàn)中,試驗(yàn)組和對(duì)照組血清中T3、T4水平均有下降的趨勢(shì),但是差異并不顯著,這與李川[34]利用噴霧吹風(fēng)降溫方式得到的試驗(yàn)結(jié)果相似,其原因可能與較短的試驗(yàn)周期有關(guān)。血清皮質(zhì)醇水平升高表明機(jī)體正在遭受應(yīng)激[5],糞便中皮質(zhì)醇的含量反映機(jī)體一段時(shí)間內(nèi)的平均皮質(zhì)醇水平[35-36]。本試驗(yàn)結(jié)果發(fā)現(xiàn),試驗(yàn)組牛血清及糞便中的COR含量均顯著低于對(duì)照組,表明橫向交互式送風(fēng)顯著緩解了高溫高濕環(huán)境對(duì)牛的不利影響。這與吳武平等[5]報(bào)道的屋面噴淋降溫可顯著降低試驗(yàn)組肉牛血清中COR含量的研究結(jié)果相類(lèi)似。
熱應(yīng)激條件下,家畜在增加散熱的同時(shí)也會(huì)減少產(chǎn)熱量,包括減少采食以降低熱增耗,減少生長(zhǎng)及產(chǎn)乳等,以降低生產(chǎn)產(chǎn)熱,維持自身產(chǎn)熱與散熱的平衡。通過(guò)調(diào)控牛舍環(huán)境而提高肉牛的干物質(zhì)攝入量、促進(jìn)生長(zhǎng)是提高肉牛生產(chǎn)性能和效率的重要手段[37]。有研究表明,送風(fēng)可在一定程度上緩解肉牛熱應(yīng)激的負(fù)面影響,提高采食量及日增重,改善牛的生產(chǎn)性能[8]。本試驗(yàn)發(fā)現(xiàn),橫向交互式送風(fēng)模式顯著提高了試驗(yàn)組牛的日平均干物質(zhì)采食量及平均日增重,顯著降低料重比,增加了利潤(rùn),表明通過(guò)橫向交互式送風(fēng)改善牛舍溫?zé)岘h(huán)境,可顯著提高肉牛的生產(chǎn)性能及經(jīng)濟(jì)效益。
本試驗(yàn)條件下,橫向交互送風(fēng)顯著增加舍內(nèi)空氣流速,降低西門(mén)塔爾牛體感溫度、直腸溫度和呼吸頻率;顯著降低血清Ca2+及HSP70含量,提高血清總蛋白、甘油三酯、葡萄糖含量,降低血液和糞便中皮質(zhì)醇水平,緩解了肉牛熱應(yīng)激。此外,橫向交互送風(fēng)系統(tǒng)顯著提高了西門(mén)塔爾牛的日增重及平均干物質(zhì)采食量,顯著降低料重比,提高了肉牛的生產(chǎn)性能及經(jīng)濟(jì)效益。
[1] SEJIAN V, KUMAR D, GAUGHAN J B, NAQVI S M K.Effect of multiple environmental stressors on the adaptive capability of Malpura rams based on physiological responses in a semi-arid tropical environment.Journal of Veterinary Behavior, 2017, 17: 6-13.doi:10.1016/j.jveb.2016.10.009.
[2] 李川, 吳武平, 張泳楨, 吳華東, 黃愛(ài)民, 楊食堂, 舒鄧群.不同角度的風(fēng)機(jī)對(duì)肉牛生理指標(biāo)和生產(chǎn)性能的影響.家畜生態(tài)學(xué)報(bào), 2015, 36(2): 48-53.
LI C, WU W P, ZHANG Y Z, WU H D, HUANG A M, YANG S T, SHU D Q.Effect of fan angle on physiological and growth performance of beef cattle.Journal of Domestic Animal Ecology, 2015, 36(2): 48-53.(in Chinese)
[3] 孫凱佳, 高騰云, 潘軍, 曹玉鳳, 王笑笑.噴淋與吹風(fēng)對(duì)熱應(yīng)激肉牛生產(chǎn)性能及生理指標(biāo)的影響.西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2011, 39(11): 59-64, 70.doi:10.13207/j.cnki.jnwafu.2011.11.033.
