• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dual Variational Generation Based ResNeSt for Near Infrared-Visible Face Recognition

    2022-05-09 06:48:14DINGXiangwu丁祥武LIUChaoQINYanxia秦彥霞

    DING Xiangwu(丁祥武), LIU Chao(劉 超), QIN Yanxia(秦彥霞)

    College of Computer Science and Technology, Donghua University, Shanghai 201620, China

    Abstract: Near infrared-visible (NIR-VIS) face recognition is to match an NIR face image to a VIS image. The main challenges of NIR-VIS face recognition are the gap caused by cross-modality and the lack of sufficient paired NIR-VIS face images to train models. This paper focuses on the generation of paired NIR-VIS face images and proposes a dual variational generator based on ResNeSt (RS-DVG). RS-DVG can generate a large number of paired NIR-VIS face images from noise, and these generated NIR-VIS face images can be used as the training set together with the real NIR-VIS face images. In addition, a triplet loss function is introduced and a novel triplet selection method is proposed specifically for the training of the current face recognition model, which maximizes the inter-class distance and minimizes the intra-class distance in the input face images. The method proposed in this paper was evaluated on the datasets CASIA NIR-VIS 2.0 and BUAA-VisNir, and relatively good results were obtained.

    Key words: near infrared-visible face recognition; face image generation; ResNeSt; triplet loss function; attention mechanism

    Introduction

    Face recognition has always been a hot topic in computer vision. Although conventional face recognition is relatively mature, it is sensitive to illumination environment and cannot properly perform face recognition in low light or dark environment[1]. In contrast, near infrared (NIR) imaging can capture high-quality face images in low light or even dark environment, so the robustness of NIR imaging to light can largely compensate for the shortcomings of conventional face recognition.

    Near infrared-visible (NIR-VIS) face recognition is a branch of heterogeneous face recognition (HFR), and current NIR-VIS face recognition faces two major challenges. (1) Cross-modality gap: NIR face images are captured under infrared imaging device and VIS face images are captured under visible imaging sensor. And this difference leads to a significant gap between face images from the same identity in different modalities. (2) Lack of sufficient paired NIR-VIS face images: one of the reasons that traditional face recognition is relatively well developed is a large number of VIS face images available. However, the size of the currently available NIR-VIS face images is relatively small, and using small-scale datasets to train the HFR is prone to overfitting. Obtaining pairs of NIR-VIS face images is a time-consuming and expensive task.

    The current NIR-VIS face recognition methods can be mainly categorized into three classes[1]: invariant feature learning, subspace learning, and image synthesis. Invariant feature learning is used to learn identity-related features only between NIR face images and VIS face images, such as the deep transfer convolutional neural network for NIR-VIS face recognition proposed by Liuetal.[2], which learns invariant features on NIR-VIS face images by fine-tuning a model pre-trained with VIS face images. Yangetal.[3]combined adversarial learning to integrate modality-level and class-level alignments into a quadratic framework. Modality-level alignment in the framework is used to eliminate modality-related information and retain modality-invariant features, and class-level alignment is used to minimize the intra-class distance and to maximize the inter-class distance. The subspace learning approach focuses on learning identity discrimination features by mapping NIR face image features and VIS face image features into a common subspace. For example, Heetal.[4]used Wasserstein distance to minimize the feature distance between the NIR face image and VIS face image of the same person in a common subspace. Huangetal.[5]proposed a discriminative spectrum algorithm that minimized the feature distance between NIR face image and VIS face image from the same person in the subspace and maximized the feature distance between NIR face image and VIS face image of different identities. The image synthesis method is to synthesize cross-modality face images from the source domain to the target domain, thus transforming a cross-modality recognition problem into a single modality recognition problem. For example, a method for reconstructing VIS face images in the NIR modality is proposed by Juefei-Xuetal.[6]. Heetal.[7]used an end-to-end depth framework based on generative adversarial networks (GAN)[8]to convert NIR face images into VIS face images. Fuetal.[9]proposed an image synthesis method based on dual variational generation (DVG) from the perspective of expanding the training set, which could generate a large number of paired NIR-VIS face images from noise, thus effectively increasing the size of the training set.

    To tackle the challenges in NIR-VIS face recognition, a DVG based on ResNeSt[10](RS-DVG) is proposed in this paper, which adopts the idea of DVG[9]and focuses on generating paired NIR-VIS face images. RS-DVG can generate a large number of paired NIR-VIS face images from noise, and is only concerned with the identity consistency between the generated NIR-VIS face images in pairs. Moreover, a triplet loss function which maximizes the inter-class distance and minimizes the intra-class distance in the input face images is introduced, and a novel triplet selection method is proposed specifically for the training of NIR-VIS face recognition model.

