陳政清 李壽英 鄧羊晨 王園園 安苗 楊超
摘 要:隨著橋梁跨徑的增大,橋梁索結(jié)構(gòu)的長(zhǎng)細(xì)比越來越大、頻率越來越低,出現(xiàn)了一些 新的風(fēng)致振動(dòng)問題,如懸索橋吊索風(fēng)致振動(dòng)、斜拉索高階渦激共振、安裝亮化燈具的橋梁索結(jié)構(gòu)馳振等.針對(duì)這些新挑戰(zhàn),采用現(xiàn)場(chǎng)觀測(cè)、風(fēng)洞試驗(yàn)和理論分析等手段,研究人員進(jìn)行了系統(tǒng)的機(jī)理研究,并提出了一些有效的振動(dòng)控制措施.結(jié)果表明:懸索橋吊索風(fēng)致振動(dòng)的機(jī)理復(fù)雜,在斜拉索上積累的振動(dòng)控制經(jīng)驗(yàn)難以直接應(yīng)用,安裝剛性分隔架是抑制索股相對(duì)振動(dòng)的有效手段;已在多座大跨徑斜拉橋上觀測(cè)到斜拉索高階渦激共振,增加了斜拉索振動(dòng)控制的難度,采用雙阻尼器是可同時(shí)控制斜拉索高階渦激共振和低階風(fēng)雨激振的有效方案;在橋梁索結(jié)構(gòu)上安裝亮化燈具極易引發(fā)馳振,增加阻尼器和優(yōu)化燈具氣動(dòng)外形是避免該類振動(dòng)的有效措施.
關(guān)鍵詞:大跨徑橋梁;斜拉索;吊索;尾流致振;高階渦激共振;馳振;亮化燈具中圖分類號(hào):TU411.3 文獻(xiàn)標(biāo)志碼:A
Recent Challenges and Advances on Study of
Wind-induced Vibrations of Bridge Cables
CHEN Zhengqing1,2,LI Shouying1,2?,DENG Yangchen1,2,WANG Yuanyuan1,2,AN Miao1,2,YANG Chao1,2
(1.College of Civil Engineering,Hunan University,Changsha 410082,China;
2.Key Laboratory for Wind and Bridge Engineering of Hunan Province(Hunan University),Changsha 410082,China)
Abstract:With the increase of bridge main span,the slenderness ratio of the cables is getting larger and the fre-quency is getting lower and lower.Several new types of wind-induced vibrations,including wind-induced vibration of the hangers of suspension bridges,high-order vortex-induced vibration of stay cables,and galloping vibration of bridge cables attached with lighting lamps,were observed on real bridges.Due to these new challenge,the mecha-nisms and the corresponding countermeasures were carefully studied by using field observations,wind tunnel tests and theoretical analyses.The results show that the mechanism of the wind-induced vibration of the hangers of sus-pension bridges is complex and the effective measures on stay cables of cable-stayed bridges are not suitable for miti-gating the wind-induced vibration of the hangers.It seems that rigid spacers are an effective measure to reduce the relative vibration between the cables of the hanger.Large amplitude of vortex-induced vibration of stay cables is ob-served on several long-span cable-stayed bridges,which increase the difficulty of vibration control.It appears thatinstalling two dampers at the end of the cable is an effective way to simultaneously reduce both the high-order vortex-induced vibration and the low-order rain-wind-induced vibration of stay cables.Galloping vibration can be easily evoked by installing lighting lamps on stay cables.This kind of cable vibration can be effectively mitigated by in-creasing structural damping and changing the aerodynamic configuration of the lamps.
Key words:long-span bridges;stay cables;hangers;wake-induced vibration;high-order vortex-induced reso-nance vibration;galloping vibration;lighting lamps
隨著經(jīng)濟(jì)的發(fā)展,人們對(duì)交通工程的需求日益增長(zhǎng).自20世紀(jì)90年代開始,我國(guó)建造了數(shù)量眾多的大跨徑橋梁,目前正在規(guī)劃或設(shè)計(jì)的懸索橋中,有多座主跨超過2000m,斜拉橋主跨也將超過1100m.超大跨徑橋梁多采用纜索承重方式,充分利用索結(jié)構(gòu)的抗拉性能.橋梁索結(jié)構(gòu)主要包括斜拉橋的拉索、懸索橋的主纜和吊桿,以及中下承式拱橋的吊桿等.這類結(jié)構(gòu)的長(zhǎng)細(xì)比大、頻率低、阻尼小,極易在風(fēng)或車輛荷載等作用下發(fā)生大幅振動(dòng),如風(fēng)雨激振[1-4]和渦激共振[5-6]等.對(duì)橋梁索結(jié)構(gòu)的抗風(fēng)設(shè)計(jì)是大跨 徑纜索承重橋梁設(shè)計(jì)的重要內(nèi)容之一.近 40年來,風(fēng)雨激振是對(duì)橋梁索結(jié)構(gòu)危害最大的一種振動(dòng),人們花費(fèi)了大量精力對(duì)其機(jī)理及抑振措施進(jìn)行研究,目前已具備成套的有效減振技術(shù)[7-8].
但是,隨著橋梁跨徑的進(jìn)一步增大,索結(jié)構(gòu)也越 來越長(zhǎng),最長(zhǎng)的斜拉索和吊桿已分別接近600m和200m,一些新的風(fēng)致振動(dòng)問題相繼在實(shí)際橋梁中出 現(xiàn),主要表現(xiàn)在3個(gè)方面:1)世界上最大跨徑的幾座 懸索橋的吊索相繼發(fā)生大幅風(fēng)致振動(dòng),且其振動(dòng)機(jī)理不明確,經(jīng)過長(zhǎng)時(shí)間嘗試才能確定有效減振措施;2)近年來在多座大跨徑斜拉橋的拉索上觀測(cè)到了振 幅明顯的高階渦激共振,在蘇通長(zhǎng)江大橋上還造成了護(hù)筒的破壞,斜拉索高階渦激共振的出現(xiàn)增加了其振動(dòng)控制的難度;3)近期出現(xiàn)了多起在橋梁索結(jié)構(gòu)上安裝亮化燈具引起的大幅馳振,嚴(yán)重威脅橋梁的安全,需從空氣動(dòng)力學(xué)角度提出相關(guān)建議.下面分別介紹上述三類新問題及其研究進(jìn)展.
