• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gauss quadrature based finite temperature Lanczos method

    2022-05-16 07:07:34JianLi李健andHaiQingLin林海青
    Chinese Physics B 2022年5期
    關(guān)鍵詞:李健林海

    Jian Li(李健) and Hai-Qing Lin(林海青)

    Beijing Computational Science Research Center,Beijing 100193,China

    Keywords: exact diagonalization,Lanczos method,orthogonal polynomials

    1. Introduction

    In the study of quantum many-body systems, the exact diagonalization (ED) method is intensively used to calculate static and dynamic quantities.[1–4]Since the dimension of many-body Hilbert space increases exponentially with system size, ED is only appliable on systems of relatively small size.But ED is still an effective method since it can always get unbiased result compared with other variational methods like density matrix renormalization group,[5–7]and does not suffer from sign problem in quantum Monte Carlo simulations.[8–10]To solve the problem of large matrix dimension, ED is often based on algorithms from sparse matrix calculation,especially Lanczos method[11–14]and kernel polynomial method(KPM).[15–18]

    The Lanczos method is originally used in the calculation of ground state properties, since only extreme eigenvalues and eigenvectors converge well. With the introduction of finite temperature Lanczos method (FTLM) by Jakliˇc and Prelovˇsek,[19,20]finite temperature static and dynamic quantities can be calculated accurately. In FTLM, the true HamiltonianHis represented by an effective Hamiltonian ?Hin the Krylov subspace generated by Lanczos iteration. Then by expanding exp(-βH) into Taylor series, the calculation is reduced to evaluating quadratic forms of the type〈n|HkBHlA|n〉,which can be achieved using effective Hamiltonian ?H.

    KPM is another method used in the calculation of finite temperature properties. The main idea behind KPM is using Chebyshev polynomials to expand quantities like density of states, static and dynamic correlation functions. KPM converges very well at high temperature. But when temperature comes to zero,the low lying states,which KPM does not calculate very accurately,contribute an important part in thermodynamic quantities. To overcome this, the KPM should run several Lanczos iterations to get accurate low lying states,and projects these states out in later calculations. Despite the inaccuracy at low lying states, KPM is believed to be simpler and faster than Lanczos method,and does not suffer from the problem of losing orthogonality occurred in high order Lanczos iteration.[15]

    Recently there have been numerical experiments benchmarking the accuracy of FTLM and KPM,[21,22]but the relationship between these two classes of ED methods has not been well explored yet. In this paper, we develop and formulate FTLM in the framework of Gauss quadrature and orthogonal polynomials. In this framework, the Lanczos iteration in FTLM is regarded as a procedure to generate a series of orthogonal polynomials by which different functions of Hamiltonian is expanded. These orthogonal polynomials play the same role as that of Chebyshev polynomials in KPM.The combination of Gauss quadrature and Lanczos iteration has been used in the matrix computation community,[23,24]for example,to give error estimate of solution of linear equations,which is related to the quadratic formsu?A-iufori= 1,2.Here we generalized this method to the calculation of more general formu?f(H)Ag(H)v,which needs the notion of twodimensional Gauss quadrature and can be applied in the calculation of finite temperature dynamic correlation functions.This Gauss quadrature based framework fills the conceptual gap between FTLM and KPM, which makes it easy to apply orthogonal polynomial techniques commonly used by KPM in the FTLM calculation. The implementation of FTLM is reduced to one-or two-dimensional Gauss quadratures,which is similar to that of KPM, and is simpler than the procedure of Taylor series expansion.

    2. Fundamental theory

    In large scale exact diagonalization of quantum manybody systems, the HamiltonianHis given as a sparse Hermitian matrix of dimensionN. Usually the study of static and dynamic quantities involves calculating trace off(H), wherefis a smooth function. For example,f(H)=exp(-βH)for the calculation of partition function, andf(H)=exp(-iHt)for the calculation of real time evolution. As we will see in Section 3, we can get many static and dynamic quantities by a suitable choice off(H), and an effective way to calculate following quantities:

    1.u?f(H)u,

    2.u?f(H)vwhereu/=v,

    3.u?f(H)Ag(H)v.

    HereuandvareN-dimensional vectors representing quantum many-body states. As developed in following sections,the first quantity is related to one-dimensional Gauss quadrature,and the second and third quantities can be calculated by two-dimensional Gauss quadrature.

    2.1. Weighted summation and Gauss quadrature

    LetHbe a Hermitian matrix of dimensionNwith following eigenvalue decomposition:

    We can see thatu?f(H)ucan be seen as a weighted summation with weightswi=|(X?u)i|2and evaluation pointsλibeing the eigenvalue ofH. This form is exactly the same as that of Gauss quadrature,[25]which is extensively used in numerical calculation of integrals.