    1 Proposed Method

    This section is a detailed introduction to the RS-DVG proposed in this paper. Firstly, the ResNeSt used in this paper will be introduced, followed by a detailed introduction to the RS-DVG and its associated loss function, and finally the RS-DVG based NIR-VIS face recognition and the corresponding loss function will be introduced.

    1.1 ResNeSt

    ResNet[11]is a widely used convolutional neural network, which is proposed to reduce the difficulty of training deep neural networks, but ResNet has a limited receptive field size and lacks interaction between cross-feature map channels. ResNeSt[10]compensates for the shortcomings of ResNet by introducing a split attention module. The ResNeSt and ResNet structures are shown in Fig. 1. The Conv in Fig. 1 indicates the convolutional layer in the network.

    Fig. 1 Structures: (a) ResNet; (b) ResNeSt; (c) split attention unit

    ResNet improves the efficiency of information propagation in the network by adding a skip connection between multiple convolutional layers, as shown in Fig. 1(a), but it does not take into account the interaction between input feature map channels. ResNeSt introduces a split-attention module based on ResNet, as shown in Fig. 1(b). ResNeSt splits the input feature map intoKcardinal groups along the channel dimension and splits each cardinal group intoRsplits. So the total number of feature splits isG=K×R. The intermediate representation of a split can be defined asUi=i(X), whereidenotes the transformations performed on the inputXin spliti,i∈{1, 2,…,G}. The representation of each cardinal group can be defined ask∈{1, 2,…,K},C′=C/K, andH,W, andCdenote the feature map size of the input of ResNeSt block. Besides, the global average pooling operation across the spatial dimensionsk∈RC′is used to obtain the global contextual representation information of the statistical information of each channel, for example, the formula for thec-th component can be expressed as(i,j).

    (1)

    1.2 Dual variational generation based ResNeSt

    The RS-DVG structure proposed in this paper is the same as DVG[9], which consists of two encodersENandEV, and a decoderDI, as shown in Fig. 2.Fipis the face image feature extractor, as seen in section 1.3. The encoder and decoder network structure in DVG is based on ResNet, but the encoder and decoder network structure in RS-DVG is based on ResNeSt, as shown in Fig. 3, where Fig. 3(a) represents the network structure ofENandEV, and Fig. 3(b) represents the network structure ofDI.

    Fig. 2 Structure of RS-DVG

    Fig. 3 Structures in RS-DVG: (a) encoder; (b) decoder

    The two encoders in RS-DVG are used to map the input NIR face imagexNand VIS face imagexVto the distributionsq?N(zN|xN) andq?V(zV|xV), respectively, where ?Nand ?Vare the parameters learned by the encoder. The encoder is trained so that the encoding resultsq?N(zN|xN) andq?V(zV|xV) can sufficiently approximate the distributionp(zi) corresponding to the latent variablezi, wherei∈{N,V}. In this paper, the distributionsp(zN) andp(zV) are set to be multivariate standard Gaussian distributions. The meanμiand standard deviationσi(i∈{N,V}) can be obtained from the output of the encoder. Since the backpropagation operation cannot be performed directly onμiandσi, to train the decoder, a reparameterization operation is adoped in this paper:zi=μi+σi⊙, wherei∈{N,V},is the standard Gaussian distribution sampling value, and ⊙ in this paper is the Hadamard product. The decoder is used to reconstruct the joint distributionpθ(xN,xV|zI) of the NIR face image and the VIS face image, wherezIis the result of combiningzNandzVobtained by sampling fromq?N(zNxN) andq?V(zVxV), respectively, andθdenotes the parameter learned by the decoder.

    1.3 Loss function in RS-DVG

    This subsection provides a detailed description of the loss functions involved in the training process of the RS-DVG.

    For training the encoder, Eq. (2) is used as

    (2)

    whereDKLdenotes the KL divergence, and both the distributionsp(zN) andp(zV) are multivariate standard Gaussian distributions. To enable the decoder to reconstruct the face imagesxNandxV, the following equation is used

    (3)

    wherepθ(xN,xV|zI) is the joint distribution fitted by the decoder, andq?V(zV|xV)∪q?N(zN|xN)denotes the joint distribution of the distributions fitted by the two encoders, separately.

    (4)

    (5)

    (6)

    whereλ1andλ2are the trade-off parameters.