SUN K J, GAO T Y, PAN J, CAO Y F, WANG X X.Effects of sprinkling and Fanning on growth performance and physiological indices of heat-stressed beef cattle.Journal of Northwest A & F University (Natural Science Edition), 2011, 39(11): 59-64, 70.doi:10.13207/j.cnki.jnwafu.2011.11.033.(in Chinese)
[4] 丁露雨, 王美芝, 陳昭輝, 劉繼軍, 楊食堂, 周俊生.南方開(kāi)放式肉牛舍夏季噴霧降溫效果.農(nóng)業(yè)工程學(xué)報(bào), 2013, 29(2): 224-231.
DING L Y, WANG M Z, CHEN Z H, LIU J J, YANG S T, ZHOU J S.Effects of spraying cooling on open beef cattle barn in Southern China.Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2): 224-231.(in Chinese)
[5] 吳武平, 李川, 吳華東, 黃愛(ài)民, 張泳楨, 楊食堂, 舒鄧群.屋面噴淋通風(fēng)降溫系統(tǒng)對(duì)熱應(yīng)激肉牛血液生化指標(biāo)的影響.江西農(nóng)業(yè)大學(xué)學(xué)報(bào), 2016, 38(5): 954-960, 967.doi:10.13836/j.jjau.2016135.
WU W P, LI C, WU H D, HUANG A M, ZHANG Y Z, YANG S T, SHU D Q.Effect of roof sprinkling ventilation and cooling system on blood biochemical indices of beef cattle in heat stress.Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(5): 954-960, 967.doi:10.13836/j.jjau.2016135.(in Chinese)
[6] DIKMEN S, LARSON C C, DE VRIES A, HANSEN P J.Effectiveness of tunnel ventilation as dairy cow housing in hot climates: rectal temperatures during heat stress and seasonal variation in milk yield.Tropical Animal Health and Production, 2020, 52(5): 2687-2693.doi:10.1007/s11250-020-02309-3.
[7] YOUNAS M, FUQUAY J W, SMITH A E, MOORE A B.Estrous and endocrine responses of lactating Holsteins to forced ventilation during summer.Journal of Dairy Science, 1993, 76(2): 430-436.doi:10.3168/ jds.S0022-0302(93)77363-4.
[8] 丁麗, 范明杰, 王慧軍.吹風(fēng)對(duì)緩解肉牛熱應(yīng)激的影響.山東畜牧獸醫(yī), 2014, 35(9): 18-19.
DING L, FAN M J, WANG H J.Effect of air blowing on relieving heat stress of beef cattle.Shandong Journal of Animal Science and Veterinary Medicine, 2014, 35(9): 18-19.(in Chinese)
[9] 蔡景義, 馮堂超, 師筑俊, 廖闊遙, 易宗容.敞篷牛舍接力送風(fēng)及飼糧添加鉻改善肉牛生產(chǎn)性能.農(nóng)業(yè)工程學(xué)報(bào), 2015, 31(15): 191-195.
CAI J Y, FENG T C, SHI Z J, LIAO K Y, YI Z R.Fanning in open-topped cowshed and chromium added to diet improving growth performance of heat-stressed beef cattle.Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15): 191-195.(in Chinese)
[10] 王深圳.夏季橫向交互送風(fēng)棚舍的溫?zé)岘h(huán)境及其肉牛的體溫調(diào)節(jié)反應(yīng)[D].南京: 南京農(nóng)業(yè)大學(xué), 2017.
WANG S Z.Thermal environment of the shed and thermoregulatory response of the beef cattle to add the profile cross ventilated in summer[D].Nanjing: Nanjing Agricultural University, 2017.(in Chinese)
[11] 中華人民共和國(guó)農(nóng)業(yè)部.肉牛飼養(yǎng)標(biāo)準(zhǔn): NY/T 815—2004.北京: 中國(guó)農(nóng)業(yè)出版社, 2004.
Ministry of Agriculture of the People’s Republic of China.Feeding standard of beef cattle: NY/T 815—2004.Beijing: Chinese Agriculture Press, 2004.(in Chinese)
[12] THOM E C.The discomfort index.Weatherwise, 1959, 12(2): 57-61.doi:10.1080/00431672.1959.9926960.
[13] 陳麗媛, 洪小華, 顏培實(shí).我國(guó)南方冬季和夏季肉牛體感溫度研究.畜牧與獸醫(yī), 2015, 47(2): 40-44.