1懸索橋吊索風(fēng)致振動(dòng)
1.1工程背景
吊索是懸索橋的主要傳力構(gòu)件,具有自重輕、柔度大、阻尼低等特點(diǎn),極易在風(fēng)荷載作用下發(fā)生大幅度振動(dòng).隨著懸索橋主跨的不斷增大,吊索越來越 長(zhǎng),其風(fēng)致振動(dòng)問題變得更為突出,國(guó)內(nèi)外已有多座主跨超過1600m的懸索橋吊索出現(xiàn)了大幅振動(dòng),包括日本的明石海峽大橋(主跨1991m)[9-10]、丹麥的大海帶東橋(主跨1624m)[11]和中國(guó)的西堠門大橋(主跨1650m)[12-14].例如,在10m/s左右的常遇風(fēng)速下,我國(guó)西堠門大橋的吊索多次發(fā)生索股間的相互 碰撞現(xiàn)象[14],嚴(yán)重威脅吊索甚至全橋安全,給通行人員也造成了不安全的視覺沖擊.
1.2 機(jī)理研究
上述幾座懸索橋吊索發(fā)生大幅振動(dòng)之后,研究人員發(fā)現(xiàn),吊索減振的成功經(jīng)驗(yàn)難以在不同橋梁之 間簡(jiǎn)單復(fù)制,這說明這幾座懸索橋吊索振動(dòng)的機(jī)理不同.Kashima和Yanaka等[10]對(duì)日本明石海峽大橋的吊索振動(dòng)進(jìn)行了長(zhǎng)期監(jiān)測(cè),發(fā)現(xiàn)該橋吊索的大幅 振動(dòng)為索股間氣動(dòng)干擾引發(fā)的尾流顫振;Laursen和Bitsch等[11]對(duì)丹麥大海帶東橋的吊索振動(dòng)進(jìn)行了現(xiàn) 場(chǎng)觀測(cè),推測(cè)吊索表面覆冰導(dǎo)致的馳振可能是該橋 吊索大幅 振動(dòng)的原 因,但 沒有進(jìn)行嚴(yán) 格的驗(yàn)證;Zhang和Wu等[15]采用數(shù)值模擬和風(fēng)洞試驗(yàn)相結(jié)合的方法,對(duì)西堠門大橋的全橋振動(dòng)進(jìn)行了時(shí)程響應(yīng)分析,認(rèn)為主纜抖振引起的吊索共振是西堠門大橋 吊索發(fā)生振動(dòng)的主要原因;Chen和Gao等[16]、Chen和Yang等[17]進(jìn)行了一系列的風(fēng)洞試驗(yàn)(見圖1(a))和數(shù)值模擬,對(duì)西堠門大橋吊索風(fēng)致振動(dòng)進(jìn)行了研究,提出橋塔的尾流是導(dǎo)致吊索大振幅振動(dòng)的原因所在.在國(guó)家自然科學(xué)基金的資助下,以西堠門大橋?yàn)楣こ瘫尘?,湖南大學(xué)陳政清課題組對(duì)懸索橋吊索索股間引起的尾流致振進(jìn)行了系統(tǒng)的研究:肖春云和李壽英等[18]、鄧羊晨和李壽英等[19]分別進(jìn)行了平行鋼絲和鋼絞線吊索的尾流索股測(cè)力風(fēng)洞試驗(yàn),研究了尾流索股平均升力和阻力系數(shù)隨空間位置的變化規(guī)律,以此為基礎(chǔ),研究了吊索尾流致振的失穩(wěn)區(qū)間[19];采用上述測(cè)力數(shù)據(jù),Li和Xiao等[20]、Deng和Li等[21]建立準(zhǔn)定常和非定常二維理論模型,從數(shù)值方法的角度重現(xiàn)了吊索的尾流致振現(xiàn)象,Li和Deng等[13]將上述二維理論模型推廣到三維連續(xù)模型;Li和Deng等[22]、Deng和Li等[23]分別采用二維節(jié)段模型和三維連續(xù)氣彈模型(見圖1(b)),重現(xiàn)了懸索橋吊索尾流致振現(xiàn)象,并提出了懸索橋吊索尾流致振的起振機(jī)理:一種由負(fù)剛度驅(qū)動(dòng)的氣動(dòng)失穩(wěn)現(xiàn)象.
1.3 控制措施研究
目前,斜拉橋拉索的振動(dòng)控制措施已較成熟,特別是機(jī)械控制措施(如應(yīng)用阻尼器)和空氣動(dòng)力學(xué)措 施(如螺旋線),在實(shí)際工程中得到了非常廣泛的應(yīng)用,有效地減少了斜拉索振動(dòng)病害.但是,研究人員發(fā)現(xiàn)在斜拉索振動(dòng)控制中積累的經(jīng)驗(yàn),難以對(duì)懸索橋吊索振動(dòng)控制發(fā)揮作用.在已有的幾座大跨度懸索橋中,吊索風(fēng)致振動(dòng)的有效控制措施各不相同.例 如,日本的明石海峽大橋,吊索發(fā)生大幅振動(dòng)后,在吊索上纏繞螺旋線(如圖2(a)所示),就起到了很好的控制效果[10];丹麥的大海帶東橋吊索發(fā)生大幅振動(dòng)后,從1998年開始,相繼嘗試了多種控制措施,如安裝螺旋線、分隔架、水平輔助索以及調(diào)諧液體阻尼器等,均未能明顯減小吊索振動(dòng),直至2005年,采用了在吊索端部安裝液壓阻尼器與索股間安裝分隔架相結(jié)合的措施(如圖2(b)所示)[11],才達(dá)到了滿意的控制效果;我國(guó)的西堠門大橋,在橋梁的設(shè)計(jì)階段就采用了在索股間安裝阻尼器的控制措施,然而橋梁建成運(yùn)營(yíng)后(2009年12月),沒有達(dá)到預(yù)期的控制效果;之后又嘗試在吊索單根索股底部安裝阻尼器,實(shí)測(cè)的阻尼比可達(dá)1.5%[14],但仍未能有效控制吊索索股振動(dòng);直至2014年7月,在索股間安裝了剛性分隔架(如圖2(c)所示),西堠門大橋的吊索振動(dòng)才得以有效控制[12],前后共花費(fèi)了5年時(shí)間.