    To be more specific, Gauss quadrature is an approximation method to calculate integrals numerically. It transforms the integral into a weighted summation

    To validate the algorithm of FTLM above, we need to dig into the mathematical principles behind Gauss quadrature,which leads us to the theory of orthogonal polynomials. Furthermore,theory of orthogonal polynomials can give error estimates of FTLM,which is essential in numerical simulation.

    2.2. Theory of orthogonal polynomials

    The theory of orthogonal polynomials[27]is fundamental in the implementation and analysis of Gauss quadrature.Given interval(a,b),define inner product of any two functionsfandgin(a,b)as

    Equation(17)is the fundamental result of Gauss quadrature, which states that we can choose a set ofnnodes and weights to construct a quadrature rule of order 2n-1. One can find detailed proof of Eqs.(14)and(17)in Appendix A.

    We can restate Gauss quadrature in the language of discrete inner product. Given the nodesxiand weightswidefined above, we can define a discrete inner product in [a,b] and its associated norm by

    2.3. Relationship with Lanczos iteration

    Lanczos iteration is a standard method to transform a Hermitian matrix into tridiagonal form by an unitary transformation. For a given matrixHand a starting normalized vectoru,the Lanczos iteration is given by

    The transformed tridiagonal matrix is exactly the same asTndefined in Eq.(13).

    We can see many similarities between Eqs.(11)and(21).Actually Lanczos iteration does its transformation according to a sequence of orthogonal polynomials.[24]To see this, let us defineqi=pi(H)q0,wherepiis a polynomial of degreei.According to Eq.(21),we have

    which is the same recurrence relation ofpnin Eq.(11).

    Here for simplicity we assume that for the Hermitian matrixHof dimensionN, we can transform it into a tridiagonal matrixTNof the same dimension by Lanczos iteration with a suitable normalized starting vectoru. Note that Lanczos tridiagonalization procedure is generally an unitary transformation,namely,

    which is the same weight as that of Gauss quadrature in Eq.(16).

    Now we can explain more explicitly the algorithm of FTLM in Subsection 2.1 using the language of discrete inner product. Supposefis a smooth function anduis a normalized vector,by definition,we have

    which means thatMLanczos iterations will give approximation up to order of 2M.

    2.4. Two-dimensional Gauss quadrature

    Here comes to the question of how to calculate the following quantities:

    1.u?f(H)vwhereu/=v,

    2.u?f(H)Ag(H)v.

    We can see that the second quantity is a general form of the first one givenA=g(H)=1. As for the first case, ifu,vare real vectors andHis a real symmetric matrix,we can use the following identity[23]to calculateuT f(H)v:

    Then we can use the method talked before to calculateuT f(H)v, the only difference is that we need to run Lanczos iteration twice.

    But for the general case, namely,u?f(H)Ag(H)v, we need a different method, which needs the notion of twodimensional Gauss quadrature,as will be discussed below.

    Two-dimensional Gauss quadrature, and also twodimensional orthogonal polynomials, can be easily constructed from a tensor product of two one-dimensional Gauss quadratures and orthogonal polynomials respectively. Formally,given two weighted Hilbert spaceL2w(a,b)andL2?w(a,b),we can construct a Hilbert space on(a,b)×(a,b)by defining the following inner product:

    in which we have introduced an auxiliary functionC(x,y). It is only defined at some discrete points as follows:which means that we only need to run one Lanczos iteration forM1steps. In general case,the numerical effort for the calculation ofμmnranges betweenN(M1+M2)andNM1M2operations,depending on whether memory is available for savingM1(orM2)vectors of dimensionN.

    3. Formulas for static and dynamic quantities

    Until now we have not discussed how to calculate static and dynamic quantities for a real quantum system. Actually the routines in FTLM share many similarities as in KPM,[15,17]thus can be expressed in a unified form.

    In this section and later Dirac bra–ket notations will be used to denote matrix vector multiplication, this notation is inconvenient in previous sections but more suitable when it comes to physical applications.

    3.1. Stochastic evaluation of traces

    Although we have the method to calculate〈u|f(H)|u〉,in many cases we need to evaluate the trace of a given operator.For example,the partition function is given by a trace

    where{|i〉}is a complete set of basis.

    At first glance it seems impossible to evaluate since the Lanczos iteration needs to be repeated for allNstates of a given basis, which makes the total computational effort proportional toN2. It turns out that extremely good approximation of the trace can be obtained with a much simpler approach: stochastic evaluation of trace, in which estimate of trace is based on the average over a small numberR ?Nof randomly chosen vectors[15,30]

    Typical chosen ofξrican be Gaussian distribution with average 0 and standard deviation 1.

