• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      近距離煤層群綜放開采覆巖導(dǎo)水裂隙發(fā)育規(guī)律

      2022-05-30 10:48:04王紅勝張勝偉李斌李磊郭衛(wèi)彬肖雙雙
      關(guān)鍵詞:涌水量

      王紅勝 張勝偉 李斌 李磊 郭衛(wèi)彬 肖雙雙

      摘要:為提高彬長礦區(qū)含水層下伏近距離煤層群開采安全性,根據(jù)燕家河煤礦工程地質(zhì)條件,采用物理模擬、數(shù)值模擬和工業(yè)性試驗相結(jié)合的方法,分析了5-1,5-2,8煤覆巖采動導(dǎo)水裂隙帶發(fā)育規(guī)律,揭示不同開采方式覆巖采動導(dǎo)水裂隙帶發(fā)育特征,確定煤層群合理開采順序。首先,上行開采8,5-1,5-2煤層,物理模擬確定了覆巖采動導(dǎo)水裂隙帶發(fā)育高度分別為98.4,118.6,129.0 m,數(shù)值模擬確定了覆巖采動導(dǎo)水裂隙帶發(fā)育高度分別為93.6,118.4,129.2 m,上述分析表明導(dǎo)水裂隙帶未穿透直羅組含水層。其次,下行開采5-1,5-2,8煤層,數(shù)值模擬確定了覆巖采動導(dǎo)水裂隙帶發(fā)育高度分別為60.4,75.7,145.3 m,表明導(dǎo)水裂隙帶貫通直羅組含水層。綜上分析表明了下行開采覆巖采動導(dǎo)水裂隙帶發(fā)育高度較上行開采大,下行開采裂隙貫穿了直羅組含水層但未到達洛河組含水層。8105工作面涌水量實測表明8煤開采后覆巖采動導(dǎo)水裂隙帶未貫通直羅組含水層,保障了工作面安全回采。

      關(guān)鍵詞:近距離;煤層群;導(dǎo)水裂隙;開采方式;涌水量

      中圖分類號:TD 325文獻標志碼:A

      文章編號:1672-9315(2022)04-0629-08

      DOI:10.13800/j.cnki.xakjdxxb.2022.0402

      Development law of water-flowing fractures in overlying

      rock for fully mechanized caving mining

      in close-range coal seam groupsWANG Hongsheng ZHANG Shengwei LI Bin1,LI Lei

      GUO Weibin XIAO Shuangshuang

      (1.College of Energy Science and Engineering,Xian University of Science and Technology,Xian 710054,China;

      2.Institute of Rock Burst Prevention and Control,Xian University of Science and Technology,Xian 710054,China)Abstract:In order to improve the safety of close range coal seam mining under aquifer in Binchang mining area,physical simulation,numerical simulation and industrial test are based on the geological conditions of Yanjiahe coal mine, carried out to explore? the development law and development characteristics of water-flowing? fractured zone in overburden of 5-1,5-2and 8 coal seams with different mining methods and determine the reasonable mining sequence of coal seam groups.Firstly,the 5-1,5-2,and 8 coal seams were mined upward successively and the physical simulation analysis showed that the heights of the WFFZ were 98.4m,118.6m,and 129.0m respectively.Numerical simulation confirmed that the heights of the WFFZ were 93.6,118.4 m,and 129.2 m respectively and the? WFFZ does not penetrate through the aquifer of the Zhiluo Formation.Secondly,the 5-1,5-2,and 8 coal seams were mined downward successively.Numerical simulation analysis showed that the development heights of the the WFFZ were 60.4,75.7 m,and 145.3 m respectively,and the WFFZ penetrates through the aquifer of the Zhiluo Formation.In conclusion,the height of the WFFZ in downward mining is larger than that in upward mining and it runs through only the Zhiluo Formation aquifer,but it does not through? Luohe Formation aquifer.Actual measurement of water inflow on 8105 working face shows that the WFFZ of the overlying rock does not penetrate the aquifer of the Zhiluo Formation after the 8 coal mining and the safety of working face mining is guaranteed.

