• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      被動負剛度裝置與線性滯回阻尼器組合對斜拉索多模態(tài)振動的阻尼效果

      2022-05-30 10:48:04孫利民孫浚杰狄方殿鄒易清王萌陳林
      湖南大學學報·自然科學版 2022年5期

      孫利民 孫浚杰 狄方殿 鄒易清 王萌 陳林

      摘 要:提出了結(jié)合負剛度裝置提升線性滯回阻尼器對斜拉索多模態(tài)振動控制效果的方法.考慮被動負剛度裝置與阻尼器在斜拉索上任意位置安裝,采用斜拉索兩點施控系統(tǒng)特征方程,討論了安裝位置、線性滯回阻尼器參數(shù)、負剛度系數(shù)等對斜拉索多模態(tài)阻尼的影響.結(jié)果表明,被動負剛度裝置能有效提升線性滯回阻尼器對斜拉索的多階模態(tài)阻尼比,其安裝位置越靠近阻尼器,阻尼提升效果越明顯.進一步,以蘇通大橋某附有黏性剪切阻尼器的超長拉索為例進行了實際設計,討論了被動負剛度的可行性,并與結(jié)合慣容器的阻尼器進行了對比,結(jié)果表明,被動負剛度裝置對斜拉索-阻尼器系統(tǒng)多模態(tài)阻尼提升效果更好.

      關鍵詞:斜拉索振動;多模態(tài)阻尼;負剛度裝置;線性滯回阻尼;慣容器

      中圖分類號:U441.3 文獻標志碼:A

      Multimode Damping of a Stay Cable Attached with a Negative Stiffness Device and a Linaear Hysteretic Damper

      SUN Limin1,2,SUN Junjie1,DI Fangdian2,ZOU Yiqing3,WANG Meng4,CHEN Lin1?

      (1.Department of Bridge Engineering,Tongji University,Shanghai 200092,China;

      2.State Key Laboratory of Disaster Reduction in Civil Engineering(Tongji University),Shanghai 200092,China;

      3.Liuzhou OVM Machinery Co,Ltd,Liuzhou 545006,China;

      4.Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education(Beijing University of Technology),Beijing,100124,China)

      Abstract:Multimode damping of a stay cable attached with a negative stiffness device(NSD)and a linear hys-teretic damper was studied.The frequency equation of a cable under transverse control forces at two locations is used for damping analyses by considering arbitrary NSD and damper locations.The effects of NSD and damper locations,damper parameters and negative stiffness values on multimode damping of stay cable are examined.It can be found that the multimode cable damping values can be significantly enhanced comparing with the single linear hysteretic

      damper.The closer the installation locations,the higher the damping level.Furthermore,multimode damping effect of the combinations is verified by using a long stay cable installed with a viscous shear damper on the Sutong Bridge,together with an inertial damper.The feasibility of the NSD is carefully discussed.The results show that the NSD is more helpful to enhance the multimode damping comparing with the inertial damper.

      Key words:stay cable vibration;multimode damping;negative stiffness;linear hysteretic damping;inertial damper

      斜拉索是斜拉橋最為關鍵的受力構件之一,但 很容易出現(xiàn)異常振動[1].因此,斜拉索振動與控制問 題受到了廣泛關注[2].例如,在運營期的風、雨和車 輛等作用下,其常出現(xiàn)明顯甚至是大幅振動[3-4],嚴 重威脅著橋梁的適用性和安全性[5].

      為有效控制斜拉索振動,工程中常在索端安裝阻尼器增加索的模態(tài)阻尼[6].現(xiàn)有研究表明,阻尼器的固有剛度會減小斜拉索振動過程中阻尼器的相對變形,削弱對索的阻尼效果[5].相反,通過主動、半主動或被動控制方法實現(xiàn)的負剛度能夠增加阻尼器位置處的斜拉索位移,從而提高阻尼效果.H?gsberg等[6]在結(jié)構振動控制中考慮了具有負剛度系數(shù)和可采用分數(shù)階導數(shù)模型描述的阻尼器,表明該阻尼器可提供相位超前的阻尼力;還發(fā)現(xiàn)由于安裝阻尼器而增加的質(zhì)量同樣能增大位移,從而增強阻尼效果.