采用三維連續(xù)氣彈模型風(fēng)洞試驗(yàn)方法,Deng和Li等[23]研究了多種控制措施對(duì)懸索橋吊索尾流致振的減振效果,包括安裝螺旋線、增加阻尼以及安裝剛 性分隔架等,研究結(jié)果表明:螺旋線和增加阻尼對(duì)減小懸索橋吊索尾流致振的效果不好,阻尼比增大到3%以上才能起到一定的減振效果;剛性分隔架可以有效地抑制懸索橋吊索的尾流致振,但其間距需進(jìn)行合理設(shè)計(jì).Hua和Chen等[12]通過現(xiàn)場(chǎng)實(shí)測(cè)進(jìn)一步 驗(yàn)證了索股間安裝剛性分隔架對(duì)吊索尾流致振的控 制效果.在西堠門大橋減振實(shí)踐的基礎(chǔ)上,安裝剛性分隔架已成為我國(guó)懸索橋吊索減振的主要措施之一.
值得注意的是,剛性分隔架僅對(duì)索股間的相對(duì)運(yùn)動(dòng)有效,這類振動(dòng)常在低風(fēng)速下發(fā)生(如10m/s 左 右),在風(fēng)速較高的臺(tái)風(fēng)天氣下,安裝剛性分隔架的吊索仍會(huì)發(fā)生大幅整體振動(dòng),這類振動(dòng)的控制措施 還有待于進(jìn)一步研究.
2? 超長(zhǎng)斜拉索的高階渦激共振
2.1? 工程背景
渦激共振是旋渦脫落頻率與結(jié)構(gòu)頻率相近時(shí)引發(fā)的一種共振,橋梁索結(jié)構(gòu)的基頻低、特征長(zhǎng)度(直徑)小,其低階模態(tài)的渦激共振風(fēng)速很低,振幅也很小[5,24].以一根300m長(zhǎng)的斜拉索為例,基頻和直徑分別約為0.4Hz和0.12m,取 Strouhal數(shù)為0.2,第一階模態(tài)的渦振臨界風(fēng)速僅為0.24 m/s.因此,斜拉索低階模態(tài)的渦激共振不會(huì)導(dǎo)致斜拉索的直接破壞,主要是縮短其疲勞壽命.隨著我國(guó)交通建設(shè)需求日益增長(zhǎng),交通基礎(chǔ)設(shè)施規(guī)模不斷擴(kuò)大,促使斜拉橋主 跨朝著1000m及以上發(fā)展,斜拉索的長(zhǎng)度也增大到近600m.斜拉索的長(zhǎng)度增長(zhǎng),基頻也降低,這將使得常遇風(fēng)速下斜拉索發(fā)生渦激共振的模態(tài)也越來越高.近年來,主跨600m以上的斜拉橋上觀測(cè)到了振 幅明顯的高階渦激共振現(xiàn)象,蘇通長(zhǎng)江大橋的高階渦激共振造成了斜拉索護(hù)筒的破壞.
2.2 現(xiàn)場(chǎng)實(shí)測(cè)
劉志文和沈靜思等[25-26]對(duì)蘇通長(zhǎng)江大橋斜拉索的風(fēng)致振動(dòng)進(jìn)行了長(zhǎng)期監(jiān)測(cè),結(jié)果表明,該橋編號(hào)為NA09U、NA29U、NA30U和NA31U的斜拉索均發(fā)生了高階渦激共振,出現(xiàn)了套筒破壞、阻尼器漏油的現(xiàn) 象.其中,編號(hào)為NA30U的斜拉索長(zhǎng)度493.72m、直徑142mm、基頻0.26Hz,實(shí)測(cè)得到的最高振動(dòng)頻率可達(dá)12.3Hz,為該索第47階模態(tài).Ge和Chen等[27]也在蘇通長(zhǎng)江大橋進(jìn)行過實(shí)測(cè),所測(cè)的編號(hào)為SJ34D的斜拉索長(zhǎng)度576.77 m、直徑180mm、基頻0.22hz,發(fā)現(xiàn)在4~8 m/s 橋面風(fēng)速時(shí)該索發(fā)生了9.5~10Hz的渦激共振響應(yīng).劉宗杰和祝志文等[28]對(duì)荊岳長(zhǎng)江大橋的斜拉索進(jìn)行長(zhǎng)期監(jiān)測(cè),結(jié)果表明,編號(hào)為JB01的斜拉索的面 內(nèi)加速度為2.5g,其 峰 值頻率包括11.8Hz、12.8Hz和13.8Hz,對(duì)應(yīng)該斜拉索的第12、13和14階模態(tài);編號(hào)為JB02的斜拉索的面內(nèi)與面外振動(dòng)峰值頻率高達(dá)25.4Hz,為該斜拉索的第28階模態(tài).王修勇和陳政清等[29]對(duì)洞庭湖大橋的A12 號(hào)斜拉索(長(zhǎng)121.9m、直徑119mm、基頻1.07Hz)進(jìn)行了風(fēng)致振動(dòng)的監(jiān)測(cè),結(jié)果表明,該斜拉索也發(fā)生了高階渦激共振.Chen和Gao等[30]對(duì)中國(guó)東部沿海某主跨為620m斜拉橋的拉索進(jìn)行了長(zhǎng)期監(jiān)測(cè),發(fā)現(xiàn)該橋編 號(hào)為CAC20的斜拉索發(fā)生了高階渦激共振,起振模態(tài)高達(dá)40階.Di和Sun等[31]對(duì)蘇通長(zhǎng)江大橋上安裝了阻尼器的斜拉索(長(zhǎng)度546.9m)進(jìn)行實(shí)測(cè),發(fā)現(xiàn)該斜拉索也會(huì)出現(xiàn)高階渦激共振,峰值頻率為10.63Hz,模態(tài)高達(dá)44階.