      Key words:close range;coal seam group;water-flowing fractures;mining method;water inflow

      0引言

      隨著工作面的推進,覆巖結(jié)構(gòu)受到破壞。覆巖的變形破壞會形成垮落帶和裂隙帶,這是良好的導(dǎo)水通道,容易造成礦井涌水量增加,甚至造成礦井突水等嚴重水災(zāi)。相較于單一煤層采動覆巖破壞及導(dǎo)水裂隙發(fā)育規(guī)律,近距離煤層群重復(fù)采動覆巖破壞及導(dǎo)水裂隙演化更為繁復(fù)。

      眾多學(xué)者對工作面覆巖破斷特征及導(dǎo)水裂隙帶發(fā)育規(guī)律展開了研究,其中文獻[1-3]分析模擬了隔水層覆巖破斷規(guī)律、導(dǎo)水裂隙發(fā)育的過程,文獻[4]運用FLAC3D數(shù)值模擬分析了海底礦山巖體穩(wěn)定性并給出礦山合理巖柱寬度。文獻[5]針對孟巴礦開采地質(zhì)條件,提出了上保下疏開采模式,定義了協(xié)調(diào)減損開采科學(xué)涵義。文獻[6-8]采用物理模擬和數(shù)值模擬,對覆巖破斷規(guī)律及裂隙演化機理展開了研究。文獻[9]通過物理實驗得出了不同基巖厚度采場實現(xiàn)保水開采的合理推進距。文獻[10]采用物理相似材料模擬及RFPA數(shù)值模擬方法,研究采后導(dǎo)水裂隙發(fā)育規(guī)律并提出限高協(xié)調(diào)開采理論。文獻[11-20]對導(dǎo)水裂隙帶發(fā)育規(guī)律展開了研究,針對導(dǎo)水裂隙帶發(fā)育高度提出了多種預(yù)測方法。文獻[21]通過理論分析,物理模擬等方法,對重復(fù)采動條件下的覆巖采動裂隙進行分析,得到裂隙動態(tài)循環(huán)變化過程及一次梯形,二次M型裂隙分布形態(tài)。文獻[22]運用理論分析,推導(dǎo)出了橢拋帶沿走向及傾向分布的理論模型。近距離煤層群二次采動條件下,覆巖變形破斷呈現(xiàn)典型“垮落帶疊加”形態(tài),所得巖層拉伸率計算公式為導(dǎo)高計算提供理論驗證[23-25]。綜上所述,多煤層重復(fù)采動覆巖破壞及導(dǎo)水裂隙發(fā)育規(guī)律與單煤層開采相比研究較少,應(yīng)對煤層群重復(fù)采動覆巖破斷及裂隙發(fā)育規(guī)律開展深入研究。

      燕家河煤礦可采煤層共3層,分別為5-1,5-2和8煤層。洛河組與直羅組中的含水巖組為該礦的直接充水含水層,該含水巖組具有產(chǎn)狀厚,含水量大,容易滲透的特點,對礦井煤層的安全開采造成嚴重威脅。因此,筆者針對燕家河煤礦工程地質(zhì)條件,開展了近距離煤層群上行開采及下行開采覆巖運移破壞、導(dǎo)水裂隙帶發(fā)育規(guī)律研究,為確定煤層群合理開采順序提供技術(shù)指導(dǎo)。

      1工程概況

      8105綜放面北部為8106采空區(qū),南部為8104采空區(qū),西部為8煤4條下山,東部為村莊保護煤柱,如圖1所示。

      8105綜放面煤層厚度為5.44~6.36 m,平均為5.90 m,煤層傾角為4°,工作面長200 m,走向長1 360 m。頂板主要成份為炭質(zhì)泥巖、砂質(zhì)泥巖及砂巖;鋁土泥巖、鋁粉砂巖為底板主要成份,部分含碳質(zhì)泥巖偽底。工作面直接充水含水層為直羅組、洛河組含水巖組,煤層群與含水層位置關(guān)系如圖2所示。工作面采用綜合機械化放頂煤采煤方法,采用全部垮落法管理頂板。

      2綜放開采覆巖運移及導(dǎo)水裂隙帶發(fā)育特征

      2.1模型設(shè)計

      基于8105工作面附近的X4鉆孔柱狀圖,采用2.0 m×1.5 m×0.2 m(長×高×寬)平面應(yīng)力模型試驗臺模擬工作面回采,模型幾何相似比α1=200,容重相似比αγ=1.67,時間相似比αt=14.14,強度相似比為αR=334。通過物理配重對模型覆巖進行加載。5-1煤層采高為3 m,5-2煤層采高為2 m,8煤層采高為7 m。模擬上行開采,開挖順序為8煤,5-1煤,5-2煤,開挖步距均為15 m,共開挖16次,開挖總長度為240 m。