    1.4 NIR-VIS face recognition based RS-DVG

    This paper uses LightCNN-29[13]as the feature extractorF, as shown in Fig. 4, whereDIis the decoder in the trained RS-DVG.

    Fig. 4 Structure of NIR-VIS face recognition

    The structure ofFis shown in Fig. 5, where MFM is the activation function max-feature-map which is an extension of the maxout activation function. Maxout uses enough hidden neurons to be infinitely close to a convex function, but MFM makes the convolutional neural network lighter and more robust by suppressing a small number of neurons.

    Fig. 5 Structure of LightCNN-29

    (7)

    1.5 Loss function in NIR-VIS face recognition

    In this paper, real data and generated data constitute the training set for NIR-VIS face recognition. What the generated data and the real data have in common is the identity consistency between every paired NIR-VIS face images, while the difference is that the generated face images do not belong to a specific category, while the real face images have their corresponding identity categories. Therefore, different loss functions were used in the training for both generated and real data, which were described in detail in this subsection.

    (8)

    (9)

    (10)

    whereα1is the trade-off parameters.

    2 Experiments Evaluation

    In this section, some experiments will be carried out on two challenging datasets, including CASIA NIR-VIS 2.0[14]and BUAA-VisNir[15], to illustrate the effectiveness of RS_DVG framework in paired NIR-VIS face images generation. Then, the accuracy of RS_DVG’s NIR-VIS is evaluated against state-of-the-art heterogeneous face recognition on these datasets.

    2.1 Datasets and protocol

    The total number of the subjects in CASIA NIR-VIS 2.0 dataset is 725. Each subject has 1-22 VIS and 5-50 NIR face images. This training follows the View2[14]protocol and includes tenfold cross-validation, where the training set includes nearly 6 100 NIR face images and 2 500 VIS face images from about 360 identities, and the testing set contains 358 VIS face images and 6 000 NIR face images from 358 identities. There was no intersection between training and testing sets. The final evaluation metrics were Rank-1 accuracy and verification rate at a false acceptance rate of 0.1%(i.e.,VR@FAR=0.1%).

    The BUAA-VisNir dataset consists of NIR face images and VIS face images from 150 identities. The training set consists of approximately 1 200 face images from 50 identities, and the test set is approximately 1 300 face images from the remaining 100 identities. The test was conducted using NIR face images to match VIS face images. The final evaluation metrics were Rank-1 accuracy,VR@FAR=1.0%, andVR@FAR=0.1%, respectively.

    2.2 Experimental settings

    The backbone for the encoder and decoder in RS-DVG is ResNeSt, with a parameterKof 2 and a parameterRof 1. The feature extractor used in RS-DVG is LightCNN-29[13], pre-trained on the dataset MS-Celeb-1M[16], with an optimizer Adam and an initial learning rate of 2×10-4. The NIR-VIS face recognition backbone is LightCNN-29 with a stochastic gradient descent optimizer and an initial learning rate of 10-3, which decreases to 5×10-4as the model is trained.

    2.3 Experimental results

    2.3.1 Datageneration

    For experimental comparison, the VAE[17]was trained with CASIA NIR-VIS 2.0 dataset. Samples drawn from it after training are shown in Fig. 6(a). The proposed RS-DVG was trained with CASIA NIR-VIS 2.0 dataset, and then 100 000 paired NIR-VIS face images were generated by it. Generated samples(128×128) are shown in Fig. 6(b). With BUAA-VisNir dataset, RS-DVG was trained, and also generated 100 000 paired NIR-VIS face images. Part samples are shown in Fig. 6(c).

    Fig. 6 NIR-VIS face images generated from: (a) VAE trained with CASIA NIR-VIS 2.0 dataset; (b) RS-DVG trained with CASIA NIR-VIS 2.0 dataset; (c) RS-DVG trained with BUAA-VisNir dataset(the first row shows the NIR face image and the second row shows the corresponding VIS face image)

    These experiments show that RS-DVG outperforms its competitors, especially on CASIA NIR-VIS 2.0 dataset. RS-DVG generates new paired images with clear outline, and abundant intraclass diversity (e.g., the pose and the expression).

    2.3.2 NIR-VISfacerecognition

    The recognition performance of our proposed RS-DVG is demonstrated in this section on two heterogeneous face recognition datasets. The performance of state-of-the-art methods, such as transfer NIR-VIS heterogeneous face recognition network (TRIVET)[2], Wasserstein CNN (W-CNN)[4], invariant deep representation (IDR)[18], coupled deep learning (CDL)[19], disentangled variational representation (DVR)[20], and DVG is compared in Table 1.

