李良 吳瑀婕 楊靜 馬晶晶 楊彪 鄒燁 王道營(yíng) 徐為民
:明膠是由膠原蛋白水解得到的一類聚合物。作為一種具有良好生物相容性和生物降解性等生物學(xué)性能的天然高分子材料,因其具有良好的發(fā)泡性、乳化性和成膜性等特點(diǎn),在產(chǎn)品包裝、增稠、充當(dāng)遞送載體等方面被廣泛應(yīng)用。本文就明膠凝膠強(qiáng)度、黏度、顏色、產(chǎn)量、等電點(diǎn)等理化性質(zhì)及其影響因素,以及明膠不同類型的改性、交聯(lián)方式和制備各種功能性明膠基水凝膠進(jìn)行綜述。通過設(shè)計(jì)使用不同材料,引入不同官能團(tuán)來合成不同功能特性的明膠復(fù)合水凝膠黏合劑,以豐富其在日常生活的應(yīng)用,為明膠的提取及綜合利用提供一些新的思路。
:明膠;交聯(lián);改性;水凝膠;黏合劑
Recent?Progress in Preparation and Application of Multifunctional Gelatin Adhesives
LI Liang WU Yujie YANG Jing MA Jingjing YANG Biao ZOU Ye ?WANG Daoying XU Weimin
?Gelatin is a polymer derived from the hydrolysis of collagen.?As a natural polymer material with good biocompatibility and biodegradability, gelatin has been widely used in product packaging?and?thickening and as a delivery carrier due to its good foaming, emulsifying and film-forming properties.?In this paper, the physicochemical properties of gelatin such as gel strength, viscosity, color, yield?and?isoelectric point and the factors influencing?them?are reviewed, as well as the modification of different types of gelatin, the types and ways of cross-linking of gelatin and the preparation of various functional gelatin-based hydrogels.?Gelatin composite hydrogel adhesives with?different functional properties?can be synthesized by introducing different functional groups?into different artificially designed?materials, which?can enrich the?application?of gelatin?in daily life and provide some new ideas for the extraction and comprehensive utilization of gelatin.
?gelatin; crosslinking; modification; hydrogels; adhesive
DOI:10.7506/rlyj1001-8123-20211227-242
中圖分類號(hào):TQ431.3 ??????????????文獻(xiàn)標(biāo)志碼:A ??????????????文章編號(hào):
明膠不是天然存在的蛋白質(zhì),而是由膠原蛋白水解產(chǎn)生的一種無味、無色的固體物質(zhì),它與膠原蛋白具有同源性。膠原蛋白是一種結(jié)構(gòu)蛋白,具有3 個(gè)相互交織的肽鏈,三重螺旋結(jié)構(gòu)的穩(wěn)定性由鏈間的氫鍵提供。膠原蛋白有多種類型,迄今為止,已發(fā)現(xiàn)29 種膠原蛋白,按發(fā)現(xiàn)時(shí)間順序分別稱為Ⅰ型到XXIX型。膠原蛋白向明膠的轉(zhuǎn)化目前認(rèn)為是由膠原蛋白的螺旋結(jié)構(gòu)分解為無規(guī)則卷曲,冷卻后,無規(guī)則卷曲形態(tài)會(huì)經(jīng)歷再次向螺旋結(jié)構(gòu)的轉(zhuǎn)變,在此期間它們會(huì)改變?cè)冀Y(jié)構(gòu)(圖1)。
水凝膠由水和聚合物網(wǎng)絡(luò)組成,兼具吸水溶脹又不溶解的性能,在黏合劑方面具有較大優(yōu)勢(shì)。明膠分子鏈中含有大量的活性官能團(tuán),具有水溶性和可逆凝膠化的優(yōu)點(diǎn),使其成為構(gòu)筑水凝膠黏合劑的優(yōu)良生物材料。制備具有高強(qiáng)度和多功能的明膠黏合劑有利于提高明膠的高附加值并拓展其應(yīng)用領(lǐng)域,有助于明膠行業(yè)的可持續(xù)發(fā)展。目前,明膠黏合劑在工業(yè)中的應(yīng)用包括傷口敷料、生物活性材料、口服遞送載體及食品的封裝等方面。本文通過對(duì)明膠的提取、改性、交聯(lián)等方法和機(jī)理進(jìn)行總結(jié),同時(shí)指出改性和交聯(lián)可能對(duì)明膠黏合劑產(chǎn)生的負(fù)面影響,以期為明膠黏合劑的深入研究提供新的研究思路。
根據(jù)獲取來源不同,明膠可分為哺乳動(dòng)物(如牛、豬)明膠、魚類(如冷水魚和溫水魚)明膠、畜禽(雞、鴨)明膠、昆蟲明膠等。過去,明膠是從豬的皮膚和軟骨(46%)、牛皮(29.4%)、各種動(dòng)物的骨頭(23.1%)和其他來源(1.5%)提取的。如今,由于牛海綿狀腦?。╞ovine spongiform encephalopathy,BSE)和口蹄疫(foot and mouth disease,F(xiàn)MD)的擔(dān)憂,以及猶太教和伊斯蘭教認(rèn)為食用豬明膠違法,用其他更安全的來源提取明膠成為了學(xué)者新的研究方向,例如,從魚類和家禽中提取明膠受到了更多的關(guān)注。