2.3 控制措施研究
超長(zhǎng)斜拉索的高階渦激共振,給斜拉索的振動(dòng)控制帶來了新的挑戰(zhàn).首先,增大了阻尼器參數(shù)的設(shè)計(jì)難度.以往安裝阻尼器的主要目的是抑制風(fēng)雨激 振,其最優(yōu)參數(shù)選?。òò惭b位置及阻尼系數(shù))針對(duì)低階模態(tài)(如第3~5階),但該最優(yōu)參數(shù)下斜拉索高階模態(tài)的阻尼比會(huì)很低,對(duì)高階渦激共振的控制效果不佳.反之,若阻尼器最優(yōu)參數(shù)以高階模態(tài)選 取,則斜拉索低階模態(tài)的阻尼比也會(huì)很低,對(duì)低階風(fēng) 雨激振的控制效果也不佳.為解決這一難題,研究人員已經(jīng)進(jìn)行了一系列的工作.Yang和Chen等[32]得到了單黏滯阻尼器對(duì)斜拉索低階和高階模態(tài)阻尼比貢 獻(xiàn)的解析表達(dá)式,系統(tǒng)地研究了模態(tài)阻尼比在各參數(shù)影響下的取值規(guī)律,確定了各參數(shù)的最優(yōu)值.Yang和Chen等[33]介紹了一種可以同時(shí)控制拉索前幾階和高階模態(tài)振動(dòng)的雙阻尼器方案,并給出了拉索-雙阻尼器系統(tǒng)模態(tài)阻尼比的簡(jiǎn)化估算公式.Chen和Di等[34]在蘇通長(zhǎng)江大橋上進(jìn)行了實(shí)測(cè),研究了黏滯-剪切型阻尼器對(duì)斜拉索的多模態(tài)阻尼比,最高模態(tài)可達(dá)20階.Chen和Sun等[35]在蘇通長(zhǎng)江大橋斜拉索上分別安裝黏滯阻尼器和黏彈性阻尼器,在現(xiàn)場(chǎng)實(shí)測(cè)了這兩種阻尼器對(duì)斜拉索多模態(tài)振動(dòng)的控制效果.
孫利民和狄方殿等[36]建立了斜拉索-雙阻尼器系統(tǒng)的精細(xì)化理論模型,包括黏彈性阻尼器和高阻尼橡膠阻尼器,并且通過實(shí)橋監(jiān)測(cè)數(shù)據(jù)證明了雙阻尼器對(duì)前10階模態(tài)同時(shí)減振的效果.Di和Sun等[31]在斜拉索已安裝一個(gè)黏滯阻尼器的情況下,采用另 外一個(gè)阻尼器(黏滯阻尼器、高阻尼橡膠阻尼器或調(diào)諧質(zhì)量阻尼器)對(duì)失效模態(tài)的阻尼比進(jìn)行補(bǔ)償.Wang和Li等[37]采用有限差分方法,對(duì)雙阻尼器對(duì)斜拉索多模態(tài)振動(dòng)控制效果進(jìn)行了數(shù)值研究,其中雙阻尼器包括黏滯阻尼器和慣性阻尼器.以上的研究結(jié)果表明:在近錨固端安裝兩個(gè)黏滯阻尼器是有效控制斜拉索高階渦激共振和低階風(fēng)雨激振的可行方案;質(zhì)量阻尼器可顯著提高最優(yōu)單模態(tài)阻尼比,但會(huì)明顯降低部分模態(tài)的阻尼比.
空氣動(dòng)力學(xué)措施也在斜拉索振動(dòng)控制中廣泛應(yīng)用,包括安裝螺旋線、設(shè)置凹坑等,這些措施對(duì)風(fēng)雨 激振有效,一般來講對(duì)渦激共振也會(huì)起到較好的效果.但是,Liu和Shen等[26]通過節(jié)段模型測(cè)振風(fēng)洞試 驗(yàn)發(fā)現(xiàn),對(duì)高階渦激共振起到較好控制效果的螺旋 線直徑,比現(xiàn)有的常用尺寸要大.
3 橋梁索結(jié)構(gòu)安裝夜景亮化燈具引起的馳振
馳振是非對(duì)稱截面的細(xì)長(zhǎng)結(jié)構(gòu)發(fā)生的一種橫風(fēng)向振動(dòng),最早出現(xiàn)在裹冰輸電線上[38-39],它是一種大幅、低頻的發(fā)散性振動(dòng),一旦發(fā)生,會(huì)嚴(yán)重威脅結(jié)構(gòu)安全,在結(jié)構(gòu)的服役期內(nèi)應(yīng)避免其發(fā)生.馳振是由氣動(dòng)負(fù)阻尼所引起的[38],平均升力系數(shù)的突降是其必 要條件.一般來說,橋梁索結(jié)構(gòu)橫截面為軸對(duì)稱圓 形,平均升力系數(shù)等于零,具有良好的馳振穩(wěn)定性,不會(huì)發(fā)生馳振.但斜拉索為斜向布置,在水平來流的作用下,斜拉索軸向與來流方向不垂直,可能會(huì)引發(fā)干索馳振[40-41],目前的機(jī)理解釋包括軸向流、臨界雷 諾數(shù)等.目前,斜拉索的干索馳振還缺乏測(cè)試數(shù)據(jù),也未發(fā)現(xiàn)實(shí)際橋梁上的破壞實(shí)例,僅停留在理論和試驗(yàn)研究階段.斜拉索表面結(jié)冰也可能會(huì)引發(fā)馳 振[42-43],但與干索馳振一樣,裹冰斜拉索的馳振也未在實(shí)際橋梁上發(fā)現(xiàn)破壞實(shí)例.