    3.2. Thermal average and density of states

    Given partition functionZ=tr[e-βH], the thermal average of operatorAis

    We can use stochastic evaluation of traces to calculate these quantities. From Eq. (43) we can see that only one Gauss quadrature rule is need to calculate both〈r|e-βH|r〉and〈r|e-βHA|r〉for each given random vector|r〉, so only one Lanczos iteration is need for the given random vector. This can be generalized to many operators if we want to calculate thermal average of these operators at the same time.

    Here we consider two limiting cases to illustrate the accuracy of FTLM.

    1.β →0. This is the high temperature limit,where

    and according to Eq.(32),few Lanczos iteration will give accurate result.

    2.β →∞. This is the low temperature limit, e-βxwill be sharply dominated atx=Emin. From the theory of orthogonal polynomial expansion, many high order expansion will contribute to this nearly discontinuous function. Furthermore,Gibbs oscillation[17,31]will creep into the expanded function,which introduces numerical instability. In this case,low temperature Lanczos method[32]have been proposed to address this problem. One can also use ground state Lanczos method in this super low temperature regime,which is generally more accurate.

    As for density of states,it is defined as

    3.3. Real time evolution

    As a studying case,here we consider real time evolution.Specifically,we are interested in the quantity

    equation(59)is accurate for very few Lanczos iteration.

    2.t →∞. In this case both sin(tx) and cos(tx) will oscillate badly in the integration interval[Emin,Emax],and Gauss quadrature based integration rule will fail to converge.

    So the real time evaluation is different from imaginary time evaluation in the sense that real time evaluation will fail to converge in thet →∞limit, while imaginary time evaluation will admit accurate results in bothβ →0 andβ →∞limits.

    3.4. Dynamic correlation function

    Before we dig into the calculation of finite temperature correlation function, we may first give a glance for the zero temperature case. For zero temperature,the dynamic correlation function for two operatorAandBis

    in which the term〈r|e(-β+it)HAe-iHtA|r〉follows the general form〈u|f(H)Ag(H)|v〉withf(x;t)= e(-β+it)xandg(x;t)=e-itx, and needs a two-dimensional Gauss quadrature to calculate.

    As mentioned in real time evolution, Gauss quadrature based FTLM is not accurate for evolution timetbeing large,this is also true in Eq.(61). In this case it is better to calculate the Fourier transform ofC(t)

    4. Numerical results of 1D XY model

    In this section we give numerical results to illustrate the idea of Gauss quadrature based finite temperature Lanczos method. The numerical calculation is carried out on the onedimensionalXYmodel.

    TheXYmodel is introduced by Lieb,Schultz and Mattis in 1961,[33]they considered a chain ofN1/2-spins,governed by the Hamiltonian

    Fig.1.(a)specific heat and(b)magnetic susceptibility of 1D XY model.In both figures the Lanczos iteration steps is set to 100,and the number of random vectors(denoted by R)is set to 20 and 100 respectively.

    The second quantity we consider is magnetic susceptibility,which is defined as Both〈m2z〉and〈mz〉can be calculated by an unsymmetrical Gauss quadrature of the form〈u|f(H)|v〉. The numerical results are shown in Fig.1(b).

    The computational effort to calculateCVandχare approximately same,since only one Lanczos iteration is needed to calculate the symmetric Gauss quadrature〈u|f(H)|u〉and the unsymmetrical Gauss quadrature〈u|f(H)|v〉. In both case the Lanczos iteration steps is set to 100,and the number of random vectors(denoted byR)is set to 20 and 100 respectively.From Fig.1 we can see that FTLM is accurate at high temperature, while the accuracy at low temperature is influenced by statistical fluctuations from random vectors.

    The third quantity we calculate is the dynamic correlation function of the average magnetization inzdirection,[34]which is defined as

    This quantity can be calculated by a two-dimensional Gauss quadrature of the form〈u|f(H)Ag(H)|v〉. The numerical results are shown in Fig.2(a).

    We can see that numerical result agrees well with exact result whent <10. But for lagert, the numerical result is very inaccurate. As discussed in real time evolution(see Subsection 3.3), Gauss quadrature based integration will fail to converge for highly oscillate functions such as eitHfor larget.

    It is usually more convenient to study the Fourier transform ofχ(t)defined as follows:

    The numerical results are shown in Fig.2(b).

    The calculation ofχ(ω) also involves two-dimensional Gauss quadrature in which the Diracδfunctions are replaced by Lorentz functions(see Eq.(65)). Since the time scale that FTLM can accurately calculate can not be large, the resolution inωspace, which is represented by the parameterεin Lorentz function,is also limited due to the time-energy uncertainty principle. As shown in Fig.2(b),the parameterεis set to 0.01. Smallerεwill lead to negativeχ(ω) values, which indicates the failure of convergence.