CHEN L Y, HONG X H, YAN P S.Effective temperature equation of cows during winter and summer seasons in Southern of China.Animal Husbandry & Veterinary Medicine, 2015, 47(2): 40-44.(in Chinese)
[14] KHAN M Z, ALTMANN J, ISANI S S, YU J.A matter of time: evaluating the storage of fecal samples for steroid analysis.General and Comparative Endocrinology, 2002, 128(1): 57-64.doi:10.1016/ S0016-6480(02)00063-1.
[15] TERIO K A, BROWN J L, MORELAND R, MUNSON L.Comparison of different drying and storage methods on quantifiable concentrations of fecal steroids in the cheetah.Zoo Biology, 2002, 21(3): 215-222.doi:10.1002/zoo.10036.
[16] AHMAD M, BHATTI J A, ABDULLAH M, JAVED K, ALI M, RASHID G, UDDIN R, BADINI A H, JEHAN M.Effect of ambient management interventions on the production and physiological performance of lactating Sahiwal cattle during hot dry summer.Tropical Animal Health and Production, 2018, 50(6): 1249-1254.doi:10.1007/s11250-018-1551-5.
[17] 羅宗剛, 王玲, 蔡明成, 伏彭輝, 周沛, 左福元.熱應(yīng)激對(duì)不同雜交組合肉牛生理指標(biāo)和血液生化指標(biāo)的影響.中國(guó)畜牧雜志, 2015, 51(11): 82-85.
LUO Z G, WANG L, CAI M C, FU P H, ZHOU P, ZUO F Y.Effects of heat stress on physiological index and blood biochemical index of different hybrid beef cattle.Chinese Journal of Animal Science, 2015, 51(11): 82-85.(in Chinese)
[18] MADER T L, JOHNSON L J.Tympanic temperature profiles of confined beef cattle.International Journal of Biometeorology,2010,54(6): 629-635.
[19] 黃德均, 向白菊, 高立芳, 蔣安.熱應(yīng)激對(duì)紅安格斯牛、抗旱王牛及紅抗雜交牛生理指標(biāo)和血液生化指標(biāo)的影響.黑龍江畜牧獸醫(yī)(下半月), 2019(8): 35-39.doi:10.13881/j.cnki.hljxmsy.2018.11.0379.
HUANG D J, XIANG B J, GAO L F, JIANG A.The effect of heat stress on physiological and blood biochemical indexes of Red Angus cattle, Droughtmaster cattle and Red Angus × Droughtmaster hybrid cattle.Heilongjiang Animal Science and Veterinary Medicine, 2019(8): 35-39.doi:10.13881/j.cnki.hljxmsy.2018.11.0379.(in Chinese)
[20] 劉慶華, 王根林.熱應(yīng)激對(duì)奶牛血液流變學(xué)指標(biāo)及血清無(wú)機(jī)離子濃度和酶活性的影響.福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版), 2007, 36(3): 284-287.
LIU Q H, WANG G L.Effects of heat stress on hemorheology status and plasma inorganic ion concentration and plasma enzyme levels in dairy cows.Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2007, 36(3): 284-287.(in Chinese)
[21] SCHNEIDER P L, BEEDE D K, WILCOX C J.Nycterohemeral patterns of acid-base status, mineral concentrations and digestive function of lactating cows in natural or chamber heat stress environments.Journal of Animal Science, 1988, 66(1): 112-125.doi:10.2527/jas1988.661112x.
[22] BUFFINGTON D E, COLLAZO-AROCHO A, CANTON G H, PITT D, THATCHER W W, COLLIER R J.Black globe-humidity index (BGHI) as comfort equation for dairy cows.Transactions of the ASAE, 1981, 24(3): 711-714.doi:10.13031/2013.34325.
[23] 金鑫, 劉凱, 朱樹(shù)群, 李勝利.噴霧吹風(fēng)和淋水吹風(fēng)對(duì)奶牛熱應(yīng)激的影響.中國(guó)奶牛, 2008(12): 25-27.
JIN X, LIU K, ZHU S Q, LI S L.Effects of spray ventilation and shower ventilation on heat stress in dairy cows.China Dairy Cattle, 2008(12): 25-27.(in Chinese)
[24] SRIKANDAKUMAR A, JOHNSON E H.Effect of heat stress on milk production, rectal temperature, respiratory rate and blood chemistry in Holstein, Jersey and Australian Milking Zebu cows.Tropical Animal Health and Production, 2004, 36(7): 685-692.doi:10.1023/b: trop.0000042868.76914.a9.