    Table 1 shows that on CASIA NIR-VIS 2.0 dataset, RS-DVG achieves 99.9% and 99.8% recognition rates in the Rank-1 andVR@FAR=0.1%, respectively. And compared to DVG, it improves Rank-1 accuracy from 99.8% to 99.9%. On BUAA-VisNir dataset, RS-DVG also achieves the highest Rank-1 accuracy. Compared to DVG, RS-DVG improvesVR@FAR=0.1% from 97.3% to 97.5% and improvesVR@FAR=1% from 98.5% to 98.6%.

    Table 1 Experimental results of NIR-VIS face recognition

    3 Conclusions

    In this paper, a dual variational generator based ResNeSt is proposed, which can generate a large amount of pairwise heterogeneous data from noise, which can effectively expand the training set size of heterogeneous face recognition. A triplet loss function is introduced and a novel triplet selection method is proposed specifically for the training of the current heterogeneous face recognition, which maximizes the inter-class distance and minimizes the intra-class distance in the input face images. The experimental results on two datasets demonstrate the effectiveness of the method proposed in this paper.

    男女下面进入的视频免费午夜 | 午夜视频精品福利| 无限看片的www在线观看| 亚洲专区字幕在线| 精品福利观看| 中文亚洲av片在线观看爽| 国产黄片美女视频| 亚洲国产高清在线一区二区三 | 婷婷六月久久综合丁香| 国产91精品成人一区二区三区| 亚洲精品色激情综合| 长腿黑丝高跟| or卡值多少钱| 啪啪无遮挡十八禁网站| 国产亚洲av嫩草精品影院| 一级片免费观看大全| 麻豆av在线久日| 一级片免费观看大全| 欧美乱妇无乱码| 热99re8久久精品国产| 老司机午夜十八禁免费视频| 午夜福利成人在线免费观看| 制服人妻中文乱码| 成熟少妇高潮喷水视频| 成人三级做爰电影| 日本一本二区三区精品| 女性被躁到高潮视频| 中文亚洲av片在线观看爽| 中文字幕人成人乱码亚洲影| 国产蜜桃级精品一区二区三区| 亚洲熟妇中文字幕五十中出| 欧美日韩乱码在线| 国产精品 国内视频| 日韩一卡2卡3卡4卡2021年| 黄色丝袜av网址大全| 亚洲av成人一区二区三| 日本黄色视频三级网站网址| 伊人久久大香线蕉亚洲五| 在线视频色国产色| 国产精品,欧美在线| 亚洲熟妇中文字幕五十中出| 午夜亚洲福利在线播放| 一边摸一边抽搐一进一小说| 国产视频内射| 国内精品久久久久精免费| 黄色毛片三级朝国网站| av电影中文网址| 老熟妇乱子伦视频在线观看| 91字幕亚洲| 亚洲第一青青草原| 男女之事视频高清在线观看| 两性夫妻黄色片| 国产成人欧美在线观看| 久久久久久久久免费视频了| 久久青草综合色| 