3.1? 工程背景
隨著社會(huì)經(jīng)濟(jì)的發(fā)展和人們精神需求的提高,各地紛紛啟動(dòng)了城市亮化工程,大跨徑纜索承重橋梁作為城市的地標(biāo)建筑,已成為亮化工程的主要對(duì)象之一.其中,對(duì)于纜索承重橋而言,通常會(huì)在索結(jié)構(gòu)的表面安裝亮化燈具.然而,若燈具外形和尺寸設(shè)計(jì)不當(dāng),會(huì)使得斜拉索或吊索發(fā)生嚴(yán)重的馳振,近幾年已出現(xiàn)了幾次類似事故.2019年5月,重慶夔門大橋斜拉索上安裝夜景亮化燈具后,在較低的風(fēng)速下(6 m/s),斜拉索發(fā)生了大幅度馳振,峰-峰振幅超過了1.0m(見圖3);2020年8月,福州鼓山大橋吊索上 也安裝了夜景亮化燈具,施工過程中就在常遇風(fēng)速下(約5m/s)發(fā)生了大幅馳振振動(dòng),后經(jīng)系統(tǒng)的試驗(yàn) 評(píng)估,放棄了在該橋吊索上安裝燈具的計(jì)劃;2021年7月,在長(zhǎng)沙三汊磯大橋上啟動(dòng)了夜景亮化工程,其中吊索上安裝了矩形燈具(見圖4),在施工過程中即發(fā)生大幅馳振振動(dòng),全橋的振感也很強(qiáng)烈,不得不對(duì)橋梁進(jìn)行封閉并拆除了已安裝的燈具.該橋發(fā)生馳振時(shí)的風(fēng)速也很低,僅為5~7m/s.當(dāng)然,也有部分橋梁上安裝了亮化燈具,至今未發(fā)現(xiàn)有明顯的振動(dòng),如武漢長(zhǎng)江二橋、福州魁蒲大橋和長(zhǎng)沙銀盆嶺大橋等,這可能是因?yàn)檫@幾座橋梁上都安裝了阻尼器,使得馳振臨界風(fēng)速高于常遇風(fēng)速,或是橋址處的風(fēng)向不滿足馳振攻角的要求.表1統(tǒng)計(jì)了幾座橋梁索結(jié)構(gòu)安裝燈具的外形,可以看出,常用的燈具外形為矩形.
3.2 機(jī)理研究
目前,專門針對(duì)橋梁索結(jié)構(gòu)安裝亮化燈具的風(fēng) 致穩(wěn)定性研究相對(duì)較少.早在2007年,廣州鶴洞大橋啟動(dòng)夜景亮化工程,在其斜拉索上設(shè)計(jì)了“圓形抱 箍”燈具(如圖5所示),單個(gè)燈具外徑 262mm、高度170mm,為保證燈具不轉(zhuǎn)動(dòng)并便于安裝,設(shè)置了兩根平行于斜拉索的鋼絲,直徑10mm.Li和Chen等[45]采用風(fēng)洞試驗(yàn)和CFD數(shù)值模擬方法,研究了對(duì)上述 燈具安裝方案的風(fēng)致穩(wěn)定性,結(jié)果表明該方案下斜拉索的馳振臨界風(fēng)速僅為18 m/s,遠(yuǎn)低于設(shè)計(jì)風(fēng)速,兩根直徑10mm的鋼絲是起振原因.Li和Chen等[45]對(duì)該方案進(jìn)行了改進(jìn)并在實(shí)橋上實(shí)施,從2008年安裝后已經(jīng)歷了10多年的強(qiáng)/臺(tái)風(fēng)考驗(yàn).2021年,An和Li等[44]開展了節(jié)段模型測(cè)力與測(cè)振風(fēng)洞試驗(yàn),在試驗(yàn)室中重現(xiàn)了重慶夔門大橋斜拉索安裝亮化燈具的馳振振動(dòng),并對(duì)燈具形狀進(jìn)行了優(yōu)化;周傲秋和余 海燕等[46]通過風(fēng)洞測(cè)力試驗(yàn),研究了安裝矩形燈具斜拉索的三維氣動(dòng)力特性;Deng和Tang等[47]采用CFD數(shù)值模擬方法,研究了安裝二維矩形燈具的斜拉索的三分力系數(shù),對(duì)發(fā)生馳振的風(fēng)攻角范圍進(jìn)行了預(yù)測(cè).
3.3 控制措施研究
從機(jī)理上來說,安裝的亮化燈具改變了橋梁索結(jié)構(gòu)氣動(dòng)穩(wěn)定的圓截面外形,從而引發(fā)馳振.馳振是 由氣動(dòng)負(fù)阻尼引起的大幅振動(dòng),危害較大,實(shí)際工程中應(yīng)避免發(fā)生.一般情況下,亮化燈具設(shè)計(jì)人員缺乏氣動(dòng)外形優(yōu)劣、結(jié)構(gòu)振動(dòng)控制的概念,難以對(duì)安裝亮化燈具斜拉索的馳振不穩(wěn)定性做出準(zhǔn)確判斷,結(jié)構(gòu)風(fēng)工程研究人員應(yīng)提供有效建議.