明膠通過其不同獲取方法分為A型明膠(等電點(diǎn)為pH 6.5~9.0)、B型明膠(等電點(diǎn)為pH 4.8~5.2)及酶法明膠。其中A型明膠是指將原材料經(jīng)酸性介質(zhì)前處理后獲得的明膠,故又稱為酸法明膠。B型明膠是指將原材料經(jīng)堿性介質(zhì)前處理后獲得的明膠,故又稱為堿法明膠。研究表明,酸性處理對(duì)魚皮和豬皮中共價(jià)交聯(lián)較少的膠原蛋白更有效,而堿性處理對(duì)牛皮中結(jié)構(gòu)更復(fù)雜的膠原蛋白有效。酶法明膠則是指將原材料經(jīng)酶處理后獲得的明膠。酶處理提高了明膠產(chǎn)量,縮短了加工時(shí)間,產(chǎn)生的廢物更少。但是酶法會(huì)使明膠的鏈和鏈一起降解,降低了凝膠強(qiáng)度,從而影響明膠質(zhì)量。
明膠具有良好的生物相容性和生物降解性,且具有優(yōu)良的功能特性,如水結(jié)合能力、成膜性、發(fā)泡和乳化能力,使其成為多功能食品(表1)的重要成分。
明膠是從各類動(dòng)物皮中提取出來的膠原蛋白的變性產(chǎn)物,具有蛋白質(zhì)的理化性質(zhì),同時(shí)因其自身分子結(jié)構(gòu)的特殊性又具有其自身的獨(dú)特性質(zhì)。
1.1 ??膠凝特性
明膠的臨界膠凝溫度取決于其原料,然而,魚皮明膠的脯氨酸和羥脯氨酸含量顯著低于哺乳動(dòng)物明膠(表2),導(dǎo)致其凝膠強(qiáng)度、凝膠溫度與哺乳動(dòng)物相比較低。凝膠強(qiáng)度的大小則體現(xiàn)了明膠的膠凝能力。食用明膠的凝膠強(qiáng)度通常為50~300 g(表1),而200~250 g是最優(yōu)良的。明膠的凝膠強(qiáng)度與鏈和鏈的總和成正比。分子質(zhì)量分布和氨基酸組成的差異導(dǎo)致凝膠強(qiáng)度的差異,通常具有高分子質(zhì)量多肽的明膠表現(xiàn)出高凝膠強(qiáng)度。
1.2 ??分子質(zhì)量
分子質(zhì)量主要取決于提取工藝及所使用的原材料,所用動(dòng)物的年齡也有影響。提取溫度的升高會(huì)增加明膠主蛋白鏈(、、鏈)的降解,從而降低所得明膠的分子質(zhì)量。其分子質(zhì)量主要取決于鏈(80~125 kDa)、鏈(160~250 kDa)、鏈(240~375 kDa)和其他低分子質(zhì)量物質(zhì)。鏈和鏈大致分別為單體鏈的二聚體和三聚體(圖1)。與在高pH值下提取的明膠相比,低pH值下提取的明膠具有更寬的分子質(zhì)量分布和更小的分子質(zhì)量,而且隨著提取時(shí)間的延長(zhǎng)也會(huì)導(dǎo)致高分子質(zhì)量明膠消失。
1.3 ??氨基酸組成
氨基酸組成取決于明膠的來源,不同種類的明膠來源,其氨基酸種類也不盡相同(表2)。甘氨酸(Gly)(27%~35%)、脯氨酸(Pro)和羥脯氨酸(Hyp)(20%~24%)是最主要的氨基酸。與哺乳動(dòng)物明膠相比,魚明膠的特點(diǎn)是Pro和Hyp含量較低,所以魚明膠的凝膠強(qiáng)度比哺乳動(dòng)物明膠凝膠強(qiáng)度偏低。
不同種類來源的明膠都有一些共同的結(jié)構(gòu),即Gly-XY-序列的連續(xù)重復(fù),其中X主要是Pro,Y主要是Hyp。Pro和Hyp的含量越高,明膠的融化溫度和膠凝溫度就越高,熱穩(wěn)定性越好,其主要是通過游離水分子與明膠中Hyp的羥基之間形成的氫鍵來維持膠原結(jié)構(gòu)三螺旋的穩(wěn)定性。
1.4 ??等電點(diǎn)
等電點(diǎn)是明膠的一個(gè)重要物性指標(biāo),當(dāng)pH值為等電點(diǎn)時(shí),明膠分子中的凈電荷數(shù)等于零,分子鏈之間卷曲程度最大,其溶液的黏度、滲透壓、濁度等物性指標(biāo)均最低。Gudmundsson等發(fā)現(xiàn),在pH 6.0條件下制備的魚明膠比在pH 2.5~3.0條件下制備的魚明膠具有更高的凝膠強(qiáng)度。這是因?yàn)樵趐H 2.5~3.0條件下下制備的明膠聚合物帶正電荷,排斥力占優(yōu)勢(shì),使聚合物彼此遠(yuǎn)離;而在pH 6.0條件下制備的凝膠更接近明膠的等電點(diǎn),此時(shí)明膠聚合物幾乎帶中性電荷,明膠趨向聚集,形成更緊密的凝膠網(wǎng)絡(luò)。Hattrem等發(fā)現(xiàn),魚明膠的等電點(diǎn)隨提取溫度的升高而降低。這可能是由于隨著提取溫度的升高,谷氨酰胺和天冬酰胺分別脫酰胺變?yōu)楣劝彼岷吞於彼釋?dǎo)致的。
1.5 ??其他性質(zhì)
明膠的黏度與其成膜性密不可分,黏度的大小取決于明膠中多肽鏈的長(zhǎng)短及其分子質(zhì)量。明膠中多肽鏈的長(zhǎng)度越短,則明膠的網(wǎng)狀結(jié)構(gòu)越容易形成,其黏度也就越低。同時(shí)明膠的黏度會(huì)影響其溶解速率和凝固速率,黏度越低,其溶解、凝固速率越小。
明膠的顏色特性取決于所使用的原材料和生產(chǎn)方法。在提取步驟中,蛋白質(zhì)和微量脂質(zhì)之間會(huì)發(fā)生美拉德反應(yīng),使明膠變黑。明膠的深色通常是由其制造過程中引入或未去除的無機(jī)物、蛋白質(zhì)和黏膜物質(zhì)污染物引起的。
明膠因其成膜能力、生物降解性和良好的氣體阻隔性而被廣泛研究,但其機(jī)械強(qiáng)度較差,且由于其吸濕性強(qiáng),與水分含量高的食品接觸時(shí)容易溶脹溶解,限制了其在食品包裝中的直接應(yīng)用。明膠分子鏈上含有大量的活性官能團(tuán),這為明膠的改性奠定了基礎(chǔ)。常見的明膠改性方法分為物理改性、化學(xué)改性及酶法改性。
2.1 ??物理改性
物理改性是指通過超聲、高壓、紫外線照射或γ照射等方法進(jìn)行交聯(lián)改性,物理改性過程中最大的優(yōu)勢(shì)是不會(huì)引入其他毒性物質(zhì),具有極高的生物相容性。Tu Zongcai等用超聲顯著提高了鳙魚明膠的產(chǎn)率和游離氨基含量。然而,較長(zhǎng)的超聲時(shí)間會(huì)削弱凝膠網(wǎng)絡(luò)結(jié)構(gòu),從而降低凝膠強(qiáng)度和熔點(diǎn),并伴隨產(chǎn)生更多的表面空隙。張宇昊等用高壓處理也提高了魚明膠的凝膠強(qiáng)度,當(dāng)壓力為300 MPa時(shí),處理得到的巴沙魚皮明膠凝膠強(qiáng)度顯著高于200 MPa提取得到的明膠,這可能是由于高壓引起了蛋白質(zhì)聚集效應(yīng)。輻照作為一種物理的、具有成本效益的非熱技術(shù)受到越來越多的關(guān)注。明膠在輻照作用下發(fā)生交聯(lián)、聚集和降解,是由于明膠中酪氨酸、苯丙氨酸等特定殘基處形成自由基,導(dǎo)致明膠分子交聯(lián)斷裂。而與紫外線照射相比,γ照射很容易降低魚膠的凝膠強(qiáng)度和黏度,可能是因?yàn)棣幂椪站哂休^高的量子能量,容易引起明膠分子變化甚至碎裂,導(dǎo)致明膠水凝膠的凝膠強(qiáng)度和黏度降低。物理改性雖有以上優(yōu)點(diǎn),但是物理改性對(duì)力學(xué)性能改善程度較小,而且物理改性大多具有可逆性。