      近年來,基于慣性質(zhì)量和負剛度機理的減振效果提升手段是結(jié)構減振抗震研究的熱點.基于慣容器的結(jié)構振動控制研究可追溯到Ikago等[7]和Lazar等[8].后續(xù)研究考慮了不同慣容器、彈簧和阻尼器組 合的動力性 能[9-10]、振 控效果[11-12]和基 礎 隔 震 性 能[13-14]等.Lazar等[15]、Sun等[16]、Lu等[17]較早在斜拉索-阻尼器系統(tǒng)中引入慣容器,引起了該領域?qū)W者的關注[18-22].進一步研究中關注了具有慣性質(zhì)量效果的阻尼器的研發(fā),如陳政清等[23]、孫洪鑫等[24]、李亞 敏等[25]采用電磁技術同時實現(xiàn)慣性力和阻尼力,并采用實索試驗進行了驗證[26].

      結(jié)構振動控制中關于負剛度現(xiàn)象的研究可追溯到Iemura等[27-28].早期學者們從摩擦、半主動或主動控制裝置的力-位移滯回曲線中觀察到減振裝置的負剛度行為,稱其為表觀負剛度或偽負剛度(PNS).隨后,發(fā)展了基于PNS的半主動和主動控制算法,相關研究包括Iemura等[29]、Li等[30]、Ou等[31]、H?gs-berg[32]、Weber等[33].2013年,Sarlis等[34]、Pasala等[35]研發(fā)了基于預壓縮彈簧的被動負剛度裝置(NSD),并開展了試驗驗證.針對斜拉索減振,Chen等[36]將 NSD與黏滯阻尼器結(jié)合,突破了傳統(tǒng)阻尼器對斜拉索附加阻尼的限制.Zhou等[37]進一步開展了附加NSD和黏滯阻尼器的斜拉索的模型試驗,驗證了NSD結(jié)合阻尼器可作為斜拉索半主動或主動拉索控 制的經(jīng)濟有效的替代方案[38-39].

      斜拉索減振實踐中常見的阻尼器,例如高阻尼橡膠阻尼器[40]和黏性剪切阻尼器[6],均可用線性滯回阻尼模型描述其力學行為.即將此類阻尼器建模為一個具有復剛度和損耗因子的彈簧.現(xiàn)有研究已量化了其對斜拉索的阻尼效果[41-42],亦分析了在斜拉索上同時安裝多個線性滯回阻尼器以及與其他阻尼器組合時的優(yōu)化設計[43-45].線性滯回阻尼器可為拉索各階模態(tài)提供幾乎相等的阻尼,但與黏滯阻尼器相比,其最優(yōu)附加阻尼受到自身剛度效應的限制,導致阻尼效果偏低.因此,本文提出利用負剛度裝置 提升線性滯回阻尼器對斜拉索的阻尼效果.NSD可與阻尼器在新橋建設時在同一位置安裝,亦可以在斜拉索減振系統(tǒng)維護升級時安裝.因此將考慮 NSD與阻尼器分別在索端部任意位置安裝的情況,通過理論研究和實際設計案例,討論NSD的效果和可行性.

      1斜拉索阻尼器系統(tǒng)復頻率方程

      本節(jié)首先建立斜拉索阻尼器系統(tǒng)的動力方程,然后采用復數(shù)模態(tài)分析方法得到系統(tǒng)的復頻率方程,進而建立系統(tǒng)復頻率方程數(shù)值求解方法.

      1.1系統(tǒng)動力方程

      圖1為一根斜拉索上安裝 NSD和線性滯回阻尼器進行組合減振的示意圖.斜拉索通過變換后水平 放置,以弦線為x 軸,其弦長為L,水平張力為T,拉索單位長度質(zhì)量為m,軸向剛度為EA,對于長索,其抗 彎剛度和拉索自身阻尼可忽略不計[46].圖1中,k1為NSD的剛度系數(shù),k2為線性滯回阻尼器的剛度系數(shù),φ為損耗因子.y(x)和v(x,t)分別表示斜拉索在重力下的變形和動位移.