橋梁索結(jié)構(gòu)風(fēng)致振動(dòng)控制的方法主要可分為三種:機(jī)械措施、結(jié)構(gòu)措施和空氣動(dòng)力學(xué)措施.馳振是 由氣動(dòng)負(fù)阻尼驅(qū)動(dòng)的,增加結(jié)構(gòu)阻尼的機(jī)械措施應(yīng)該可以有效減小其響應(yīng),這可從武漢長(zhǎng)江二橋等斜拉索安裝了阻尼器和燈具未發(fā)生馳振的實(shí)例中得到印證.但是,對(duì)于不同類型的橋梁索結(jié)構(gòu)風(fēng)致振動(dòng),最低的有效阻尼比會(huì)不同.例如 Liu和Shen等[26]通 過風(fēng)洞試驗(yàn)發(fā)現(xiàn)阻尼比增大到0.48%時(shí),斜拉索的高階渦振可被有效抑制;Li和Wu等[8]通過理論分析發(fā)現(xiàn)阻尼比增大到0.5%時(shí)可有效抑制斜拉索風(fēng)雨 激振;Li和An等[49]通過節(jié)段模型測(cè)振風(fēng)洞試驗(yàn)研究了阻尼比對(duì)福建魁蒲大橋斜拉索安裝亮化燈具引起的馳振的控制效果,結(jié)果表明1.0%的阻尼比可對(duì)該橋斜拉索馳振起到有效控制作用;而 Hua和Wang等[50]也采用節(jié)段模型測(cè)振風(fēng)洞試驗(yàn)方法,研究了阻尼比對(duì)施工過程中主纜馳振的控制效果,發(fā)現(xiàn)即使阻尼比增大到3.2%,抑振效果也不佳.
另外,燈具氣動(dòng)外形的優(yōu)化也是提高安裝亮化燈具索結(jié)構(gòu)馳振臨界風(fēng)速的有效手段.為方便加工與安裝,矩形是常用形式(見表1),但從幾座橋梁上的實(shí)際效果來看,其氣動(dòng)性能不佳[44].武漢長(zhǎng)江二橋采用的是橢圓形燈具,從節(jié)段模型測(cè)力風(fēng)洞試驗(yàn)結(jié)果來看,其氣動(dòng)性能優(yōu)于矩形[48].廣東鶴洞大橋中的“圓形抱箍”燈具方案中,燈具外徑達(dá)到了262mm,是斜拉索直徑的2倍多,但試驗(yàn)結(jié)果表明燈具外徑增加不是該方案氣動(dòng)不穩(wěn)定的關(guān)鍵因素,并在實(shí)橋 上經(jīng)歷了10多年的考驗(yàn),這說明一定程度上增大斜拉索的圓截面外徑不會(huì)引起明顯的氣動(dòng)不穩(wěn)定現(xiàn)象[45].
綜上所述,機(jī)械和空氣動(dòng)力學(xué)控制措施對(duì)安裝 亮化燈具斜拉索的馳振可起到有效控制作用,但需 進(jìn)行進(jìn)一步的系統(tǒng)參數(shù)研究,以為亮化燈具設(shè)計(jì)人員提供直接、準(zhǔn)確的參考.
4? 結(jié)論與展望
橋梁索結(jié)構(gòu)長(zhǎng)度的增加,導(dǎo)致出現(xiàn)一些新的風(fēng) 致振動(dòng)問題,如懸索橋吊索風(fēng)致振動(dòng)、斜拉索高階渦 激共振以及安裝亮化燈具的橋梁索結(jié)構(gòu)馳振等.針對(duì)這些新挑戰(zhàn),研究人員進(jìn)行了系統(tǒng)的機(jī)理研究,并已提出了一些有效的振動(dòng)控制措施,主要結(jié)論包括:
1)懸索橋吊索的起振機(jī)理復(fù)雜,在斜拉索上積 累的振動(dòng)控制經(jīng)驗(yàn),難以直接應(yīng)用在吊索振動(dòng)控制中,從目前在實(shí)際橋梁上的減振實(shí)踐來看,安裝剛性分隔架是抑制索股相對(duì)振動(dòng)的有效手段.
2)已在多座大跨徑斜拉橋上觀測(cè)到振幅明顯的斜拉索高階渦激共振現(xiàn)象,嚴(yán)重威脅斜拉索及其附 屬設(shè)施的安全.斜拉索高階渦激共振增加了其振動(dòng)控制的難度,設(shè)置雙黏滯阻尼器是有效控制斜拉索高階渦激共振和低階風(fēng)雨激振的可行方案.
3)在橋梁索結(jié)構(gòu)上安裝亮化燈具極易引發(fā)馳 振,增加阻尼器和優(yōu)化燈具氣動(dòng)外形是避免該類振動(dòng)的有效措施,但最低有效阻尼比、氣動(dòng)外形等參數(shù)還需進(jìn)一步優(yōu)化.
參考文獻(xiàn)
[1]HIKAMI Y,SHIRAISHI N.Rain-wind induced vibrations of
cables stayed bridges[J].Journal of Wind Engineering and In-dustrial Aerodynamics,1988,29(1/2/3):409-418.
[2]LI S Y,CHEN Z Q,WU T,et al.Rain-wind induced in-plane
and out-of-plane vibrations of stay cables[J].Journal of Engineer-ing Mechanics,2013,139(12):1688-1698.
[3]GU M,DU X Q. Experimental investigation of rain-wind-induced vibration of cables in cable-stayed bridges and its mitiga-tion[J].Journal of Wind Engineering and Industrial Aerodynam-ics,2005,93(1):79-95.
[4]LI F C,CHEN W L,ZHANG R.An ultrasonic transmission thick-
ness measurement system for study of water rivulets characteristics of stay cables suffering from wind-rain-induced vibration[J].Sen-sors and Actuators A:Physical,2010,159(1):12-23.
[5]ZUO D,JONES N P,MAIN J A.Field observation of vortex-and
rain-wind-induced stay-cable vibrations in a three-dimensional environment[J].Journal of Wind Engineering and Industrial Aero-dynamics,2008,96(6/7):1124-1133.
[6]MATSUMOTO M,YAGI T,SHIGEMURA Y,et? al.Vortex-induced cable vibration of cable-stayed bridges at high reduced wind velocity [J].Journal of Wind Engineering and Industrial Aerodynamics,2001,89(7/8):633-647.