    5. Conclusion

    This paper has shown the tight relationship between Lanczos algorithm and orthogonal polynomials, and developed finite temperature Lanczos method in the framework of Gauss quadrature. The Lanczos algorithm can be regarded as a procedure to generate a series of orthogonal polynomials by which different functions of HamiltonianHare expanded.These orthogonal polynomials also define Gauss quadrature rules.The nodes and weights of Gauss quadrature are given by the eigenvalues and eigenvectors of tridiagonal matrix which is generated by the Lanczos iteration.Given the Gauss quadrature rule,the calculation of quadratic formu?f(H)u,which is the main part of finite temperature Lanczos method, can be reduced to a one-dimensional Gauss quadrature. The calculation of more general formu?f(H)Ag(H)vcan be reduced to a two-dimensional Gauss quadrature. Then we showed that many finite temperature static and dynamic quantities can be calculated by one-or two-dimensional Gauss quadratures.

    Our development of FTLM is not to improve numerically the original FTLM introduced by Jakliˇc and Prelovˇsek, since both methods admit same numerical results. The advantage of this Gauss quadrature based framework is that it fills the conceptual gap between FTLM and KPM, and makes it easy to apply orthogonal polynomial techniques commonly used by KPM in the FTLM calculation. One unexplored extension of this framework is applying different kernels in FTLM to reduce Gibbs oscillation in the expansion of incontinuous functions. We believe that after this development,FTLM will find more applications in the calculations of quantum many-body systems.

    Appendix A: Two theorems on orthogonal polynomials

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China (Grant Nos. 11734002 and U1930402).All numerical computations were carried out on the Tianhe-2JK at the Beijing Computational Science Research Center(CSRC).