      對于斜拉索,其靜止狀態(tài)的形狀可假定為拋物線函數(shù):

      2多模態(tài)阻尼效果

      基于上節(jié)中的系統(tǒng)阻尼求解方法,研究 NSD 和線性滯回阻尼器對斜拉索的多模態(tài)阻尼效果. 考慮到垂度參數(shù)主要影響索的一階阻尼[22],而對其他振動模態(tài)的阻尼影響很小,此處主要采用張緊弦模型以簡化計算. 在進行多模態(tài)阻尼分析時,定義 ζoi p-t j為第i至第j階模態(tài)的最優(yōu)阻尼,即第i至第j階模態(tài)阻尼均不小于ζoi p-t j;同時,達到ζopt i-j時的最優(yōu)線性滯回阻尼器剛度系數(shù)表示為kˉoi p-t j.

      2.1NSD剛度系數(shù)的影響

      圖2所示為不同NSD剛度系數(shù)情況下,斜拉索一階、二階模態(tài)阻尼比隨阻尼器剛度系數(shù)的變化曲線. 圖2中結(jié)果對應斜拉索的張緊弦模型,NSD與線性滯回阻尼器安裝在同一位置,即lˉ1=0.03、l-3=0.97,固定阻尼器的損耗因子為φ= 0.7. NSD的剛度系數(shù)kˉ1分別為0、-5、-10和-15. 由圖 2可見,線性滯回阻尼器對斜拉索振動的各階效果幾乎一致,NSD對各階阻尼的提升效果也相同.圖中實心圓圈標注了各工況下,最優(yōu)阻尼和對應的阻尼器剛度系數(shù),即(k-opt 1- 2,ζopt 1- 2).可見,NSD的負剛度系數(shù)絕對值越大,可達到的最優(yōu)阻尼ζopt 1-2越大,對應最優(yōu)的阻尼器剛度系數(shù)kˉopt 1-2越小.

      2.2? 安裝位置的影響

      考慮在斜拉索減振系統(tǒng)維護升級中,NSD可能有線性滯回阻尼器同端或異端兩種布置方式.根據(jù)圖1的符號設定,同端布置對應較大的3,異端布置時3較小.

      2.2.1? 同端安裝

      圖3所示為NSD與阻尼器同端安裝且位于阻尼器和索錨固點之間時,斜拉索前五階模態(tài)最優(yōu)阻尼比(見圖3(a))和對應的最優(yōu)阻尼系數(shù)(見圖3(b))隨NSD位置的變化曲線.其中,NSD的剛度系數(shù)為1=-5,同時考慮了阻尼器安裝在2%、3%、4%和5%索長的情況.

      從圖3(a)可以看到,同端安裝情況下,隨著阻尼器安裝位置遠離索錨固點,其最優(yōu)阻尼逐漸增加,與現(xiàn)有研究結(jié)論一致.同樣,隨著 NSD向線性滯回阻尼器的靠近,即1/(1 + 2)趨近于1,最優(yōu)阻尼比ζpt-5 單 調(diào)增加,即隨著 NSD增大,斜拉索在阻尼器位置處的相對位移的效果得到增強.由圖3(b)可見,阻尼器距 跨中位置和NSD 越近,阻尼器的最優(yōu)剛度系數(shù)越小.

      2.2.2 異端安裝

      圖4所示為NSD和阻尼器分別位于斜拉索兩端時,前五階模態(tài)阻尼比及對應的阻尼器最優(yōu)剛度系數(shù)隨NSD和阻尼器安裝位置的變化曲線.其中,NSD的負剛度系數(shù)1=-5,考慮阻尼器安裝在2%、3%、4%和5%索長的情況.可見,當NSD與阻尼器距離 很大時,其增強效應幾乎為零,因為并沒有增加阻尼器位置的振動位移.