[7]CHEN Z Q,WANG X Y,KO J M,et al.MR damping system for
mitigating wind-rain induced vibration on Dongting Lake Cable-Stayed Bridge[J].Wind and Structures,2004,7(5):293-304.
[8]LI S Y,WU T,LI S K,et al.Numerical study on the mitigation ofrain-wind induced vibrations of stay cables with dampers [J].Wind and Structures,2016,23(6):615-639.
[9]FUJINO Y,KIMURA K,TANAKA H.Wind resistant design ofbridges in Japan :developments and practices [M].Tokyo: Springer,2012:200-202.
[10]KASHIMA S,YANAKA Y,SUZUKI S,et? al.Monitoring the
Akashi Kaikyo Bridge:first experiences[J].Structural Engineer-ing International,2001,11(2):120-123.
[11]LAURSEN E,BITSCH N,ANDERSEN J E.Analysis and mitiga-tion of large amplitude cable vibrations at the great belt east bridge[C]//IABSE Conference,Copenhagen 2006:Operation,Mainte-nance and Rehabilitation of Large Infrastructure Projects,Bridges and Tunnels.May15-17,2006.Copenhagen,Denmark.Zur-ich,Switzerland:International Association for Bridge and Struc-tural Engineering(IABSE),2006.
[12]HUA X G,CHEN Z Q,LEI X,et al.Monitoring and control of
wind-induced vibrations of hanger ropes of a suspension bridge[J].Smart Structures and Systems,2018,23(6):125-141.
[13]LI S Y,DENG Y C,LEI X,et al.Wake-induced vibration of the
hanger of a suspension bridge:field measurements and theoretical modeling[J].Structural Engineering and Mechanics,2019,72(2):169-180.
[14]陳政清,華旭剛,王建輝,等.西堠門懸索橋吊索振動(dòng)觀測(cè)與減
振措施研究報(bào)告[R].長(zhǎng)沙:湖南大學(xué),2015.
CHEN Z Q,HUA X G,WANG J H,et al.Research report on vi-bration observation and reduction measures of the hanger of Xihou-men Bridge [R].Changsha :Hunan University,2015.(In Chi-nese)
[15]ZHANG Z T,WU X B,CHEN Z Q,et al.Mechanism of hangeroscillation at suspension bridges:? buffeting-induced resonance[J].Journal of Bridge Engineering,2016,21(3):04015066.
[16]CHEN W L,GAO D L,LI H,et al.Wake-flow-induced vibra-tions of vertical hangers behind the tower of a long-span suspen-sion bridge[J].Engineering Structures,2018,169:188-200.
[17]CHEN W L,YANG W H,XU F,et al.Complex wake-induced vi-bration of aligned hangers behind tower of long-span suspension bridge[J].Journal of Fluids and Structures,2020,92:102829.
[18]肖春云,李壽英,陳政清.懸索橋雙吊索尾流弛振的失穩(wěn)區(qū)間研究[J].中國(guó)公路學(xué)報(bào),2016,29(9):53-58.
XIAO C Y,LI S Y,CHEN Z Q.Investigation on instable region of wake galloping for twin hangers of suspension bridges[J].China Journal of Highway and Transport,2016,29(9):53-58.(In Chi-nese)
[19]鄧羊晨,李壽英,嚴(yán)杰韜,等.兩類懸索橋吊索氣動(dòng)穩(wěn)定性比較研究[J].土木工程學(xué)報(bào),2019,52(1):82-88.
DENG Y C,LI S Y,YAN J T,et al.Comparative study on aerody-namic stability of two kinds of suspension bridge hangers [J].China Civil Engineering Journal,2019,52(1):82-88.(In Chi-nese)
[20]LI S Y,XIAO C Y,WU T,et al.Aerodynamic interference be-tween the cables of the suspension bridge hanger[J].Advances in Structural Engineering,2019,22(7):1657-1671.
[21]DENG Y C,LI S Y,CHEN Z Q.Unsteady theoretical analysis on
the wake-induced vibration of suspension bridge hangers [J].Journal of Bridge Engineering,2019,24(2):04018113.
[22]LI S Y,DENG Y C,HUANG J,et al.Experimental investigation
on aerodynamic interference of two kinds of suspension bridge hangers[J].Journal of Fluids and Structures,2019,90:57-70.
[23]DENG Y C,LI S Y,CHEN Z Q.Experimental investigation on
wake-induced vibrations of the hangers of suspension bridges based on three-dimensional elastic test model[J].Engineering Structures,2021,234:111985.
[24]SIMIU E,YEO D.Wind effects on structures[M].Chichester,UK:John Wiley & Sons Ltd,2019.
[25]劉志文,沈靜思,陳政清,等.斜拉索渦激振動(dòng)氣動(dòng)控制措施試驗(yàn)研究[J].振動(dòng)工程學(xué)報(bào),2021,34(3):441-451.
LIU Z W,SHEN J S,CHEN Z Q,et al.Experimental study on aerodynamic control measures for vortex-induced vibration of stay-cable[J].Journal of Vibration Engineering,2021,34(3): 441-451.(In Chinese)
[26]LIU Z W,SHEN J S,LI S Q,et al.Experimental study on high-mode vortex-induced vibration of stay cable and its aerodynamic countermeasures [J].Journal of Fluids and Structures,2021,100:103195.
[27]GE C X,CHEN A R.Vibration characteristics identification of
ultra-long cables of a cable-stayed bridge in normal operation based on half-year monitoring data[J].Structure and Infrastruc-ture Engineering,2019,15(12):1567-1582.