2.2 ??化學(xué)改性
化學(xué)改性通常是利用明膠鏈上的活性基團(tuán)來發(fā)生化學(xué)反應(yīng),促使分子間形成網(wǎng)絡(luò)結(jié)構(gòu),實(shí)現(xiàn)對(duì)明膠的改性。如磷酸化修飾、醛類改性、酚類改性、琥珀酰胺修飾和糖基化修飾等。Kaewruang等將三聚磷酸鈉的磷酸鹽引入明膠分子中,增強(qiáng)了明膠鏈中磷酸基團(tuán)與氨基酸—NH之間的離子相互作用,提高了明膠的凝膠強(qiáng)度。戊二醛可與氨基酸的側(cè)向殘基快速反應(yīng),特別是與賴氨酸和羥賴氨酸的-NH官能團(tuán)反應(yīng),以通過席夫堿形成亞胺來穩(wěn)定明膠網(wǎng)絡(luò)。酚類化合物的羥基可通過氫鍵與明膠的羧基相互作用,酚類的芳環(huán)與明膠的疏水側(cè)鏈之間可能發(fā)生疏水相互作用,從而改善魚明膠的功能特性。Zhang Ting等用辛烯基琥珀酸酐改性牛皮和魚皮明膠,增加了魚油乳液的液滴穩(wěn)定性、相變時(shí)間和奶油化指數(shù)。周偉等用糖基化處理聯(lián)合添加楊梅素協(xié)同提高魚鱗明膠可食膜的機(jī)械性能和光阻隔性能,而不影響魚鱗明膠可食膜的阻水性。
2.3 ??酶法改性
酶法改性是用酶來催化蛋白質(zhì)分子內(nèi)或分子間交聯(lián),以改變其功能特性。與化學(xué)修飾相比,酶法改性有幾個(gè)顯著的優(yōu)點(diǎn):1)更高的選擇性和底物特異性,使所得產(chǎn)物具有精心設(shè)計(jì)和立體有序的結(jié)構(gòu);2)較溫和的反應(yīng)條件;3)可持續(xù)。微生物轉(zhuǎn)谷氨酰胺酶(microbial transglutaminase,MTGase)通過催化蛋白質(zhì)的-氨基之間形成交聯(lián)肽鍵,從而誘導(dǎo)蛋白質(zhì)中-(-谷氨酰)-賴氨酸交聯(lián)的形成。Wangtueai等發(fā)現(xiàn),隨著MTGase濃度的增加,MTGase顯著改變了魚明膠的結(jié)構(gòu),形成了高分子質(zhì)量聚合物。由于形成了具有非常小空隙的致密、均勻凝膠網(wǎng)絡(luò),這些改性大大提高了魚明膠的熔點(diǎn)和凝膠強(qiáng)度。但是,Wangtueai等也發(fā)現(xiàn),過量的酶會(huì)導(dǎo)致魚明膠凝膠強(qiáng)度和硬度降低,因?yàn)檫^量的交聯(lián)會(huì)抑制均勻蛋白質(zhì)網(wǎng)絡(luò)的發(fā)展,甚至在高濃度下顯示出非熱可逆性。
水凝膠是許多食物的重要成分,包括酸乳、甜點(diǎn)、醬料和一些肉制品,它提供了理想的外觀、質(zhì)地、風(fēng)味和穩(wěn)定性特征。
目前水凝膠交聯(lián)類型主要分為物理交聯(lián)、化學(xué)交聯(lián)、酶法交聯(lián)和混合交聯(lián)(表3)。
3.1 ??物理交聯(lián)
物理交聯(lián)是通過物理相互作用,如靜電吸附、氫鍵、范德華力等形成明膠分子鏈間的纏繞。目前,明膠基水凝膠的物理交聯(lián)方法主要包括反復(fù)凍融法、等離子體法和脫水熱法等。Mauricio等用超聲物理交聯(lián)纖維素納米晶須和淀粉,制備微水凝膠復(fù)合材料,在藥物遞送方面,交聯(lián)纖維素納米晶須的藥物釋放速率降低約2.9 倍。物理交聯(lián)因?yàn)闆]有引入化學(xué)類交聯(lián)劑,所以細(xì)胞毒性相對(duì)較低、生物降解性、生物相容性較好。但是通過物理法制備的明膠基水凝膠存在性質(zhì)不穩(wěn)定、力學(xué)強(qiáng)度低等缺點(diǎn)。
3.2 ??化學(xué)交聯(lián)
明膠的化學(xué)交聯(lián)可在蛋白質(zhì)片段之間形成持久的共價(jià)鍵。用于明膠的化學(xué)交聯(lián)劑包括戊二醛、甘油醛、甲醛、京尼平、乙二醛、二醛淀粉和羰基二咪唑。然而,大多數(shù)化學(xué)交聯(lián)劑通常會(huì)引起毒性、環(huán)境污染以及導(dǎo)致其他不良影響,所以天然交聯(lián)劑是首選。目前多酚化合物(包括綠茶多酚、迷迭香、咖啡酸和沒食子酸)、有機(jī)酸(乙酸、蘋果酸、草酸和檸檬酸)、草本提取物(肉桂、丁香和八角)等具有用作生物聚合物的天然交聯(lián)劑的潛在應(yīng)用。
3.3 ??酶法交聯(lián)
明膠分子鏈可在生物酶的催化作用下發(fā)生生化反應(yīng),從而產(chǎn)生內(nèi)部交聯(lián),酶法交聯(lián)常用的酶主要有谷氨酰胺轉(zhuǎn)氨酶、漆酶、過氧化物酶等。由于沒有化學(xué)交聯(lián)劑的引入,酶法交聯(lián)具有細(xì)胞毒性低、生物相容性好、自然條件下易被降解等優(yōu)點(diǎn)。
3.4 ??混合交聯(lián)
目前研究的通常思路是將可逆物理交聯(lián)和不可逆共價(jià)交聯(lián)混合在一種聚合物結(jié)構(gòu)中,以獲得堅(jiān)韌的水凝膠?;谶@個(gè)思路,發(fā)現(xiàn)了拓?fù)淠z、滑環(huán)凝膠、雙網(wǎng)絡(luò)凝膠和雙交聯(lián)凝膠的制備方法。然而,這些水凝膠的主要支架通常是合成聚合物(如聚丙烯酰胺),這使得它們不具有生物相容性和生物降解性。在食品行業(yè)用于制備水凝膠的成分中,蛋白質(zhì)和多糖因其可生物降解性、生物相容性和無毒性等特點(diǎn)受到廣泛關(guān)注。
添加多糖可加速和強(qiáng)化不同分子內(nèi)和分子間水平的結(jié)構(gòu)形成過程。由蛋白質(zhì)和多糖形成的兩親共軛物可通過蛋白質(zhì)的疏水區(qū)域牢固錨定在食品乳液系統(tǒng)的油水界面上,從而形成黏彈性層,同時(shí),非吸附性多糖區(qū)域提供了空間穩(wěn)定性,可導(dǎo)致膠凝的形成。蛋白質(zhì)和多糖之間的相互作用主要是通過美拉德反應(yīng)的共價(jià)鍵,即起始于還原糖與氨基酸或蛋白質(zhì)賴氨酸殘基的-氨基的縮合,以及靜電相互作用、疏水相互作用、氫鍵和范德華相互作用的非共價(jià)鍵。