      2.3 損耗因子的影響

      對于線性滯回阻尼器,損耗因子是一個重要的性能參數(shù),圖5 展示了損耗因子的影響.根據(jù)上一節(jié)結(jié)論,NSD 僅在同端安裝的情況下有較好效果,因此 取 l3=0.97,一致地取1=-5.可見,其損耗因子越大,所能實現(xiàn)的最優(yōu)阻尼越大,并且相應的最優(yōu)剛度系數(shù)越小,不同影響因子情況下,NSD對其提升效果相近.

      3 案例分析

      進一步基于實際工程中的斜拉索,討論NSD結(jié)合線性滯回阻尼器的可行性.以主跨1088 m的蘇通 長江大橋安裝有黏性剪切型阻尼器的SJ18U索為例,斜拉索位置見圖6,參數(shù)列入表1.

      為抑制該斜拉索振動,該索采用了常見的黏性剪切型阻尼器,相關研究[5]進行了阻尼器性能和實 橋阻尼效果試驗.試驗結(jié)果表明,黏性剪切型阻尼器對拉索多模態(tài)阻尼效果相近,可以考慮為線性滯回阻尼器.根據(jù)斜拉索-線性滯回阻尼器模型(本文模型在NSD系數(shù)為零的情況)和實測的多模態(tài)阻尼值進行擬合估計,得到該阻尼器采用線性滯回模型描述時的參數(shù)為k=385kN/m,φ=0.75,對應的擬合阻尼器的理論阻尼效果列入表2.

      由表2可見,線性滯回模型的模擬結(jié)果良好,絕大部分模態(tài)誤差均在5% 上下,最大誤差為10%.以下基于上述擬合參數(shù)設計 NSD.如表3所示,考慮增加的NSD的量綱歸一化剛度系數(shù)分別為-5和-10,NSD在阻尼器與錨固點間的中點和阻尼器位置安裝,對應的NSD參數(shù)亦列入該表.

      基于類似的機理,線性滯回阻尼器并聯(lián)慣容器同樣能提高其對斜拉索的阻尼效果[22].當阻尼器并 聯(lián)一個慣性質(zhì)量為bp的慣容器后,慣容器對斜拉索第n階模態(tài)將產(chǎn)生-bp ω的等效負剛度.在此,基于表3中設計工況3,設計慣容器使其分別針對索第1階、第4階振動產(chǎn)生與工況3相同的等效負剛度.獲得的慣容器的參數(shù)列入表4,記作工況4和5,其中,1為線性滯回阻尼器與并聯(lián)慣容器位置,p= bp /(mL)為量綱歸一化并聯(lián)慣性質(zhì)量.

      對比表5 工況1~3可見,提升后的阻尼效果對NSD安裝位置和負剛度系數(shù)大小比較敏感.并且,NSD對各階效果的提升程度一致.工況3中,采用剛度系數(shù)為-125.650kN/m的NSD,就可以實現(xiàn)各階模態(tài)30%的阻尼比提升.根據(jù)現(xiàn)有NSD 試驗研究[48],采用預壓縮彈簧和杠桿放大即可實現(xiàn)-400kN/m的NSD,具有可行性.

      對比表5 工況3和工況4、工況5,即分別采用NSD與慣容器對斜拉索阻尼器效果進行提升,可見,對于確定慣性質(zhì)量系數(shù)時考慮的振動模態(tài),安裝 NSD和慣容器后,阻尼器對該階模態(tài)的阻尼效果一致.對于其他模態(tài),慣容器產(chǎn)生的等效負剛度效應在低階時較小、高階時較大.過大的負剛度與阻尼器結(jié)合反而會在索高階振動時鎖定阻尼器,降低高階模態(tài)阻尼比.對比而言,NSD相比慣容器在與線性滯回阻尼器組合后對斜拉索的多模態(tài)寬頻段減振中具有優(yōu)勢.

      4結(jié)論

      本文提出了結(jié)合負剛度裝置與線性滯回阻尼器實現(xiàn)拉索多模態(tài)振動阻尼提升的方案,通過理論研究和實橋斜拉索案例分析得到如下結(jié)論:

      1)NSD結(jié)合線性滯回阻尼器能實現(xiàn)斜拉索多階模態(tài)阻尼比的同步提升.