      2.2實驗過程及分析

      2.2.18煤回采

      當工作面推至20 m時,由于覆巖壓力壓力,直接頂開始出現(xiàn)離層,離層裂隙隨頂板暴露面積增加迅速發(fā)育;當工作面推至37.5 m時,直接頂離層明顯發(fā)育,并伴隨有大面積垮落。當推至59 m時,基本頂破斷,工作面初次來壓,裂隙發(fā)育高度超過5-1煤頂板,形成離層區(qū)域。當推至79 m時,工作面第1次周期來壓,覆巖采動裂隙持續(xù)發(fā)育,采動裂隙明顯增高,采動邊界張拉裂隙發(fā)育加快,裂隙高度為37.5 m。

      當工作面推至240 m時,8煤開挖完成,覆巖垮落壓實后,采動裂隙高度為98.4 m,模型上部張拉裂隙呈逐漸閉合趨勢。上覆5-1煤層,5-2煤層頂板呈現(xiàn)均勻整體下沉。

      2.2.25-1煤回采

      5-1煤覆巖采動導(dǎo)水裂隙發(fā)育特征如圖4所示。隨著工作面推進,導(dǎo)水裂隙二次發(fā)育,此時開切眼側(cè)導(dǎo)水裂隙最為發(fā)育。當5-1煤層工作面推至240 m時,采動邊界處的覆巖采動導(dǎo)水裂隙發(fā)育最為明顯,永久導(dǎo)水裂隙在采動邊界處形成,中部離層裂隙及張拉裂隙由發(fā)育狀態(tài)呈現(xiàn)為閉合狀態(tài),采動裂隙發(fā)育至118.6 m。

      2.2.35-2煤回采

      5-2煤覆巖采動導(dǎo)水裂隙發(fā)育特征如圖5所示。5-2煤采動覆巖裂隙發(fā)育呈現(xiàn)區(qū)域特征,當工作面推至240 m時,5-2煤層回采結(jié)束,導(dǎo)水裂隙發(fā)育程度達到最大。與5-1煤覆巖采動裂隙相比,此時采動邊界處張拉裂隙、離層裂隙明顯增高。采空區(qū)中部離層裂隙及張拉裂隙呈壓實狀態(tài)。采動邊界處裂隙發(fā)育溝通上部采動裂隙形成導(dǎo)水裂隙,此時導(dǎo)水裂隙高度為129.0 m。隨著工作面推進,煤層頂板垮落,采動導(dǎo)水裂隙發(fā)育寬度逐漸增加,當工作面推至停采線,導(dǎo)水裂隙高度發(fā)育最大且到達直羅組含水層頂部,直羅組水不斷流失。

      3煤層群開采導(dǎo)水裂隙發(fā)育規(guī)律分析

      3.1數(shù)值模型設(shè)計

      根據(jù)燕家河煤礦X4鉆孔柱狀圖,采用非線性數(shù)值計算軟件UDEC模擬采動覆巖導(dǎo)水裂隙發(fā)育規(guī)律,將覆蓋層簡化為施加在數(shù)值模型上邊界的均布荷載,固定模型下邊界的垂直位移及左右邊界的水平位移。建立走向模型,模型尺寸為400 m×280 m,模型如圖6所示,開挖長度為240 m,確定Mohr-Coulumb模型為圍巖本構(gòu)關(guān)系。

      3.2上行開采導(dǎo)水裂隙發(fā)育規(guī)律分析

      3.2.18煤回采

      依次開挖8煤、5-1煤、5-2煤,8煤開挖240 m,采動導(dǎo)水裂隙發(fā)育特征如圖7所示。

      由圖7可得,8煤采后,受頂板垮落的層續(xù)性影響,覆巖采動導(dǎo)水裂隙也呈現(xiàn)出層續(xù)性發(fā)育,采動裂隙在工作面上方及采空區(qū)一側(cè)開切眼上方分布密集。工作面上部橫向裂隙離層區(qū)作為主要發(fā)育裂隙,工作面下部縱向裂隙作為主要發(fā)育裂隙,二者在中部未連接,導(dǎo)水裂隙發(fā)育高度為93.6 m。頂板在靠近開切眼側(cè)煤體的支護作用下,未呈現(xiàn)出下沉趨勢。此處采動裂隙分布密集,作用于巖層的拉伸剪切破壞致使巖層發(fā)生明顯破壞。