蛋白質(zhì)與明膠可以形成更強(qiáng)和更堅(jiān)固的凝膠。Badii等發(fā)現(xiàn),魚明膠與蛋清蛋白形成的凝膠結(jié)構(gòu)顯示出協(xié)同相互作用,從而導(dǎo)致更高的凝膠強(qiáng)度。蛋清-明膠相互作用機(jī)制為:加熱時(shí),一部分明膠(其可逆性未恢復(fù))與蛋清蛋白非共價(jià)結(jié)合,然后蛋清蛋白采用一種構(gòu)象,將其與其他蛋清蛋白的聚集降至最低,最后與對(duì)照凝膠相比形成了均勻的強(qiáng)凝膠結(jié)構(gòu)。
明膠基水凝膠是以明膠為基礎(chǔ)通過化學(xué)交聯(lián)、物理交聯(lián)、酶法交聯(lián)以及與其他材料復(fù)合等方式而得到的水凝膠。目前明膠黏合劑主要分為高強(qiáng)度凝膠黏合劑和多功能凝膠黏合劑。
4.1 ??高強(qiáng)度凝膠黏合劑
水凝膠黏合劑易脆,力學(xué)性能差是限制其應(yīng)用的主要原因。近些年,學(xué)者把研究重點(diǎn)放在如何提高水凝膠黏合劑的力學(xué)性能上。如Hyunwoo等在固體表面修飾甲基丙烯酸基團(tuán),該基團(tuán)可以和水凝膠界面進(jìn)行化學(xué)鍵合,形成高韌性的水凝膠,界面的黏合強(qiáng)度可達(dá)到1 000 J/m,使得高水分含量(超過90%)的水凝膠可以和許多固體材料(玻璃、陶瓷、鋁制品等)進(jìn)行界面黏合;Yuk等在黏合之前對(duì)彈性體和水凝膠進(jìn)行預(yù)成型,其次,用二苯甲酮對(duì)固化的彈性體表面進(jìn)行改性,與水凝膠進(jìn)行化學(xué)鍵合,利用堅(jiān)韌水凝膠的耗散特性來實(shí)現(xiàn)堅(jiān)固的界面;Liu Qihan等則是通過將硅烷偶聯(lián)劑加入到水凝膠和彈性體的體系中,通過硅烷偶聯(lián)劑產(chǎn)生的硅氧烷鍵使得水凝膠和彈性體形成化學(xué)鍵合,增強(qiáng)水凝膠的力學(xué)性能。但以上研究的問題是因彈性體和一些偶聯(lián)劑的引入,人體會(huì)產(chǎn)生一定的排斥性。
4.2 ??多功能凝膠黏合劑
水凝膠與不同材料的復(fù)合使得水凝膠具有不同的功能性質(zhì),在生活中應(yīng)用于不同的領(lǐng)域。
在醫(yī)學(xué)領(lǐng)域中,Katas等分別以花蘑菇基質(zhì)和殼聚糖為還原劑和穩(wěn)定劑,成功合成了具有一定抗菌作用的銀納米顆粒(argentum nanoparticles,AgNPs),然后將AgNPs加入到明膠基水凝膠中用作傷口敷料,表現(xiàn)出良好的抗菌性和生物膜活性。Zhang Min等利用明膠、殼聚糖及水性聚氨酯為原料,制備出一種兼具高機(jī)械強(qiáng)度、抗菌及可生物降解的多功能水凝膠膜,該研究主要是利用明膠的成膠性能及良好的生物相容性、殼聚糖優(yōu)異的抗菌性能及水性聚氨酯優(yōu)異的力學(xué)性能,將三者通過乳液聚合的方法進(jìn)行化學(xué)結(jié)合,構(gòu)建出一種具有抗菌性能的高強(qiáng)度水凝膠膜敷料。Barros等以明膠和海藻酸為原料制備了可生物降解的輸尿管支架,對(duì)人體無害,可短期自然降解,成功克服了第1代輸尿管支架的缺陷。況光儀等利用緩降解骨基質(zhì)明膠修復(fù)喉框架缺損,以達(dá)到恢復(fù)喉的外形和功能的目的,是目前最為理想的新喉再造的生物活性材料。
在食品領(lǐng)域中,Zhang Jing等發(fā)現(xiàn)多糖-蛋白質(zhì)雙網(wǎng)絡(luò)(double network,DN)水凝膠系統(tǒng)可作為生物活性化合物的口服遞送載體,DN水凝膠表現(xiàn)出高機(jī)械強(qiáng)度,因?yàn)樗牡?個(gè)網(wǎng)絡(luò)有效耗散了能量,而第2個(gè)網(wǎng)絡(luò)在變形過程中保持了水凝膠的完整性。與以蛋白質(zhì)為唯一成分的水凝膠相比,DN水凝膠在腸道中運(yùn)輸營(yíng)養(yǎng)物質(zhì)的效率更高,因?yàn)槟z中的多糖網(wǎng)絡(luò)保護(hù)蛋白質(zhì)免受胃蛋白酶降解和胃中酸性環(huán)境的影響。Ding Mengzhen等用丙酮、戊二醛交聯(lián)明膠納米顆粒,制備負(fù)載魚油的皮克林(Pickering)乳液,可有效保護(hù)魚油中的活性成分,增加水溶性,隔離魚腥味。Wang Xiaoyan等用殼聚糖/明膠復(fù)合顆粒作為一種新型的Pickering乳化劑,顯示出更小的液滴尺寸和更好的長(zhǎng)期穩(wěn)定性,用于生產(chǎn)食品和非食品應(yīng)用的無表面活性劑和生物基O/W乳液。Ge Liming等通過1-乙基-3-(3-二甲基氨丙基)-碳化二亞胺/-羥基琥珀酰亞胺將迷迭香酸(rosemary acid,RosA)化學(xué)偶聯(lián)到明膠骨架上,制備出明膠-G-RosA偶聯(lián)物,然后將其用甘油增塑并用二醛黃原膠交聯(lián),以制備活性明膠基可食用薄膜。結(jié)果表明,RosA-明膠可食用薄膜具有良好的耐水性、較強(qiáng)的機(jī)械性能和優(yōu)異的紫外線阻隔能力、有效的抗氧化和長(zhǎng)期抗菌活性,在食品和藥品包裝領(lǐng)域具有廣闊的應(yīng)用前景。
在其他領(lǐng)域中,Hou Jiliang等以丙烯酸丁酯為主要成分,丙烯酸二環(huán)戊酯為交聯(lián)劑進(jìn)行乳液聚合,形成大分子微球,使其作為疏水締合的交聯(lián)中心,制備快速可恢復(fù)、抗疲勞、超韌的雙網(wǎng)絡(luò)水凝膠。該方法可以有效阻止水凝膠裂紋擴(kuò)展趨勢(shì),所制備的雙網(wǎng)絡(luò)水凝膠拉伸應(yīng)變高達(dá)2 100%,拉伸應(yīng)力也達(dá)到1.48 MPa,在保護(hù)套、保護(hù)涂層、防塵罩等領(lǐng)域有潛在應(yīng)用前景。Ren Kai等用海藻酸鈉胺化明膠,與聚吡咯通過低溫制備了自愈合導(dǎo)電水凝膠,海藻酸鹽和明膠網(wǎng)絡(luò)中存在大量可逆的席夫堿單元,可作為動(dòng)態(tài)交聯(lián)劑修復(fù)水凝膠。這在可修復(fù)電路、柔性傳感器設(shè)備方面具有潛在的應(yīng)用。