    猜你喜歡
    李健林海
    李健 藏石欣賞
    寶藏(2018年12期)2019-01-29 01:51:10
    李健 用平淡演繹傳奇
    海峽姐妹(2018年10期)2018-12-26 01:21:06
    李健作品
    李健美術(shù)作品六幅
    戲劇之家(2018年12期)2018-06-13 10:08:20
    歡 沁
    琴童(2017年10期)2017-10-31 06:43:07
    冬陽
    琴童(2017年9期)2017-10-16 16:47:03
    林海
    寶藏(2017年6期)2017-07-20 10:01:06
    郝林海的水彩畫與俳意
    中華奇石(2016年11期)2017-03-16 07:59:49
    李健 互聯(lián)網(wǎng)二手車更“有愛”
    中國汽車界(2016年1期)2016-07-18 11:13:32
    郝林海的水彩畫與俳意
    中華奇石(2016年6期)2016-06-21 08:11:04
    最近2019中文字幕mv第一页| 91精品一卡2卡3卡4卡| 日本免费a在线| 亚洲成人中文字幕在线播放| 日韩国内少妇激情av| 一级爰片在线观看| 欧美3d第一页| 亚洲av免费高清在线观看| 欧美性猛交╳xxx乱大交人| 日韩三级伦理在线观看| 人妻夜夜爽99麻豆av| 国产精品.久久久| av在线老鸭窝| 少妇丰满av| 啦啦啦韩国在线观看视频| 亚洲精品456在线播放app| 国产成人aa在线观看| 欧美成人一区二区免费高清观看| 日本猛色少妇xxxxx猛交久久| 久久亚洲精品不卡| 村上凉子中文字幕在线| 边亲边吃奶的免费视频| 国产精品1区2区在线观看.| 国产色婷婷99| 高清毛片免费看| 欧美丝袜亚洲另类| 欧美成人一区二区免费高清观看| 免费观看人在逋| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产成人一区二区在线| 国产淫语在线视频| 观看免费一级毛片| 观看免费一级毛片| 别揉我奶头 嗯啊视频| 三级毛片av免费| 亚洲国产精品成人久久小说| 日本欧美国产在线视频| 国产黄色小视频在线观看| 日韩三级伦理在线观看| 亚洲av男天堂| 只有这里有精品99| 大话2 男鬼变身卡| 欧美日韩综合久久久久久| 国产探花极品一区二区| 尾随美女入室| 国产精品野战在线观看| 国产又黄又爽又无遮挡在线| 欧美成人免费av一区二区三区| 老司机福利观看| 简卡轻食公司| 国产在视频线精品| 欧美激情在线99| 日韩成人av中文字幕在线观看| 精品久久久久久久久av| 九九久久精品国产亚洲av麻豆| 在线观看一区二区三区| 村上凉子中文字幕在线| 国产三级在线视频| 1000部很黄的大片| 欧美三级亚洲精品| 在线a可以看的网站| 国产精品一区二区三区四区免费观看| 久久久久免费精品人妻一区二区| 国产日韩欧美在线精品| 在线播放国产精品三级| 欧美成人免费av一区二区三区| 国产单亲对白刺激| 久久草成人影院| 秋霞在线观看毛片| 99久国产av精品国产电影| 欧美zozozo另类| 日本爱情动作片www.在线观看| 美女xxoo啪啪120秒动态图| 97在线视频观看| 久久精品综合一区二区三区| 男女国产视频网站| 综合色av麻豆| 欧美性猛交╳xxx乱大交人| 免费观看人在逋| 成人午夜高清在线视频| 91久久精品国产一区二区成人| 久久99热这里只频精品6学生 | 亚洲综合色惰| www.色视频.com| 菩萨蛮人人尽说江南好唐韦庄 | 中国国产av一级| 国产一区亚洲一区在线观看| 亚洲一级一片aⅴ在线观看| 久久精品国产自在天天线| 亚洲欧美日韩无卡精品| 只有这里有精品99| 成人三级黄色视频| 91av网一区二区| 欧美日本亚洲视频在线播放| 国产av在哪里看| 日本与韩国留学比较| 亚洲精品乱码久久久久久按摩| 男的添女的下面高潮视频| 亚洲激情五月婷婷啪啪| 日韩av在线免费看完整版不卡| 国产熟女欧美一区二区| 黄色日韩在线| 人人妻人人澡人人爽人人夜夜 | 一区二区三区高清视频在线| 大又大粗又爽又黄少妇毛片口| 啦啦啦韩国在线观看视频| 又黄又爽又刺激的免费视频.