      2)NSD的負剛度系數(shù)一定時,其安裝位置越靠 近阻尼器,可實現(xiàn)的多模態(tài)最優(yōu)阻尼越高.

      3)NSD相比于慣容器對斜拉索-阻尼器系統(tǒng)的多模態(tài)阻尼的均衡提升效果更好.

      4)對于實際工程中的斜拉索,采用預壓縮彈簧結(jié)合杠桿放大機制即可滿足 NSD設計需求.

      參考文獻

      [1]HIKAMI Y,SHIRAISHI N.Rain-wind induced vibrations of

      cables stayed bridges[J].Journal of Wind Engineering and Indus-trial Aerodynamics,1988,29(1/2/3):409-418.

      [2]SPENCER B F J,NAGARAJAIAH S.State of the art of structural

      control [J].Journal of Structural Engineering,2003,129(7) :845-856.

      [3]FUJINO Y,KIMURA K,TANAKA H.Wind resistant design of

      bridges in Japan :developments and practices [M].Tokyo: Springer,2012.

      [4]KUMARASENA S,JONES N P,IRWIN P,et al.Wind-induced

      vibration of stay cables:Technical Report FHWA-HRT-05-083[R].McLean,VA:Federal Highway Administration,2005.

      [5]CHEN L,DI F D,XU Y Y,et al.Multimode cable vibration control

      using a viscous-shear damper:case studies on the Sutong Bridge[J].Structural Control and Health Monitoring,2020,27(6) : e2536.

      [6]H?GSBERG J R,KRENK S.Linear control strategies for damping

      of flexible structures[J].Journal of Sound and Vibration,2006,293(1/2):59-77.

      [7]IKAGO K,SAITO K,INOUE N.Seismic control of single-degree-

      of-freedom structure using tuned viscous mass damper[J].Earth-quake Engineering & Structural Dynamics,2012,41(3) : 453-474.

      [8]LAZAR I F,NEILD S A,WAGG D J.Using an inerter-based de-vice for structural vibration suppression[J].Earthquake Engineer-ing & Structural Dynamics,2014,43(8):1129-1147.

      [9]周海俊,孫利民.斜拉索附加帶剛度阻尼器的參數(shù)優(yōu)化分析[J].力學季刊,2008,29(1):180-185.

      ZHOU H J,SUN L M.Parameter optimization of damper with stiff-ness for stay cable[J].Chinese Quarterly of Mechanics,2008,29(1):180-185.(In Chinese)

      [10]WEN Y K,CHEN Z Q,HUA X G.Design and evaluation of tuned

      inerter-based dampers for the seismic control of MDOF structures[J].Journal of Structural Engineering,2017,143(4):04016207.

      [11]SARKAR S,F(xiàn)ITZGERALD B.Vibration control of spar-type float-ing offshore wind turbine towers using a tuned mass-damper-inerter [J].Structural Control and Health Monitoring,2020,27(1):e2471.

      [12]ZHANG Z L,LARSEN T G.Optimal calibration of the rotational

      inertia double tuned mass damper(RIDTMD) for rotating wind turbine blades [J].Journal of Sound and Vibration,2021,493:115827.

      [13]DE DOMENICO D,RICCIARDI G.An enhanced base isolation

      system equipped with optimal tuned mass damper inerter(TMDI)[J].Earthquake Engineering & Structural Dynamics,2018,47(5):1169-1192.

      [14]CAO L Y,LI C X.Tuned tandem mass dampers-inerters with

      broadband high effectiveness for structures under white noise base excitations[J].Structural Control and Health Monitoring,2019,26(4):e2319.

      [15]LAZAR I F,NEILD S A,WAGG D J.Vibration suppression of

      cables using tuned inerter dampers [J].Engineering Structures,2016,122:62-71.

      [16]SUN L M,HONG D X,CHEN L.Cables interconnected with tuned

      inerter damper for vibration mitigation[J].Engineering Structures,2017,151:57-67.

      [17]LU L,DUAN Y F,SPENCER B F J,et al.Inertial mass damper for

      mitigating cable vibration[J].Structural Control and Health Moni-toring,2017,24(10):e1986.