国产免费男女视频| 久久婷婷成人综合色麻豆| 婷婷精品国产亚洲av在线| 午夜免费观看网址| 午夜福利免费观看在线| 国产精品爽爽va在线观看网站 | 夜夜爽天天搞| 真人一进一出gif抽搐免费| 免费在线观看亚洲国产| 亚洲精品国产一区二区精华液| 午夜免费鲁丝| www日本在线高清视频| 老司机靠b影院| 在线视频色国产色| 变态另类丝袜制服| 欧美日韩中文字幕国产精品一区二区三区| 亚洲熟妇熟女久久| 国产精品精品国产色婷婷| 嫁个100分男人电影在线观看| 三级毛片av免费| 精品久久蜜臀av无| 特大巨黑吊av在线直播 | 久久欧美精品欧美久久欧美| 18禁黄网站禁片免费观看直播| 亚洲激情在线av| 90打野战视频偷拍视频| 日韩大码丰满熟妇| 99热6这里只有精品| 国产精品久久电影中文字幕| 免费观看精品视频网站| 99国产精品一区二区三区| 不卡一级毛片| 波多野结衣av一区二区av| 亚洲,欧美精品.| 18禁美女被吸乳视频| 99精品久久久久人妻精品| 脱女人内裤的视频| 国产亚洲精品第一综合不卡| 欧美激情高清一区二区三区| svipshipincom国产片| 黄色成人免费大全| 亚洲久久久国产精品| 最近在线观看免费完整版| 亚洲精品av麻豆狂野| 久久久久久人人人人人| 亚洲精品中文字幕一二三四区| 欧美日韩亚洲国产一区二区在线观看| 精品国产亚洲在线| a级毛片a级免费在线| 亚洲欧美激情综合另类| 老司机在亚洲福利影院| 久久久久久亚洲精品国产蜜桃av| 丁香六月欧美| 亚洲 国产 在线| 黑丝袜美女国产一区| e午夜精品久久久久久久| 国产久久久一区二区三区| 热re99久久国产66热| 精品电影一区二区在线| 精品免费久久久久久久清纯| 最新在线观看一区二区三区| 观看免费一级毛片| 老汉色∧v一级毛片| 亚洲欧美日韩无卡精品| 51午夜福利影视在线观看| 亚洲avbb在线观看| 12—13女人毛片做爰片一| 欧美日韩中文字幕国产精品一区二区三区| 特大巨黑吊av在线直播 | 桃红色精品国产亚洲av| 欧美最黄视频在线播放免费| 亚洲成人精品中文字幕电影| 嫁个100分男人电影在线观看| 人妻丰满熟妇av一区二区三区| 国产精品综合久久久久久久免费| 日日干狠狠操夜夜爽| 亚洲国产中文字幕在线视频| av免费在线观看网站| 午夜免费观看网址| 欧美色欧美亚洲另类二区| 国产伦一二天堂av在线观看| 一区福利在线观看| 午夜精品久久久久久毛片777| 真人做人爱边吃奶动态| 久久狼人影院| 日韩av在线大香蕉| 1024视频免费在线观看| 亚洲av成人不卡在线观看播放网| 久久国产乱子伦精品免费另类| 久久精品夜夜夜夜夜久久蜜豆 | 99国产精品99久久久久| 少妇 在线观看| 91成人精品电影| 亚洲精品粉嫩美女一区| 久久精品成人免费网站| 午夜福利成人在线免费观看| 91九色精品人成在线观看| 国产一级毛片七仙女欲春2 | 中出人妻视频一区二区| 国产成人精品久久二区二区免费| 亚洲一区二区三区色噜噜| 欧美黑人精品巨大| 91av网站免费观看| 黄色片一级片一级黄色片| 国产精品永久免费网站| 久久久久久久久中文| 久热爱精品视频在线9| 国产精品1区2区在线观看.| 亚洲中文字幕日韩| 亚洲第一av免费看| 露出奶头的视频| 久久九九热精品免费| 午夜成年电影在线免费观看| 欧美乱码精品一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 国产蜜桃级精品一区二区三区| а√天堂www在线а√下载| 午夜激情福利司机影院| 国产精品一区二区免费欧美| 国产黄片美女视频| 国产精品久久久av美女十八| 精品久久久久久久毛片微露脸| 99精品久久久久人妻精品| 高清在线国产一区| xxx96com| 中国美女看黄片| 这个男人来自地球电影免费观看| 免费在线观看黄色视频的| 国产成人av激情在线播放| 欧美成人午夜精品| 嫩草影视91久久| 老汉色av国产亚洲站长工具| 亚洲成av人片免费观看| 怎么达到女性高潮| 悠悠久久av| 久久久精品欧美日韩精品| 