明膠因其獨(dú)特的理化特性而被廣泛應(yīng)用于食品、醫(yī)藥、化妝品等諸多領(lǐng)域。為了滿足全球大多數(shù)消費(fèi)者對(duì)明膠日益增長(zhǎng)的需求,有必要進(jìn)一步研究和探索魚明膠和家禽類明膠作為哺乳動(dòng)物明膠的替代品。目前,從魚和家禽的皮膚和骨頭中開發(fā)明膠來源的進(jìn)展很快,還有駱駝明膠、鱷魚明膠、鴨明膠等。這些未來均可能會(huì)作為重要的商業(yè)明膠來源,但更重要的是其可能具有新穎、獨(dú)特的功能特性。
明膠作為常用的凝膠,因其穩(wěn)定性與凝膠特性方面還存在缺陷,研究開發(fā)改性明膠的功能特性與改性程度之間的關(guān)系,將直接有利于更高品質(zhì)明膠的產(chǎn)業(yè)化。基于改性明膠的水凝膠在醫(yī)學(xué)及食品領(lǐng)域有廣泛用途,如支架、傷口敷料、可食性薄膜及口服遞送載體等。但在改性交聯(lián)前仍有許多重要問題急需解決,因此還需大量科學(xué)研究來解釋改性明膠交聯(lián)后如何影響食品的質(zhì)地、結(jié)構(gòu)和加工特性,并結(jié)合其他分析方法進(jìn)行研究,如感官、流變學(xué)和摩擦學(xué)分析。明膠基水凝膠在未來會(huì)和各種功能材料相結(jié)合,衍生出各種功能,在生產(chǎn)生活方面會(huì)有更廣闊的應(yīng)用。
[1] 王雨生, 張楠, 陳海華. 高G型海藻酸鈉-明膠pH敏感型復(fù)合水凝膠的制備與性質(zhì)[J]. 中國(guó)食品學(xué)報(bào), 2017, 17(8): 132-139. DOI:10.16429/j.1009-7848.2017.08.018.
[2] LIN Kaili, ZHANG Dawei, MACEDO M H, et al. Advanced collagen-based biomaterials for regenerative biomedicine[J]. Advanced Functional Materials, 2019, 29(3): 1804943. DOI:10.1002/adfm.201804943.
[3] MAKI Y, ANNAKA M. Gelation of fish gelatin studied by multi-particle tracking method[J]. Food Hydrocolloids, 2020, 101: 105525. DOI:10.1016/j.foodhyd.2019.105525.
[4] ZHANG Ting, XU Jiamin, ZHANG Yangyi, et al. Gelatins as emulsifiers for oil-in-water emulsions: extraction, chemical composition, molecular structure, and molecular modification[J]. Trends in Food Science and Technology, 2020, 106: 113-131. DOI:10.1016/j.tifs.2020.10.005.
[5] ABEDINIA A, MOHAMMADI NAFCHI A, SHARIFI M, et al. Poultry gelatin: characteristics, developments, challenges, and future outlooks as a sustainable alternative for mammalian gelatin[J]. Trends in Food Science and Technology, 2020, 104: 14-26. DOI:10.1016/j.tifs.2020.08.001.
[6] KARIM A A, BHAT R. Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins[J]. Food Hydrocolloids, 2009, 23(3): 563-576. DOI:10.1016/j.foodhyd.2008.07.002.
[7] Lü?Linchen, HUANG?Qingyun, DING?Wen, et al. Fish gelatin: the novel potential applications[J]. Journal of Functional Foods, 2019, 63: 103581. DOI:10.1016/j.jff.2019.103581.
[8] AHMAD T, ISMAIL A, AHMAD S A, et al. Recent advances on the role of process variables affecting gelatin yield and characteristics with special reference to enzymatic extraction: a review[J]. Food Hydrocolloids, 2017, 63: 85-96. DOI:10.1016/j.foodhyd.2016.08.007.
[9] CAO Y, MEZZENGA R. Design principles of food gels[J]. Nature Food, 2020, 1(2): 106-118. DOI:10.1038/s43016-019-0009-x.
[10] TAVAFOGHI M, SHEIKHI A, TUTAR R, et al. Engineering tough, injectable, naturally derived, bioadhesive composite hydrogels[J]. Advanced Healthcare Materials, 2020, 9(10): e1901722. DOI:10.1002/adhm.201901722.
[11] ABDELMALEK B E, GóMEZ-ESTACA J, SILA A, et al. Characteristics and functional properties of gelatin extracted from squid () skin[J]. LWT-Food Science and Technology, 2016, 65: 924-931. DOI:10.1016/j.lwt.2015.09.024.