| 久久精品国产鲁丝片午夜精品| 亚洲人成网站在线播| 欧美成人午夜免费资源| 又爽又黄a免费视频| 精品久久久久久久久久久久久| 日韩欧美国产在线观看| 免费黄网站久久成人精品| 在线播放国产精品三级| 亚洲av成人精品一区久久| 国产乱人偷精品视频| 日本一本二区三区精品| 国产av一区在线观看免费| 免费黄网站久久成人精品| 欧美极品一区二区三区四区| 久久精品国产鲁丝片午夜精品| av黄色大香蕉| 观看免费一级毛片| 国产色婷婷99| 亚洲在线自拍视频| 国产一区有黄有色的免费视频 | 国产一区二区在线观看日韩| 国产乱人偷精品视频| 国产免费福利视频在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 国产黄色视频一区二区在线观看 | 丝袜喷水一区| videos熟女内射| 精品久久久噜噜| 久久久久久久久中文| 可以在线观看毛片的网站| 成人综合一区亚洲| 久久久欧美国产精品| 麻豆成人av视频| 中文字幕制服av| 免费看av在线观看网站| 成人亚洲精品av一区二区| 韩国高清视频一区二区三区| 国产精品一区www在线观看| 久久久久九九精品影院| 一本一本综合久久| 乱系列少妇在线播放| 人妻少妇偷人精品九色| 三级毛片av免费| 女人被狂操c到高潮| 国产av一区在线观看免费| 欧美一级a爱片免费观看看| 尤物成人国产欧美一区二区三区| 别揉我奶头 嗯啊视频| 午夜久久久久精精品| 尤物成人国产欧美一区二区三区| 十八禁国产超污无遮挡网站| 99久久人妻综合| 欧美成人精品欧美一级黄| 简卡轻食公司| 女人被狂操c到高潮| av黄色大香蕉| 国产精品野战在线观看| 国语自产精品视频在线第100页| 国产午夜福利久久久久久| 黄片无遮挡物在线观看| 我的女老师完整版在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲aⅴ乱码一区二区在线播放| 国产人妻一区二区三区在| 国产精品伦人一区二区| 国产在视频线在精品| 亚洲丝袜综合中文字幕| 免费av不卡在线播放| 国内精品美女久久久久久| 久久99热这里只有精品18| 国产一区二区在线av高清观看| 校园人妻丝袜中文字幕| 亚洲国产最新在线播放| 桃色一区二区三区在线观看| 中文字幕制服av| 夜夜爽夜夜爽视频| 亚洲av二区三区四区| 一区二区三区高清视频在线| 亚洲欧洲国产日韩| 欧美性感艳星| 最后的刺客免费高清国语| 人妻少妇偷人精品九色| 午夜久久久久精精品| 内射极品少妇av片p| 国产精品一区二区性色av| 美女脱内裤让男人舔精品视频| 国内精品一区二区在线观看| 国产精品久久久久久av不卡| 18禁裸乳无遮挡免费网站照片| 亚洲内射少妇av| 国产一区二区在线观看日韩| 中国国产av一级| 久久久精品94久久精品| 成人国产麻豆网| 色5月婷婷丁香| 亚洲在线自拍视频| 亚洲国产精品成人久久小说| 我要搜黄色片| 国产亚洲91精品色在线| 精华霜和精华液先用哪个| 国产高潮美女av| 久久久a久久爽久久v久久| 日韩 亚洲 欧美在线| 国产成人福利小说| 又粗又爽又猛毛片免费看| 精品一区二区三区人妻视频| 在线观看一区二区三区| 欧美一区二区国产精品久久精品| 91久久精品国产一区二区成人| 一级黄片播放器| 欧美97在线视频| 大香蕉久久网| 波多野结衣高清无吗| 国产av不卡久久| 美女内射精品一级片tv| 国产精品伦人一区二区| 精品国内亚洲2022精品成人| www.av在线官网国产| 天天躁夜夜躁狠狠久久av| 丰满人妻一区二区三区视频av| 久久99热这里只频精品6学生 | 欧美激情在线99| 国产精品国产三级国产专区5o | 精品国产三级普通话版| 青青草视频在线视频观看| 精品无人区乱码1区二区| 男女那种视频在线观看| 色综合色国产| 波多野结衣高清无吗| av又黄又爽大尺度在线免费看 | 国产乱人偷精品视频| 日韩在线高清观看一区二区三区| av在线蜜桃| 日韩人妻高清精品专区| 日本wwww免费看| ponron亚洲| 日日啪夜夜撸| 国产真实伦视频高清在线观看| 毛片一级片免费看久久久久| 色噜噜av男人的天堂激情| 国产一区二区三区av在线| 欧美又色又爽又黄视频| 汤姆久久久久久久影院中文字幕 | 搡女人真爽免费视频火全软件| 国产精品福利在线免费观看| 少妇人妻一区二区三区视频| 精华霜和精华液先用哪个| 亚洲欧美精品专区久久| 国产一级毛片七仙女欲春2| 久久久久久久久久久免费av| 亚洲国产精品国产精品| 国产 一区 欧美 日韩| 久久久国产成人精品二区| 嫩草影院精品99| 日韩强制内射视频| 久久99热这里只有精品18| 97人妻精品一区二区三区麻豆| 亚洲精品日韩av片在线观看| 日本wwww免费看| 国产成年人精品一区二区| av免费在线看不卡| 国产极品天堂在线| 日本-黄色视频高清免费观看| 一个人看视频在线观看www免费| 亚洲,欧美,日韩| 久久久久性生活片| 中文乱码字字幕精品一区二区三区 | 九九久久精品国产亚洲av麻豆| 午夜福利在线在线| 欧美日本亚洲视频在线播放| 91aial.com中文字幕在线观看| 99久久精品热视频| 搡女人真爽免费视频火全软件| 黄色一级大片看看| 欧美日韩综合久久久久久| 九草在线视频观看| 九草在线视频观看| 