      [18]CU V H,HAN B,PHAM D H,et al.Free vibration and damping of

      a taut cable with an attached viscous mass damper[J].KSCE Jour-nal of Civil Engineering,2018,22(5):1792-1802.

      [19]SHI X,ZHU S Y.Dynamic characteristics of stay cables with in-

      erter dampers [J].Journal of Sound and Vibration,2018,423: 287-305.

      [20]李壽英,李振宇,陳政清.黏滯慣性質(zhì)量阻尼器對斜拉索減振效果的數(shù)值分析[J].中國公路學報,2019,32(10):230-236. LI S Y,LI Z Y,CHEN Z Q.Numerical analysis on the effective-ness of viscous inertial mass dampers on stay cables of cable-stayed bridges[J].China Journal of Highway and Transport,2019,32(10):230-236.(In Chinese)

      [21]WANG Z H,GAO H,F(xiàn)AN B Q,et al.Inertial mass damper for vi-bration control of cable with sag [J].Journal of Low Frequency Noise,Vibration and Active Control,2020,39(3):749-760.

      [22]SUN L M,SUN J J,NAGARAJAIAH S,et al.Inerter dampers with

      linear hysteretic damping for cable vibration control[J].Engineer-ing Structures,2021,247:113069.

      [23]陳政清,華旭剛,牛華偉,等.永磁電渦流阻尼新技術及其在土木工程中的應用[J].中國公路學報,2020,33(11):83-100.? CHEN Z Q,HUA X G,NIU H W,et al.Technological innovations in eddy current damping and its application in civil engineering[J].China Journal of Highway and Transport,2020,33(11):83-100.(In Chinese)

      [24]孫洪鑫,鄧軍軍,王修勇,等.電磁慣質(zhì)阻尼器在結(jié)構中位置優(yōu)化以及減 震分析[J].地 震 工 程與工 程 振動,2019,39(2):69-78.

      SUN H X,DENG J J,WANG X Y,et al.Position optimization and damping analysis of electromagnetic inerter dampers in structures[J].Earthquake Engineering and Engineering Dynamics,2019,39(2):69-78.(In Chinese)

      [25]李亞敏,沈文愛,朱宏平.電磁慣質(zhì)阻尼器對超長斜拉索的減振性能分析[J].土木工程與管理學報,2020,37(6):93-100. LI Y M,SHEN W A,ZHU H P.Vibration mitigation performance analysis of electromagnetic inertial mass damper for super-long stay cables [J].Journal of Civil Engineering and Management,2020,37(6):93-100.(In Chinese)

      [26]LI Y M,SHEN W A,ZHU H P.Vibration mitigation of stay cables

      using electromagnetic inertial mass dampers:full-scale experi-ment and analysis[J].Engineering Structures,2019,200:109693.

      [27]IEMURA H,PRADONO M H.Application of pseudo-negative

      stiffness control to the benchmark cable-stayed bridge[J].Journal of Structural Control,2003,10(3/4):187-203.

      [28]IEMURA H,IGARASHI A,PRADONO M H,et al.Negative stiff-ness friction damping for seismically isolated structures[J].Struc-tural Control and Health Monitoring,2006,13(2/3):775-791.

      [29]IEMURA H,PRADONO M H.Advances in the development of

      pseudo-negative-stiffness dampers for seismic response control[J].Structural Control and Health Monitoring,2009,16(7/8): 784-799.

      [30]LI H,LIU M,OU J P.Negative stiffness characteristics of active

      and semi-active control systems for stay cables[J].Structural Con-trol and Health Monitoring,2008,15(2):120-142.

      [31]OU J P,LI H.Analysis of capability for semi-active or passive

      damping systems to achieve the performance of active control sys-tems[J].Structural Control and Health Monitoring,2010,17(7): 778-794.

      [32]H?GSBERG J.The role of negative stiffness in semi-active con-trol of magneto-rheological dampers [J].Structural Control and Health Monitoring,2011,18(3):289-304.