99热6这里只有精品| 黄片播放在线免费| 婷婷精品国产亚洲av| 久久国产精品影院| 成熟少妇高潮喷水视频| 日本一本二区三区精品| 国产亚洲精品av在线| 黄网站色视频无遮挡免费观看| 18禁黄网站禁片免费观看直播| 女性生殖器流出的白浆| 香蕉国产在线看| 国产精品一区二区免费欧美| 国产视频一区二区在线看| 日韩欧美一区二区三区在线观看| 成人午夜高清在线视频 | 欧美不卡视频在线免费观看 | 久久婷婷人人爽人人干人人爱| 精品免费久久久久久久清纯| 欧美丝袜亚洲另类 | 色综合婷婷激情| 久热爱精品视频在线9| 自线自在国产av| 变态另类丝袜制服| 制服诱惑二区| 亚洲在线自拍视频| 日本黄色视频三级网站网址| 他把我摸到了高潮在线观看| 1024视频免费在线观看| 亚洲国产精品久久男人天堂| av免费在线观看网站| 97人妻精品一区二区三区麻豆 | 成年人黄色毛片网站| 性欧美人与动物交配| 精品国内亚洲2022精品成人| xxx96com| 亚洲人成网站高清观看| 99久久99久久久精品蜜桃| 亚洲av成人不卡在线观看播放网| 欧美日本亚洲视频在线播放| 99精品欧美一区二区三区四区| a级毛片a级免费在线| 欧美色视频一区免费| 最近最新中文字幕大全电影3 | 亚洲精品在线观看二区| 亚洲精品美女久久av网站| 视频在线观看一区二区三区| 在线av久久热| 91九色精品人成在线观看| 神马国产精品三级电影在线观看 | 91成年电影在线观看| 国产激情久久老熟女| 亚洲国产欧美日韩在线播放| 最近最新免费中文字幕在线| 最新美女视频免费是黄的| 国产精品国产高清国产av| 国产av在哪里看| 国产av不卡久久| cao死你这个sao货| 一卡2卡三卡四卡精品乱码亚洲| 老熟妇乱子伦视频在线观看| 一a级毛片在线观看| 免费人成视频x8x8入口观看| 亚洲欧美精品综合久久99| 日本黄色视频三级网站网址| 一级片免费观看大全| 精品国产乱子伦一区二区三区| 亚洲精品中文字幕在线视频| 他把我摸到了高潮在线观看| 淫秽高清视频在线观看| 别揉我奶头~嗯~啊~动态视频| 在线播放国产精品三级| 侵犯人妻中文字幕一二三四区| 欧美激情 高清一区二区三区| 18禁裸乳无遮挡免费网站照片 | 757午夜福利合集在线观看| 日韩三级视频一区二区三区| 欧美大码av| ponron亚洲| 国产精品日韩av在线免费观看| 高清毛片免费观看视频网站| 久久草成人影院| 国产亚洲精品综合一区在线观看 | 亚洲成人精品中文字幕电影| 亚洲aⅴ乱码一区二区在线播放 | 淫妇啪啪啪对白视频| 国产精品久久久av美女十八| 99久久精品国产亚洲精品| 欧美日韩瑟瑟在线播放| 午夜a级毛片| 久久中文字幕一级| av福利片在线| 亚洲欧美日韩高清在线视频| 精品国产超薄肉色丝袜足j| 欧美黑人欧美精品刺激| 别揉我奶头~嗯~啊~动态视频| 色综合婷婷激情| 18禁黄网站禁片免费观看直播| 18美女黄网站色大片免费观看| xxx96com| 91麻豆精品激情在线观看国产| 日韩一卡2卡3卡4卡2021年| 亚洲av成人一区二区三| 国产成人欧美| 亚洲一区中文字幕在线| 午夜a级毛片| 高清毛片免费观看视频网站| 天堂影院成人在线观看| 国产精品综合久久久久久久免费| 亚洲熟妇中文字幕五十中出| 成人国语在线视频| 国产一区二区三区视频了| 99国产综合亚洲精品| xxx96com| 国产精品久久久av美女十八| 91国产中文字幕| 国产成+人综合+亚洲专区| 久久精品aⅴ一区二区三区四区| 久9热在线精品视频| 久久精品亚洲精品国产色婷小说| 欧美午夜高清在线| 免费在线观看黄色视频的| 免费在线观看视频国产中文字幕亚洲| 亚洲第一青青草原| 国产v大片淫在线免费观看| 手机成人av网站| 国产精品二区激情视频| 丝袜人妻中文字幕| 精品高清国产在线一区| 久久人人精品亚洲av| 日韩高清综合在线| 亚洲国产日韩欧美精品在线观看 | 亚洲国产精品sss在线观看| 久久午夜福利片| 日韩在线高清观看一区二区三区| 欧美日韩精品成人综合77777| 亚洲欧美中文字幕日韩二区| av福利片在线观看| 