久久久久久九九精品二区国产| 日韩欧美精品v在线| 日本午夜av视频| 黄色日韩在线| 国产av码专区亚洲av| 成人毛片60女人毛片免费| 纵有疾风起免费观看全集完整版 | 亚洲成av人片在线播放无| 亚洲在线观看片| 欧美97在线视频| 国产午夜精品论理片| 欧美高清成人免费视频www| 91狼人影院| 久久亚洲国产成人精品v| 国产免费男女视频| 国产精品一区二区三区四区免费观看| 日韩成人伦理影院| 成人综合一区亚洲| 午夜免费男女啪啪视频观看| 午夜视频国产福利| 亚洲最大成人中文| 欧美不卡视频在线免费观看| 女人久久www免费人成看片 | 少妇人妻一区二区三区视频| 哪个播放器可以免费观看大片| 少妇被粗大猛烈的视频| 久久久久久伊人网av| 中文精品一卡2卡3卡4更新| 日韩欧美三级三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 秋霞在线观看毛片| 国产视频内射| 亚洲一区高清亚洲精品| 久久久国产成人精品二区| av黄色大香蕉| 天堂av国产一区二区熟女人妻| av在线亚洲专区| 老司机影院毛片| 男的添女的下面高潮视频| 国产不卡一卡二| 国产精品女同一区二区软件| 六月丁香七月| 久久精品夜色国产| 亚洲欧美精品综合久久99| 老女人水多毛片| 亚洲人成网站在线观看播放| 免费观看在线日韩| 男的添女的下面高潮视频| av播播在线观看一区| 美女国产视频在线观看| 欧美潮喷喷水| 国产亚洲一区二区精品| 2021少妇久久久久久久久久久| 亚洲高清免费不卡视频| 大香蕉97超碰在线| 在线免费观看不下载黄p国产| 国产中年淑女户外野战色| 亚洲aⅴ乱码一区二区在线播放| 成人无遮挡网站| 中文乱码字字幕精品一区二区三区 | 亚洲精品影视一区二区三区av| 毛片一级片免费看久久久久| 国产精品久久久久久精品电影小说 | 最近中文字幕高清免费大全6| av卡一久久| 久久久色成人| 欧美成人免费av一区二区三区| 日本黄色片子视频| 国产在视频线在精品| 久久这里有精品视频免费| 亚洲色图av天堂| 国产一级毛片七仙女欲春2| 欧美日本亚洲视频在线播放| 日韩制服骚丝袜av| 免费大片18禁| 亚洲va在线va天堂va国产| 99热这里只有是精品在线观看| 亚洲欧美精品综合久久99| 免费一级毛片在线播放高清视频| 午夜福利高清视频| www.色视频.com| 嫩草影院新地址| 亚洲国产精品成人久久小说| 欧美成人免费av一区二区三区| 国产精品野战在线观看| 美女脱内裤让男人舔精品视频| 中文天堂在线官网| 最新中文字幕久久久久| 中文字幕熟女人妻在线| 亚洲高清免费不卡视频| 亚洲av免费高清在线观看| 亚洲成人久久爱视频| 亚洲aⅴ乱码一区二区在线播放| 日韩成人av中文字幕在线观看| 99在线视频只有这里精品首页| 国产乱来视频区| 直男gayav资源| 亚洲在久久综合| 22中文网久久字幕| 我的女老师完整版在线观看| 嫩草影院入口| 乱系列少妇在线播放| 国产美女午夜福利| 久久精品国产鲁丝片午夜精品| 色5月婷婷丁香| 老司机影院毛片| 国产真实伦视频高清在线观看| 精品一区二区免费观看| 一级毛片电影观看 | 精华霜和精华液先用哪个| 91午夜精品亚洲一区二区三区| 国产精品福利在线免费观看| 村上凉子中文字幕在线| 免费不卡的大黄色大毛片视频在线观看 | 日韩欧美精品免费久久| 2021少妇久久久久久久久久久| 国产精品伦人一区二区| 青春草视频在线免费观看| 三级男女做爰猛烈吃奶摸视频| 纵有疾风起免费观看全集完整版 | 色综合色国产| 国产精品99久久久久久久久| 最近最新中文字幕大全电影3| 午夜福利视频1000在线观看| 亚洲最大成人av| 在线观看一区二区三区| 国产精品av视频在线免费观看| 成人亚洲欧美一区二区av| 91av网一区二区| 国产高清国产精品国产三级 | 亚洲国产精品国产精品| 99热精品在线国产| 人妻制服诱惑在线中文字幕| 国产免费一级a男人的天堂| 婷婷六月久久综合丁香| 男女边吃奶边做爰视频| 成人无遮挡网站| 韩国av在线不卡| 精品久久久噜噜| 国产淫语在线视频| av.在线天堂| 日韩中字成人| 三级经典国产精品| 久久精品91蜜桃| 亚洲国产精品sss在线观看| 亚洲va在线va天堂va国产| 久久久色成人| 久久久久性生活片| 精品人妻一区二区三区麻豆| 国产淫语在线视频| 插逼视频在线观看| 免费av毛片视频| 日本免费a在线| 一区二区三区四区激情视频| 午夜激情欧美在线| 亚洲图色成人| 黄色一级大片看看| 亚洲精品日韩在线中文字幕| 亚洲国产精品专区欧美| 综合色丁香网| 精品无人区乱码1区二区| 啦啦啦韩国在线观看视频| 日韩在线高清观看一区二区三区| 欧美+日韩+精品| 国产精品乱码一区二三区的特点| 亚洲av中文av极速乱| 久久精品影院6| 国内精品宾馆在线| 99久久成人亚洲精品观看| 亚洲国产最新在线播放| av视频在线观看入口| 久热久热在线精品观看| 国产成人一区二区在线| av.