      [33]WEBER F,BOSTON C,MA?LANKA M.An adaptive tuned mass

      damper based on the emulation of positive and negative stiffness with an MR damper[J].Smart Materials and Structures,2011,20(1):015012.

      [34]SARLIS A A,PASALA D T R,CONSTANTINOU M C,et al.

      Negative stiffness device for seismic protection of structures[J].Journal of Structural Engineering,2013,139(7):1124-1133.

      [35]PASALA D T R,SARLIS A A,NAGARAJAIAH S,et al.Adaptive

      negative stiffness:new structural modification approach for seismic protection[J].Journal of Structural Engineering,2013,139(7):1112-1123.

      [36]CHEN L,SUN L M,NAGARAJAIAH S.Cable with discrete nega-tive stiffness device and viscous damper:passive realization and general characteristics[J].Smart Structures and Systems,2015,15(3):627-643.

      [37]ZHOU P,LI H.Modeling and control performance of a negative

      stiffness damper for suppressing stay cable vibrations [J].Struc-tural Control and Health Monitoring,2016,23(4):764-782.

      [38]JOHNSON E A,CHRISTENSON R E,SPENCER JR B F.Semiac-tive damping of cables with sag[J].Computer-Aided Civil and In-frastructure Engineering,2003,18(2):132-146.

      [39]JOHNSON E A,BAKER G A,SPENCER B F J,et al.Semiactive

      damping of stay cables [J].Journal of Engineering Mechanics,2007,133(1):1-11.

      [40]NAKAMURA A,KASUGA A,ARAI H.The effects of mechanical

      dampers on stay cables with high-damping rubber[J].Construc-tion and Building Materials,1998,12(2/3):115-123.

      [41]FUJINO Y,HOANG N.Design formulas for damping of a stay

      cable with a damper[J].Journal of Structural Engineering,2008,134(2):269-278.

      [42]CU V H,HAN B.High-damping rubber damper for taut cable vi-bration reduction[J].Australian Journal of Structural Engineering,2015,16(4):283-291.

      [43]CU V H,HAN B,WANG F.Damping of a taut cable with two at-tached high damping rubber dampers[J].Structural Engineering and Mechanics,2015,55(6):1261-1278.

      [44]DI F D,SUN L M,CHEN L.Cable vibration control with internal

      and external dampers:theoretical analysis and field test validation[J].Smart Structures and Systems,2020,26:575-589.

      [45]DI F D,SUN L M,CHEN L.Suppression of vortex-induced high-mode vibrations of a cable-damper system by an additional damper[J].Engineering Structures,2021,242:112495.

      [46]HOANG N,F(xiàn)UJINO Y.Analytical study on bending effects in a

      stay cable with a damper[J].Journal f Engineering Mechanics,2007,133(11):1241-1246.

      [47]孫利民,狄方殿,陳林,等.斜拉索-雙阻尼器系統(tǒng)多模態(tài)減振理論與試驗研究[J].同濟大學學報(自然科學版),2021,49(7):975-985.

      SUN L M,DI F D,CHEN L,et al.Theoretical and experimental studies on multimode vibration mitigation of cable with two damp-ers[J].Journal of Tongji University(Natural Science),2021,49(7):975-985.(In Chinese)

      [48]WANG M,SUN F F,NAGARAJAIAH S,et? al.Frequency-

      dependency/independency analysis of damping magnification ef-fect provided by tuned inerter absorber and negative stiffness am-plifying damper considering soil-structure interaction [J].Me-chanical Systems and Signal Processing,2022,172:108965.

      鄂托克前旗| 镇赉县| 图们市| 重庆市| 黄浦区| 巢湖市| 枣庄市| 开阳县| 新巴尔虎右旗| 临安市| 石首市| 徐水县| 调兵山市| 烟台市| 如皋市| 左权县| 喀喇沁旗| 沂源县| 永春县| 上栗县| 沧源| 金川县| 娄烦县| 建始县| 长泰县| 班戈县| 伽师县| 嵊泗县| 灵武市| 密山市| 嘉定区| 泰州市| 肥乡县| 白山市| 道真| 普兰店市| 海晏县| 泗阳县| 安图县| 威海市| 都匀市|