成人特级av手机在线观看| 校园春色视频在线观看| 欧美三级亚洲精品| 国产精品女同一区二区软件| 级片在线观看| 午夜影院日韩av| 18禁在线无遮挡免费观看视频 | 美女免费视频网站| 美女cb高潮喷水在线观看| 亚洲无线观看免费| 色噜噜av男人的天堂激情| 国产人妻一区二区三区在| 亚洲av中文字字幕乱码综合| 国内揄拍国产精品人妻在线| 国产欧美日韩一区二区精品| 91在线观看av| 欧美+亚洲+日韩+国产| 国产精品精品国产色婷婷| 国产高清三级在线| 亚洲国产精品sss在线观看| 乱系列少妇在线播放| 亚洲最大成人中文| 简卡轻食公司| 欧美中文日本在线观看视频| 99视频精品全部免费 在线| 亚洲内射少妇av| 日本三级黄在线观看| 午夜福利在线在线| 俺也久久电影网| 国产精品亚洲美女久久久| 日韩欧美三级三区| 性欧美人与动物交配| av在线蜜桃| 成人午夜高清在线视频| a级一级毛片免费在线观看| avwww免费| 秋霞在线观看毛片| 小说图片视频综合网站| 免费看美女性在线毛片视频| 国产aⅴ精品一区二区三区波| 日本五十路高清| 久久综合国产亚洲精品| 亚洲天堂国产精品一区在线| 美女大奶头视频| 人妻少妇偷人精品九色| 老熟妇乱子伦视频在线观看| 久久久久久久午夜电影| 国内久久婷婷六月综合欲色啪| 人人妻,人人澡人人爽秒播| 在线观看午夜福利视频| 亚洲,欧美,日韩| 国产一区亚洲一区在线观看| 亚洲精品456在线播放app| 日本黄大片高清| 日本a在线网址| 99热这里只有是精品50| av国产免费在线观看| 国产黄色小视频在线观看| 欧美色欧美亚洲另类二区| 少妇的逼水好多| 久久热精品热| 99在线人妻在线中文字幕| 欧美另类亚洲清纯唯美| 欧美+日韩+精品| 悠悠久久av| 久久精品国产清高在天天线| 亚洲七黄色美女视频| 午夜激情欧美在线| 久久久久久久亚洲中文字幕| 欧美不卡视频在线免费观看| 噜噜噜噜噜久久久久久91| 久久人妻av系列| 日韩中字成人| 亚洲成人久久爱视频| 亚洲成av人片在线播放无| 一进一出好大好爽视频| 干丝袜人妻中文字幕| 91久久精品电影网| 最近视频中文字幕2019在线8| 成年女人毛片免费观看观看9| 日日啪夜夜撸| 一进一出抽搐动态| 亚洲中文字幕日韩| 国产一区二区亚洲精品在线观看| 极品教师在线视频| 国产视频一区二区在线看| 精品午夜福利在线看| 国产人妻一区二区三区在| 99久久精品一区二区三区| 国产不卡一卡二| 国产精品一二三区在线看| 12—13女人毛片做爰片一| 精品久久久久久久末码| 欧美+日韩+精品| 一进一出好大好爽视频| 老司机影院成人| 黄色日韩在线| 亚洲av熟女| 亚洲精品乱码久久久v下载方式| 免费看a级黄色片| 国产麻豆成人av免费视频| 看黄色毛片网站| 亚洲一级一片aⅴ在线观看| 亚洲av电影不卡..在线观看| 久久久久久九九精品二区国产| 99在线人妻在线中文字幕| 国产亚洲av嫩草精品影院| 日韩欧美国产在线观看| 亚洲色图av天堂| 国产一区二区三区av在线 | 你懂的网址亚洲精品在线观看 | 欧美激情在线99| a级毛色黄片| 午夜免费男女啪啪视频观看 | 日日干狠狠操夜夜爽| 麻豆精品久久久久久蜜桃| 国产精品野战在线观看| 精品熟女少妇av免费看| 久久精品国产亚洲av香蕉五月| 日日干狠狠操夜夜爽| 在线免费观看不下载黄p国产| 国产在线精品亚洲第一网站| 国产精品99久久久久久久久| 国产三级中文精品| 中文字幕av成人在线电影| 美女大奶头视频| 亚洲av一区综合| 亚洲国产精品成人久久小说 | 51国产日韩欧美| 精品国内亚洲2022精品成人| 午夜福利在线观看免费完整高清在 | av在线天堂中文字幕| 久99久视频精品免费| 成人欧美大片| 在线观看av片永久免费下载| 亚洲精品粉嫩美女一区| 在线免费十八禁| 日韩大尺度精品在线看网址| 不卡一级毛片| 十八禁网站免费在线| 蜜臀久久99精品久久宅男| av在线播放精品| 欧美成人精品欧美一级黄| 黄色配什么色好看| 看非洲黑人一级黄片| 精品午夜福利在线看| 