[12] AHMAD T, ISMAIL A, AHMAD S A, et al. Characterization of gelatin from bovine skin extracted using ultrasound subsequent to bromelain pretreatment[J]. Food Hydrocolloids, 2018, 80: 264-273. DOI:10.1016/j.foodhyd.2018.01.036.
[13] NAGARAJAN M, BENJAKUL S, PRODPRAN T, et al. Characteristics and functional properties of gelatin from splendid squid () skin as affected by extraction temperatures[J]. Food Hydrocolloids, 2012, 29(2): 389-397. DOI:10.1016/j.foodhyd.2012.04.001.
[14] TAN C C, KARIM A A, UTHUMPORN U, et al. Effect extraction temperature on the emulsifying properties of gelatin from black tilapia () skin[J]. Food Hydrocolloids, 2020, 108: 106024. DOI:10.1016/j.foodhyd.2020.106024.
[15] GUDIPATI V. Fish gelatin: a versatile ingredient for the food and pharmaceutical industries[M]//KIM S K. Marine proteins and peptides: biological activities and applications. Wiley, 2013: 271-295. DOI:10.1002/9781118375082.ch13.
[16] GóMEZ-GUILLéN M C, GIMéNEZ B, LóPEZ-CABALLERO M E, et al. Functional and bioactive properties of collagen and gelatin from alternative sources: a review[J]. Food Hydrocolloids, 2011, 25(8): 1813-1827. DOI:10.1016/j.foodhyd.2011.02.007.
[17] DíAZ-CALDERóN P, FLORES E, GONZáLEZ-MU?OZ A, et al. Influence of extraction variables on the structure and physical properties of salmon gelatin[J]. Food Hydrocolloids, 2017, 71: 118-128. DOI:10.1016/j.foodhyd.2017.05.004.
[18] KWAK H W, SHIN M, LEE J Y, et al. Fabrication of an ultrafine fish gelatin nanofibrous web from an aqueous solution by electrospinning[J]. International Journal of Biological Macromolecules, 2017, 102: 1092-1103. DOI:10.1016/j.ijbiomac.2017.04.087.
[19] WANG?Lin, AN?Xinxin, YANG Fangmei, et al. Isolation and characterisation of collagens from the skin, scale and bone of deep-sea redfish ()[J]. Food Chemistry, 2008, 108(2): 616-623. DOI:10.1016/j.foodchem.2007.11.017.
[20] AYKIN-DINCER E, KOC A, ERBAS M. Extraction and physicochemical characterization of broiler () skin gelatin compared to commercial bovine gelatin[J]. Poultry Science, 2017, 96(11): 4124-4131. DOI:10.3382/ps/pex237.
[21] GUDMUNDSSON M, HAFSTEINSSON H. Gelatin from cod skins as affected by chemical treatments[J]. Journal of Food Science, 1997, 62(1): 37-39. DOI:10.1111/j.1365-2621.1997.tb04363.x.
[22] HATTREM M N, MOLNES S, HAUG I J, et al. Interfacial and rheological properties of gelatin based solid emulsions prepared with acid or alkali pretreated gelatins[J]. Food Hydrocolloids, 2015, 43: 700-707. DOI:10.1016/j.foodhyd.2014.07.026.
[23] SILVA R S G, BANDEIRA S F, PINTO L A A. Characteristics and chemical composition of skins gelatin from cobia ()[J]. LWT-Food Science and Technology, 2014, 57(2): 580-585. DOI:10.1016/j.lwt.2014.02.026.
[24] DUCONSEILLE A, ANDUEZA D, PICARD F, et al. Variability in pig skin gelatin properties related to production site: a near infrared and fluorescence spectroscopy study[J]. Food Hydrocolloids, 2017, 63: 108-119. DOI:10.1016/j.foodhyd.2016.08.001.
[25] AVENA-BUSTILLOS R J, OLSEN C W, OLSON D A, et al. Water vapor permeability of mammalian and fish gelatin films[J]. Journal of Food Science, 2006, 71(4): E202-E207. DOI:10.1111/j.1750-3841.2006.00016.x.
[26] LIU?bo, HUANG?Wei, YANG?Guixia, et al. Preparation of gelatin/poly (gamma-glutamic acid) hydrogels with stimulated response by hot-pressing preassembly and radiation crosslinking[J]. Materials Science and Engineering: C, 2020, 116: 111259. DOI:10.1016/j.msec.2020.111259.
[27] TU?Zongcai, HUANG?Tao, WANG?Hui, et al. Physico-chemical properties of gelatin from bighead carp () scales by ultrasound-assisted extraction[J]. Journal of Food Science and Technology, 2015, 52(4): 2166-2174. DOI:10.1007/s13197-013-1239-9.
[28] 張宇昊, 馬良, 師萱. 魚皮明膠的超高壓輔助提取工藝[J]. 食品科學(xué), 2011, 32(6): 99-103.
[29] BENBETTA?EB N, CHAMBIN O, KARBOWIAK T, et al. Release behavior of quercetin from chitosan-fish gelatin edible films influenced by electron beam irradiation[J]. Food Control, 2016, 66: 315-319. DOI:10.1016/j.foodcont.2016.02.027.
[30] WU C K, TSAI J S, SUNG W C. Impact of ultraviolet treatment on improving gel strength of tilapia skin gelatin[J]. International Journal of Food Properties, 2015, 18(8): 1702-1706. DOI:10.1080/10942912.2014.933439.
[31] SUNG W C, CHEN Z Y. UV treatment and γ irradiation processing on improving porcine and fish gelatin and qualities of their premix mousse[J]. Radiation Physics and Chemistry, 2014, 97: 208-211. DOI:10.1016/j.radphyschem.2013.11.038.
[32] KAEWRUANG P, BENJAKUL S, PRODPRAN T. Characteristics and gelling property of phosphorylated gelatin from the skin of unicorn leatherjacket[J]. Food Chemistry, 2014, 146: 591-596. DOI:10.1016/j.foodchem.2013.09.111.
[33] BISCARAT J, GALEA B, SANCHEZ J, et al. Effect of chemical cross-linking on gelatin membrane solubility with a non-toxic and non-volatile agent: terephthalaldehyde[J]. International Journal of Biological Macromolecules, 2015, 74: 5-11. DOI:10.1016/j.ijbiomac.2014.11.022.
[34] KAEWDANG O, BENJAKUL S. Effect of ethanolic extract of coconut husk on gel properties of gelatin from swim bladder of yellowfin tuna[J]. LWT-Food Science and Technology, 2015, 62(2): 955-961. DOI:10.1016/j.lwt.2015.02.006.