[28]劉宗杰,祝志文,陳魏,等.跨長(zhǎng)江特大橋拉索渦激振動(dòng)與風(fēng)特性觀測(cè)[J].鐵道科學(xué)與工程學(xué)報(bào),2020,17(7):1760-1768.LIU Z J,ZHU Z W,CHEN W,et al.Observation of vortex-induced vibration and wind characteristics of cables across the Yangtze River Bridge[J].Journal of Railway Science and Engi-neering,2020,17(7):1760-1768.(In Chinese)
[29]王修勇,陳政清,倪一清,等.環(huán)境激勵(lì)下斜拉橋拉索的振動(dòng)觀測(cè)研究[J].振動(dòng)與沖擊,2006,25(2):138-144.
WANG X Y,CHEN Z Q,NI Y Q,et al.Response characteristics of stay cable under ambient excitation[J].Journal of Vibration and Shock,2006,25(2):138-144.(In Chinese)
[30]CHEN W L,GAO D L,LAIMA S J,et al.A field investigation on
vortex-induced vibrations of stay cables in a cable-stayed bridge[J].Applied Sciences,2019,9(21):4556.
[31]DI F D,SUN L M,CHEN L.Suppression of vortex-induced high-mode vibrations of a cable-damper system by an additional damper[J].Engineering Structures,2021,242:112495.
[32]YANG C,CHEN Z Q,HUA X G,et al.An explicit solution ofmodal-damping ratios for higher modes of a cable with an external damper[J].Journal of Engineering Mechanics,2022,148(1):06021007.
[33]YANG C,CHEN Z Q,WANG W X,et al.Optimal design of two
viscous dampers for multi-mode control of a cable covering broad frequency range[J].Engineering Structures,2021,245:112830.
[34]CHEN L,DI F D,XU Y Y,et al.Multimode cable vibration con-trol using a viscous-shear damper:case studies on the Sutong Bridge[J].Structural Control and Health Monitoring,2020,27(2):e2536.
[35]CHEN L,SUN L M,XU Y Y,et al.A comparative study of multi-mode cable vibration control using viscous and viscoelastic damp-ers through field tests on the Sutong Bridge [J].Engineering Structures,2020,224:111226.
[36]孫利民,狄方殿,陳林,等.斜拉索-雙阻尼器系統(tǒng)多模態(tài)減振理論與試驗(yàn)研究[J].同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,49(7):975-985.
SUN L M,DI F D,CHEN L,et al.Theoretical and experimental studies on multimode vibration mitigation of cable with two damp-ers[J].Journal of Tongji University(Natural Science),2021,49(7):975-985.(In Chinese)
[37]WANG Y Y,LI S Y,QIE K,et al.Effectiveness of damping and
inertance of two dampers on mitigation of multimode vibrations of stay cables by using finite difference method[J].Journal of Vibra-tion and Control.DOI:10.1177/10775463221091337.
[38]DEN HARTOG J P.Mechanical vibrations [M].4th ed.NewYork:McGraw-Hill,1956.
[39]DAVISON A E.Dancing conductors [J].AIEE Transactions,1930,49:1444-1449.
[40]NIKITAS N,MACDONALD J H G.Aerodynamic forcing charac-teristics of dry cable galloping at critical Reynolds numbers[J].European Journal of Mechanics-B/Fluids,2015,49:243-249.
[41]MATSUMOTO M,YAGI T,HATSUDA H,et al.Dry gallopingcharacteristics and its mechanism of inclined/yawed cables [J].Journal of Wind Engineering and Industrial Aerodynamics,2010,98(6/7):317-327.
[42]LI S Y,WU T,HUANG T,et al.Aerodynamic stability of iced
stay cables on cable-stayed bridge [J].Wind and Structures,2016,23(3):253-273.
[43]GJELSTRUP H,GEORGAKIS C T,LARSEN A.An evaluation oficed bridge hanger vibrations through wind tunnel testing and quasi-steady theory [J].Wind and Structures an International Journal,2012,15(5):385-407.
[44]AN M,LI S Y,LIU Z W,et al.Galloping vibration of stay cable
installed with a rectangular lamp:field observations and wind tun-nel tests[J].Journal of Wind Engineering and Industrial Aerody-namics,2021,215:104685.
[45]LI S Y,CHEN Z Q,DONG G C,et al.Aerodynamic stability of
stay cables incorporated with lamps:a case study[J].Wind and Structures,2014,18(1):83-101.
[46] 周傲秋,余海燕,許福友 .亮化燈具安裝后斜拉索三維氣動(dòng)性能試驗(yàn)研究[J].大連理工大學(xué)學(xué)報(bào),2019,59(4):379-384.
ZHOU A Q,YU H Y,XU F Y.Experimental study of aerody-namic performance of3D stay cables with lighting lamp[J].Jour-nal of Dalian University of Technology,2019,59(4):379-384.(In Chinese)
[47]DENG Z Q,TANG H J,HU B,et al.Aerodynamic instability of
stay cables with lighting fixtures[J].KSCE Journal of Civil Engi-neering,2021,25(7):2508-2521.
[48]安苗,李壽英,陳政清.安裝橢圓形燈具和矩形線盒的斜拉索馳振[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,49(5):74-81.?? AN M,LI S Y,CHEN Z Q.Galloping of stay cables installed with elliptical lamp and rectangular box[J].Journal of Hunan Univer-sity(Natural Sciences),2022,49(5):74-81.(In Chinese)
[49]李壽英,安苗,陳政清.福州魁浦大橋安裝燈具斜拉索風(fēng)洞試驗(yàn)報(bào)告[R].長(zhǎng)沙 :風(fēng)工程與橋梁工程湖南省重點(diǎn)實(shí)驗(yàn)室,2021:1-23.
LI S Y,AN M,CHEN Z Q.Report on wind tunnel test of stay cables with lamps of Kuipu Bridge in Fuzhou[R].Changsha:Key Laboratory for wind and Bridge Engineering of Hunan Province,2021:1-23.(In Chinese)
[50]HUA X G,WANG C Q,LI S L,et al.Experimental investigation
of wind-induced vibrations of main cables for suspension bridges in construction phases [J].Journal of Fluids and Structures,2020,93:102846.