男女之事视频高清在线观看| 久久99热6这里只有精品| 久久亚洲国产成人精品v| 一级黄色大片毛片| 国产av在哪里看| 国产av不卡久久| 综合色丁香网| 国产单亲对白刺激| 天天一区二区日本电影三级| 国产 一区精品| 91久久精品国产一区二区成人| 精品99又大又爽又粗少妇毛片| 免费无遮挡裸体视频| 久久精品国产亚洲av香蕉五月| 国模一区二区三区四区视频| 国产又黄又爽又无遮挡在线| 免费观看在线日韩| 亚洲av成人av| 成人av在线播放网站| 亚洲中文日韩欧美视频| 日日啪夜夜撸| 69人妻影院| 尤物成人国产欧美一区二区三区| 九九在线视频观看精品| 精品午夜福利在线看| 最近2019中文字幕mv第一页| 国产精品不卡视频一区二区| 一级a爱片免费观看的视频| 久久6这里有精品| 别揉我奶头 嗯啊视频| 亚洲电影在线观看av| 麻豆国产97在线/欧美| 麻豆av噜噜一区二区三区| 国产精品乱码一区二三区的特点| 黄片wwwwww| 亚洲精品国产av成人精品 | 91av网一区二区| 18禁在线无遮挡免费观看视频 | 亚洲成人精品中文字幕电影| 一区二区三区四区激情视频 | 日韩亚洲欧美综合| 国产亚洲精品综合一区在线观看| 精华霜和精华液先用哪个| 久久天躁狠狠躁夜夜2o2o| 黄色欧美视频在线观看| 久久欧美精品欧美久久欧美| 日日干狠狠操夜夜爽| 一本精品99久久精品77| 国产精品一区二区性色av| 亚洲性夜色夜夜综合| 99热这里只有精品一区| 成人特级黄色片久久久久久久| 久久久久久国产a免费观看| 又爽又黄无遮挡网站| 国产老妇女一区| 欧美一区二区国产精品久久精品| 亚洲精品456在线播放app| 精品不卡国产一区二区三区| 国产一区二区激情短视频| 成人鲁丝片一二三区免费| 欧美区成人在线视频| 日韩av在线大香蕉| 免费av不卡在线播放| 欧美性猛交黑人性爽| 中文字幕免费在线视频6| av在线蜜桃| 日日干狠狠操夜夜爽| 人妻丰满熟妇av一区二区三区| 免费电影在线观看免费观看| 精品人妻一区二区三区麻豆 | 午夜免费激情av| av.在线天堂| 午夜福利视频1000在线观看| 你懂的网址亚洲精品在线观看 | 亚洲欧美日韩无卡精品| 91精品国产九色| 美女免费视频网站| 欧美极品一区二区三区四区| 一级a爱片免费观看的视频| 精品99又大又爽又粗少妇毛片| 看非洲黑人一级黄片| 久久精品国产亚洲网站| 人妻夜夜爽99麻豆av| 亚洲欧美清纯卡通| 欧美日本亚洲视频在线播放| 18禁裸乳无遮挡免费网站照片| 色综合色国产| 一级毛片久久久久久久久女| 伊人久久精品亚洲午夜| 我要搜黄色片| 成人精品一区二区免费| 国产精品精品国产色婷婷| 国产精品亚洲美女久久久| av视频在线观看入口| 三级经典国产精品| 18禁在线无遮挡免费观看视频 | 亚洲aⅴ乱码一区二区在线播放| 伦理电影大哥的女人| 在线观看午夜福利视频| 精品熟女少妇av免费看| 成人av在线播放网站| 午夜福利在线在线| 国产v大片淫在线免费观看| 搡女人真爽免费视频火全软件 | 免费看a级黄色片| 十八禁国产超污无遮挡网站| 日本免费a在线| 悠悠久久av| 高清毛片免费看| 最近视频中文字幕2019在线8| 你懂的网址亚洲精品在线观看 | 国产人妻一区二区三区在| 国产高清激情床上av| 国产亚洲精品综合一区在线观看| 亚洲欧美清纯卡通| 亚洲成人中文字幕在线播放| 啦啦啦韩国在线观看视频| 亚洲国产精品成人综合色| 91午夜精品亚洲一区二区三区| 天堂影院成人在线观看| 观看美女的网站| 成人毛片a级毛片在线播放| 直男gayav资源| 舔av片在线| 日本黄色视频三级网站网址| 蜜桃亚洲精品一区二区三区| 精品久久国产蜜桃| 欧美日韩综合久久久久久| 久久久国产成人精品二区| 床上黄色一级片| 国产高清不卡午夜福利| 亚洲一区高清亚洲精品| 九色成人免费人妻av| av福利片在线观看| 女人被狂操c到高潮| 精品久久久久久久久av| 亚洲成人av在线免费| 免费看av在线观看网站| 免费高清视频大片| 成年版毛片免费区| 国产日本99.免费观看|