[35] ZHANG Ting, DING?Mingzhen, TAO?Lina, et al. Octenyl succinic anhydride modification of bovine bone and fish skin gelatins and their application for fish oil-loaded emulsions[J]. Food Hydrocolloids, 2020, 108: 106041. DOI:10.1016/j.foodhyd.2020.106041.
[36] 周偉, 胡熠, 張進(jìn)杰, 等. 楊梅素和糖基化協(xié)同改性魚鱗明膠可食膜[J]. 食品與發(fā)酵工業(yè), 2018, 44(6): 58-66. DOI:10.13995/j.cnki.11-1802/ts.015875.
[37] KARAKI N, ALJAWISH A, HUMEAU C, et al. Enzymatic modification of polysaccharides: mechanisms, properties, and potential applications: a review[J]. Enzyme and Microbial Technology, 2016, 90: 1-18. DOI:10.1016/j.enzmictec.2016.04.004.
[38] GASPAR A L, DE GOES-FAVONI S P. Action of microbial transglutaminase (MTGase) in the modification of food proteins: a review[J]. Food Chemistry, 2015, 171: 315-322. DOI:10.1016/j.foodchem.2014.09.019.
[39] WANGTUEAI S, NOOMHORM A, REGENSTEIN J M. Effect of microbial transglutaminase on gel properties and film characteristics of gelatin from lizardfish (?spp.) scales[J]. Journal of Food Science, 2010, 75(9): C731-9. DOI:10.1111/j.1750-3841.2010.01835.x.
[40] HUANG?Tao, TU?Zongcai, WANG?Hui, et al. Comparison of rheological behaviors and nanostructure of bighead carp scales gelatin modified by different modification methods[J]. Journal of Food Science and Technology, 2017, 54(5): 1256-1265. DOI:10.1007/s13197-017-2511-1.
[41] KOMAIKO J, MCCLEMENTS D J. Food-grade nanoemulsion filled hydrogels formed by spontaneous emulsification and gelation: optical properties, rheology, and stability[J]. Food Hydrocolloids, 2015, 46: 67-75. DOI:10.1016/j.foodhyd.2014.12.031.
[42] TAO?Gang, WANG?Yejing,?CAI?Rui, et al. Design and performance of sericin/poly(vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application[J]. Materials Science and Engineering: C, 2019, 101: 341-351. DOI:10.1016/j.msec.2019.03.111.
[43] RATANAVARAPORN J, RANGKUPAN R, JEERATAWATCHAI H, et al. Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats[J]. International Journal of Biological Macromolecules, 2010, 47(4): 431-438. DOI:10.1016/j.ijbiomac.2010.06.008.
[44] HAUGH M G, JAASMA M J, O’BRIEN F J. The effect of dehydrothermal treatment on the mechanical and structural properties of collagen-GAG scaffolds[J]. Journal of Biomedical Materials Research: Part A, 2009, 89(2): 363-369. DOI:10.1002/jbm.a.31955.
[45] 高喜平, 劉翠云, 湯克勇, 等. 乙二醛交聯(lián)對(duì)明膠/PVA可生物降解復(fù)合膜性能的影響[J]. 材料研究學(xué)報(bào), 2013, 27(2): 173-177.
[46] CHEN M, LIU F, CHIOU B S, et al. Characterization of film-forming solutions and films incorporating free and nanoencapsulated tea polyphenol prepared by gelatins with different Bloom values[J]. Food Hydrocolloids, 2017, 72: 381-388. DOI:10.1016/j.foodhyd.2017.05.001.
[47] 郭華, 史澤毅, 張海霞, 等. 明膠-檸檬酸-硬脂酸復(fù)合凝膠的制備及性能[J]. 現(xiàn)代食品科技, 2021, 37(10): 171-179; 307. DOI:10.13982/j.mfst.1673-9078.2021.10.0183.
[48] HOQUE M S, BENJAKUL S, PRODPRAN T. Properties of film from cuttlefish () skin gelatin incorporated with cinnamon, clove and star anise extracts[J]. Food Hydrocolloids, 2011, 25(5): 1085-1097. DOI:10.1016/j.foodhyd.2010.10.005.
[49] LIU?Yexue, WENG?Ruru, WANG?Wenhang, et al. Tunable physical and mechanical properties of gelatin hydrogel after transglutaminase crosslinking on two gelatin types[J]. International Journal of Biological Macromolecules, 2020, 162: 405-413. DOI:10.1016/j.ijbiomac.2020.06.185.
[50] AZARIKIA F, WU B C, ABBASI S, et al. Stabilization of biopolymer microgels formed by electrostatic complexation: Influence of enzyme (laccase) cross-linking on pH, thermal, and mechanical stability[J]. Food Research International, 2015, 78: 18-26. DOI:10.1016/j.foodres.2015.11.013.
[51] HAN?Yanping, ZHAO?Xinhuai. Properties of bovine gelatin cross-linked by a mixture of two oxidases (horseradish peroxidase and glucose oxidase) and glucose[J]. CyTA-Journal of Food, 2016, 14(3): 457-464. DOI:10.1080/19476337.2015.1134671.
[52]郭開紅, 張蕾蕾, 吳曉翠, 等. 鰱魚皮明膠-海藻酸鈉復(fù)合膜的制備與性能[J]. 食品科學(xué), 2018, 39(7): 243-248. DOI:10.7506/spkx1002-6630-201807036.
[53] PANG Z, DEETH H, SOPADE P, et al. Rheology, texture and microstructure of gelatin gels with and without milk proteins[J]. Food Hydrocolloids, 2014, 35: 484-493. DOI:10.1016/j.foodhyd.2013.07.007.
[54] ORYAN A, KAMALI A, MOSHIRI A, et al. Chemical crosslinking of biopolymeric scaffolds: current knowledge and future directions of crosslinked engineered bone scaffolds[J]. International Journal of Biological Macromolecules, 2018, 107(Pt A): 678-688. DOI:10.1016/j.ijbiomac.2017.08.184.
[55] EHRMANN A. Non-toxic crosslinking of electrospun gelatin nanofibers for tissue engineering and biomedicine: a review[J]. Polymers, 2021, 13(12): 1973. DOI:10.3390/polym13121973.
[56] MAURICIO M R, DA COSTA P G, HARAGUCHI S K, et al. Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drug delivery[J]. Carbohydrate Polymers, 2015, 115: 715-722. DOI:10.1016/j.carbpol.2014.07.063.
[57] ABAEE A, MOHAMMADIAN M, JAFARI S M. Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems[J]. Trends in Food Science and Technology, 2017, 70: 69-81. DOI:10.1016/j.tifs.2017.10.011.