在线天堂| 草草在线视频免费看| 搡老妇女老女人老熟妇| 中文字幕制服av| 亚洲最大成人中文| 22中文网久久字幕| 亚洲国产精品专区欧美| 成人无遮挡网站| 99久久成人亚洲精品观看| 亚洲经典国产精华液单| 精品人妻偷拍中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 波多野结衣巨乳人妻| 1000部很黄的大片| 亚洲av成人av| 国产精华一区二区三区| 国产久久久一区二区三区| 在线播放无遮挡| 亚洲av成人精品一区久久| 国产精品女同一区二区软件| 欧美成人a在线观看| 免费黄色在线免费观看| 又爽又黄无遮挡网站| 插阴视频在线观看视频| 成人av在线播放网站| 久久久久久久亚洲中文字幕| 99视频精品全部免费 在线| 日本色播在线视频| 嫩草影院精品99| 久久人人爽人人爽人人片va| 日韩高清综合在线| 久久久久精品久久久久真实原创| 亚洲精品国产成人久久av| 欧美色视频一区免费| 国产精品野战在线观看| 边亲边吃奶的免费视频| 国产一区二区在线av高清观看| 好男人在线观看高清免费视频| 国产高清视频在线观看网站| 一边摸一边抽搐一进一小说| 国产69精品久久久久777片| 成人午夜精彩视频在线观看| 久久精品91蜜桃| 寂寞人妻少妇视频99o| 亚洲av.av天堂| 一区二区三区免费毛片| 国产成人精品一,二区| 男的添女的下面高潮视频| 少妇的逼好多水| 久久精品国产亚洲网站| kizo精华| 亚洲美女视频黄频| 欧美成人a在线观看| 国产综合懂色| 日本免费一区二区三区高清不卡| 免费不卡的大黄色大毛片视频在线观看 | 一夜夜www| 亚洲久久久久久中文字幕| 99视频精品全部免费 在线| av又黄又爽大尺度在线免费看 | 男女那种视频在线观看| 永久免费av网站大全| 26uuu在线亚洲综合色| 六月丁香七月| 成人美女网站在线观看视频| 国产av在哪里看| 偷拍熟女少妇极品色| 女人十人毛片免费观看3o分钟| 中文字幕亚洲精品专区| 久久久久久久久久久免费av| 亚洲欧美精品专区久久| 综合色av麻豆| 美女高潮的动态| 欧美日韩国产亚洲二区| 嫩草影院精品99| 久久6这里有精品| 午夜福利成人在线免费观看| 三级男女做爰猛烈吃奶摸视频| 99久久精品热视频| 午夜精品在线福利| a级一级毛片免费在线观看| 亚洲精品日韩在线中文字幕| 一级二级三级毛片免费看| 免费看av在线观看网站| 久久鲁丝午夜福利片| 五月伊人婷婷丁香| 久久午夜福利片| 级片在线观看| 亚洲国产高清在线一区二区三| 日韩精品有码人妻一区| av在线播放精品| 99久久成人亚洲精品观看| 日本黄色视频三级网站网址| 久久精品夜夜夜夜夜久久蜜豆| 免费搜索国产男女视频| 久久精品国产鲁丝片午夜精品| 日韩欧美 国产精品| 久久精品综合一区二区三区| 欧美xxxx性猛交bbbb| 精品少妇黑人巨大在线播放 | 波多野结衣高清无吗| 九九热线精品视视频播放| 女的被弄到高潮叫床怎么办| 白带黄色成豆腐渣| 爱豆传媒免费全集在线观看| 国产成人a∨麻豆精品| 国产综合懂色| 欧美精品一区二区大全| 深爱激情五月婷婷| 晚上一个人看的免费电影| 你懂的网址亚洲精品在线观看 | 草草在线视频免费看| 国产人妻一区二区三区在| 久久亚洲国产成人精品v| 亚洲精品aⅴ在线观看| 听说在线观看完整版免费高清| 免费黄网站久久成人精品| 一区二区三区高清视频在线| 国产淫片久久久久久久久| 日韩av不卡免费在线播放| 青春草国产在线视频| 欧美日韩在线观看h| 一级av片app| 亚洲精品成人久久久久久| 中文字幕制服av| 国产精品久久久久久精品电影| 国产综合懂色| 少妇的逼好多水| 亚洲精华国产精华液的使用体验| 一级二级三级毛片免费看| 国产探花极品一区二区| 女人十人毛片免费观看3o分钟| 国产精品乱码一区二三区的特点| 久久这里只有精品中国| av女优亚洲男人天堂| 一个人看视频在线观看www免费| 97超视频在线观看视频| 非洲黑人性xxxx精品又粗又长| 欧美变态另类bdsm刘玥| 日韩中字成人| 久久久国产成人免费| 日韩一区二区视频免费看| 又粗又爽又猛毛片免费看| 六月丁香七月| 天堂av国产一区二区熟女人妻| 成人三级黄色视频| 免费搜索国产男女视频| 中文字幕精品亚洲无线码一区| 老司机影院毛片| 欧美一区二区亚洲| 国产大屁股一区二区在线视频| 国产黄片美女视频| 久久精品影院6| 乱系列少妇在线播放| 国内精品一区二区在线观看| 精品久久国产蜜桃| 久久精品国产鲁丝片午夜精品| 日韩欧美 国产精品|