[25] SHIAO T F, CHEN J C, YANG D W, LEE S N, LEE C F, CHENG W T K.Feasibility assessment of a tunnel-ventilated, water-padded barn on alleviation of heat stress for lactating Holstein cows in a humid area.Journal of Dairy Science, 2011, 94(11): 5393-5404.doi:10.3168/ jds.2010-3730.
[26] ITOH F, OBARA Y, ROSE M T, FUSE H, HASHIMOTO H.Insulin and glucagon secretion in lactating cows during heat exposure1.Journal of Animal Science, 1998, 76(8): 2182-2189.doi:10.2527/ 1998.7682182x.
[27] 伍曉雄, 張雄民, 趙京楊, 楊世錦, 徐小蘭.熱應(yīng)激對(duì)山羊生理生化指標(biāo)的影響.家畜生態(tài), 2000, 21(3): 7-9.doi:10.3969/j.issn.1673-1182.2000.03.002.
WU X X, ZHANG X M, ZHAO J Y, YANG S J, XU X L.Effect of heat stress on physiological and biochemical index in goats.Ecology of Domestic Animal, 2000, 21(3): 7-9.doi:10.3969/j.issn.1673-1182.2000.03.002.(in Chinese)
[28] SCHARF B, CARROLL J A, RILEY D G, CHASE C C, COLEMAN S W, KEISLER D H, WEABER R L, SPIERS D E.Evaluation of physiological and blood serum differences in heat-tolerant (Romosinuano) and heat-susceptible (Angus)cattle during controlled heat challenge1.Journal of Animal Science, 2010, 88(7): 2321-2336.doi:10.2527/jas.2009-2551.
[29] 朱雯, 任春環(huán), 張彥, 張子軍.反芻動(dòng)物肝臟糖異生及營(yíng)養(yǎng)調(diào)控.動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2019, 31(10): 4434-4441.doi:10.3969/j.issn.1006? 267x.2019.10.004.
ZHU W, REN C H, ZHANG Y, ZHANG Z J.Mechanisms of hepatic gluconeogenesis and nutritional regulation in ruminants.Chinese Journal of Animal Nutrition, 2019, 31(10):4434-4441.doi:10.3969/ j.issn.1006? 267x.2019.10.004.(in Chinese)
[30] SILVER J T, NOBLE E G.Regulation of survival gene hsp70.Cell Stress & Chaperones, 2012, 17(1): 1-9.doi:10.1007/s12192-011- 0290-6.
[31] MANJARI R, YADAV M, RAMESH K, UNIYAL S, RASTOGI S K, SEJIAN V, HYDER I.HSP70 as a marker of heat and humidity stress in Tarai buffalo.Tropical Animal Health and Production, 2015, 47(1): 111-116.doi:10.1007/s11250-014-0692-4.
[32] MAGDUB A, JOHNSON H D, BELYEA R L.Effect of environmental heat and dietary fiber on thyroid physiology of lactating cows.Journal of Dairy Science, 1982, 65(12): 2323-2331.doi:10.3168/jds.S0022-0302(82)82504-6.
[33] YOUSEF M K, JOHNSON H D.Calorigenesis of dairy cattle as influenced by thyroxine and environmental temperature.Journal of Animal Science, 1966, 25(1): 150-156.doi:10.2527/jas1966.251150x.
[34] 李川.噴霧通風(fēng)降溫系統(tǒng)對(duì)熱應(yīng)激肉牛的生理機(jī)能和生產(chǎn)性能的影響[D].南昌: 江西農(nóng)業(yè)大學(xué), 2016.
LI C.Effect on spray ventilation cooling system on physiology function and growth performance for beef cattle in heat stress[D].Nanchang: Jiangxi Agricultural University, 2016.(in Chinese)
[35] SAPOLSKY R M, SHARE L J.Rank-related differences in cardiovascular function among wild baboons: Role of sensitivity to glucocorticoids.American Journal of Primatology, 1994, 32(4): 261-275.doi:10.1002/ajp.1350320404.
[36] HARPER J M, AUSTAD S N.Fecal glucocorticoids: A noninvasive method of measuring adrenal activity in wild and captive rodents.Physiological and Biochemical Zoology: PBZ, 2000, 73(1): 12-22.doi:10.1086/316721.
[37] DELFINO J G, MATHISON G W.Effects of cold environment and intake level on the energetic efficiency of feedlot steers.Journal of Animal Science, 1991, 69(11): 4577-4587.doi:10.2527/1991.69114577x.