[58] GE?Haiyan, WU?Yan, WOSHNAK L L, et al. Effects of hydrocolloids, acids and nutrients on gelatin network in gummies[J]. Food Hydrocolloids, 2021, 113: 106549. DOI:10.1016/j.foodhyd.2020.106549.
[59] KEILLOR J W, CLOUTHIER C M, APPERLEY K Y P, et al. Acyl transfer mechanisms of tissue transglutaminase[J]. Bioorganic Chemistry, 2014, 57: 186-197. DOI:10.1016/j.bioorg.2014.06.003.
[60] HE?Qingyan, HUANG?Yan, WANG?Shaoyun. Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels[J]. Advanced Functional Materials, 2018, 28(5): 1705069. DOI:10.1002/adfm.201705069.
[61] CHEN?Hongrui, WU?Di, MA?Wuchao, et al. Strong fish gelatin hydrogels enhanced by carrageenan and potassium sulfate[J]. Food Hydrocolloids, 2021, 119: 106841. DOI:10.1016/j.foodhyd.2021.106841.
[62] 彭湘紅, 王敏娟, 陸茜, 等. 氧氟沙星-殼聚糖-明膠共混膜的制備及表征[J]. 精細(xì)化工, 2000(6): 325-327. DOI:10.13550/j.jxhg.2000.06.005.
[63] SHI?Xiaodan, HUANG?Jingjing, WU?Jiulin, et al. Fabrication, interaction mechanism, functional properties, and applications of fish gelatin-polysaccharide composites: a review[J]. Food Hydrocolloids, 2022, 122: 107106. DOI:10.1016/j.foodhyd.2021.107106.
[64] LEIVA G E, NARANJO G B, MALEC L S. A study of different indicators of Maillard reaction with whey proteins and different carbohydrates under adverse storage conditions[J]. Food Chemistry, 2017, 215: 410-416. DOI:10.1016/j.foodchem.2016.08.003.
[65] HUANG Tao, TU?Zongcai, SHANGGUAN X, et al. Characteristics of fish gelatin-anionic polysaccharide complexes and their applications in yoghurt: rheology and tribology[J]. Food Chemistry, 2021, 343: 128413. DOI:10.1016/j.foodchem.2020.128413.
[66] BADII F, HOWELL N. Fish gelatin: structure, gelling properties and interaction with egg albumen proteins[J]. Food Hydrocolloids, 2006, 20(5): 630-640. DOI:10.1016/j.foodhyd.2005.06.006.
[67] LIN Lin, REGENSTEIN J M, Lü Shun, et al. An overview of gelatin derived from aquatic animals: properties and modification[J]. Trends in Food Science and Technology, 2017, 68: 102-112. DOI:10.1016/j.tifs.2017.08.012.
[68] YUK H, ZHANG T, LIN S, et al. Tough bonding of hydrogels to diverse non-porous surfaces[J]. Nature Materials, 2016, 15(2): 190-196. DOI:10.1038/nmat4463.
[69] YUK H, ZHANG T, PARADA G A, et al. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures[J]. Nature Communications, 2016, 7: 12028. DOI:10.1038/ncomms12028.
[70] LIU?Qihan, NIAN Guodong, YANG?Canhui, et al. Bonding dissimilar polymer networks in various manufacturing processes[J]. Nature Communications, 2018, 9(1): 846. DOI:10.1038/s41467-018-03269-x.
[71] KATAS H, AKHMAR M A M, ABDALLA S. Biosynthesized silver nanoparticles loaded in gelatine hydrogel for a natural antibacterial and anti-biofilm wound dressing[J]. Journal of Bioactive and Compatible Polymers, 2021, 36(2): 111-123. DOI:10.1177/0883911520988303.
[72] ZHANG?Min, YANG?Mao, WOO M W, et al. High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing[J]. Carbohydrate Polymers, 2021, 256: 117590. DOI:10.1016/j.carbpol.2020.117590.
[73] BARROS A A, OLIVEIRA C, LIMA E, et al. Gelatin-based biodegradable ureteral stents with enhanced mechanical properties[J]. Applied Materials Today, 2016, 5: 9-18. DOI:10.1016/j.apmt.2016.07.006.
[74] 況光儀, 陳劍飛, 易惠明. 緩降解骨基質(zhì)明膠在喉成形術(shù)中的臨床研究[J]. 臨床耳鼻咽喉科雜志, 2005(18): 836-837; 841. DOI:10.3969/j.issn.1001-1781.2005.18.009.
[75] ZHANG?Jing, QIAN?Sunxiang, CHEN?Lingdong, et al. Highly antifouling double network hydrogel based on poly(sulfobetaine methacrylate) and sodium alginate with great toughness[J]. Journal of Materials Science and Technology, 2021, 85: 235-244. DOI:10.1016/j.jmst.2021.01.012.
[76] SUN T L, KUROKAWA T, KURODA S, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity[J]. Nature Materials, 2013, 12(10): 932-937. DOI:10.1038/nmat3713.
[77] ALAVI F, EMAM-DJOMEH Z, YARMAND M S, et al. Cold gelation of curcumin loaded whey protein aggregates mixed with -carrageenan: impact of gel microstructure on the gastrointestinal fate of curcumin[J]. Food Hydrocolloids, 2018, 85: 267-280. DOI:10.1016/j.foodhyd.2018.07.012.
[78] DING?Mengzhen, ZHANG?Ting, ZHANG?Huan, et al. Effect of preparation factors and storage temperature on fish oil-loaded crosslinked gelatin nanoparticle Pickering emulsions in liquid forms[J]. Food Hydrocolloids, 2019, 95: 326-335. DOI:10.1016/j.foodhyd.2019.04.052.
[79] WANG X Y, HEUZEY M C. Pickering emulsion gels based on insoluble chitosan/gelatin electrostatic complexes[J]. RSC Advances, 2016, 6(92): 89776-89784. DOI:10.1039/c6ra10378b.
[80] GE?Liming, ZHU?Mingjin, LI?Xinying, et al. Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities[J]. Food Hydrocolloids, 2018, 83: 308-316. DOI:10.1016/j.foodhyd.2018.04.052.
[81] HOU?Jiliang, REN?Xiuyan, GUAN?Shuang, et al. Rapidly recoverable, anti-fatigue, super-tough double-network hydrogels reinforced by macromolecular microspheres[J]. Soft Matter, 2017, 13(7): 1357-1363. DOI:10.1039/c6sm02739c.
[82] REN?Kai, CHENG?Yu, HUANG?Chao, et al. Self-healing conductive hydrogels based on alginate, gelatin and polypyrrole serve as a repairable circuit and a mechanical sensor[J]. Journal of Materials Chemistry B, 2019, 7(37): 5704-5712. DOI:10.1039/c9tb01214a.