Effects of Cross-Ventilation System on Physiology and Production Performance of Beef Cattle in Summer
FANG HaoYuan1, YANG Liang1, WANG HongZhuang1, CAO JinCheng1, REN WanPing2, WEI ShengJuan1*, YAN PeiShi1
1College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095;2College of Animal Science, Xinjiang Agricultural University, Urumqi 830052
【Objective】 This study was conducted to explore the effects of cross-ventilation system on cowshed thermal environment, physiological and biochemical indexes, and production performance of beef cattle under the high temperature and humidity climate in summer of southern China, to evaluate the technical and economic effects of the environment control system for beef cattle heatstroke prevention.【Method】 One-factor completely randomized design was introduced in this study.Thirty healthy 8-month-old Simmental bulls with similar body weight ((290.05±7.60)kg) were randomly assigned into two adjacent sheds with the same structure.The experimental group was equipped with the cross-ventilation system, and natural ventilation was used in the control group.The experimental period was from June 30 to July 16, 2019, a total of 17 days, in which the pre-test period was the first 3 days, and the formal period was the last 14 days.The wind speed, dry-bulb temperature and wet-bulb temperature were measured at 5:00, 10:00, 14:00, 18:00 and 22:00 every day in the first 7 days of the formal test period.The temperature-humidity index and sensible temperature were calculated.Meanwhile, the rectal temperature and respiratory rate of beef cattle were measured.During the whole formal period, the feeding amount was recorded every day, and the remaining materials were cleaned and weighed at 6 a.m of the next day to calculate the feed intake.From 7:00 to 8:00 in the morning on the first day and the fourteenth day of the formal test period, all cattle were weighed before feeding to calculate the average daily gain, feed weight ratio and other production performance indicators, and the economic benefit was evaluated.Simultaneously, the blood and fecal samples were collected for determination of inorganic ions, biochemical indexes and hormone levels in serum and cortisol levels in feces.【Result】 The results showed that: (1) in the experimental group, the cross-ventilation system could significantly increase the wind speed in the shed (<0.01), thus significantly reduced the sensible temperature, the rectal temperature at 10:00, 14:00, 18:00, 22:00, and the respiratory rate of beef cattle at 10:00, 14:00, 18:00 (<0.01).Compared with the control group, with the increase of ambient temperature, the increase of rectal temperature and respiratory rate in the experimental group decreased by 45% and 42%, respectively.There was no significant difference in dry-bulb temperature, relative humidity and temperature-humidity index between the experimental group and the control group (>0.05).(2) At the end of the experiment, the serum calcium content in the experimental group was significantly lower than that in the control group (<0.05), while no difference was found concerning the contents of potassium ion, sodium ion, magnesium ion and chloride ion (>0.05).The results of serum biochemical indexes showed that the contents of heat stress protein 70, total protein, triglyceride and glucose in bovine of the experimental group were significantly higher than those in the control group (<0.05), and no significant difference was observed for the contents of serum albumin, globulin and total cholesterol (>0.05).The results of hormone levels showed that the levels of cortisol in feces and serum of the cattle in experimental group were significantly lower than those in control group (<0.05), and triiodothyronine and thyroxine had no significant difference in cattle between the experimental group and the control group (>0.05).(3) The production performance test showed that there was no significant difference in initial body weight and end body weight between the experimental group and the control group (>0.05), while the average daily gain (<0.01) and average dry matter intake (<0.05) of the experimental group were significantly higher than those of the control group, the feed-to-weight ratio of the experimental group was significantly lower than that of the control group (<0.05), and the profit in the experimental group was increased by 10.68%.【Conclusion】 The cross-ventilation system could significantly increase the air velocity of the shed, reduce the sensible temperature, improve the metabolism of Simmental cattle, promote the production performance, and increase the economic benefits for beef cattle production in high temperature and humidity environment.
the cross-ventilation; beef cattle; thermoregulation; physiology and biochemistry indexes; production performance; economic benefit
2021-01-12;
2021-07-28
江蘇省農(nóng)業(yè)科技自主創(chuàng)新基金(CX(21)3136)、中央高校基本科研業(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金(KYYJ202102)、國(guó)家重點(diǎn)研發(fā)計(jì)劃(2018YFD0501706)、國(guó)家自然科學(xué)基金(31501930)
房昊源,E-mail:haoyuanf@126.com。通信作者魏勝娟,E-mail:sjwei@njau.edu.cn
(責(zé)任編輯 林鑒非)