      3.2.25-1煤回采

      圖8為5-1煤開挖240 m時的導(dǎo)水裂隙發(fā)育特征,由圖可知,推至240 m時,與8煤回采結(jié)束時93.6 m的裂隙發(fā)育高度相比,有較為明顯的升高。受拉剪作用影響,工作面兩側(cè)采動裂隙發(fā)育高度及寬度均有明顯增加,此時采動裂隙發(fā)育到直羅組含水層內(nèi)且處于直羅組含水層底部。

      3.2.35-2煤回采

      圖9為5-2煤開挖240 m時導(dǎo)水裂隙發(fā)育特征,導(dǎo)水裂隙呈現(xiàn)出了從無到發(fā)育,再依次閉合的周期性的變化歷程。工作面前方5~20 m范圍內(nèi),導(dǎo)水裂隙發(fā)育明顯。工作面中部冒落巖石隨著工作面推進趨于壓實,導(dǎo)水裂隙在工作面后方60 m區(qū)域逐步閉合。

      上行采后覆巖導(dǎo)水裂隙分布特征如圖10所示。從圖可得,采動裂隙寬度及高度與工作面推進尺寸呈現(xiàn)正相關(guān)性。工作面推進度從0 m到120 m再到240 m,采動導(dǎo)水裂隙發(fā)育高度依次118.4,125.2,129.2 m。采動裂隙推進0 m時進入直羅組含水層,推進120 m時增高6.8 m,推至240 m時增高10.8 m。當工作面推至240 m時,裂隙未穿透直羅組含水層。

      3.3下行開采導(dǎo)水裂隙發(fā)育規(guī)律分析

      3.3.15-1煤回采

      為了分析不同開采方式下導(dǎo)水裂隙的發(fā)育規(guī)律,依次對5-1,5-2及8煤層開展了數(shù)值模擬分析。5-1煤層采后裂隙發(fā)育規(guī)律如圖11所示。

      5-1煤推至240 m開挖結(jié)束,此時裂隙呈現(xiàn)密集分布,且密集分布于采場之后10~20 m區(qū)間。從采場后20 m開始,采空區(qū)中間區(qū)域采動裂隙呈現(xiàn)出閉合趨勢,采場上部裂隙與下部裂隙未溝通,60.4 m為導(dǎo)水裂隙發(fā)育高度。

      3.3.25-2煤回采

      在5-1煤層采動覆巖壓實的基礎(chǔ)上,開挖5-2煤層。工作面開挖完成,覆巖采動導(dǎo)水裂隙發(fā)育特征如圖12所示。

      當5-2煤層推至240 m,中部裂隙壓實閉合。導(dǎo)水裂隙呈現(xiàn)區(qū)域分布特征,工作面上方25~40 m及后方10.0~30.0 m為裂隙主要分布區(qū)域,裂隙發(fā)育高度為75.7 m。

      3.3.38煤回采

      5-2煤采動覆巖壓實后,對8煤層進行數(shù)值模擬分析,覆巖采動導(dǎo)水裂隙發(fā)育特征如圖13所示。

      工作面中上部離層區(qū)呈集中分布,頂板的垮落以時空層續(xù)性向上發(fā)育。老頂呈規(guī)律性破斷,受拉剪作用,采動裂隙呈張開趨勢,且主要分布于工作面前方20~30 m,采動裂隙在橫向與縱向尺寸均有明顯增大。采動裂隙較5-2采后增高69.6 m,此時高度為145.3 m。

      下行采后覆巖采動導(dǎo)水裂隙分布特征如圖14所示。由圖14可知,隨著工作面的推進,覆巖采動導(dǎo)水裂隙呈馬鞍狀分布。5-1煤開采結(jié)束,裂隙發(fā)育未進入直羅組含水層,由于層間距及采厚影響,5-2煤采后,裂隙較5-1煤增高15.3 m,8煤采后,覆巖采動導(dǎo)水裂隙貫通直羅組含水層,未到達洛河組含水層。

      3.4綜合分析

      5-1,5-2,8煤下行開采過程中,下層煤重復(fù)采動會對裂隙帶的發(fā)育產(chǎn)生疊加效應(yīng),裂隙發(fā)育明顯高于上行開采。5-1煤覆巖受多次擾動,工作面兩側(cè)裂隙高于工作面中部,覆巖裂隙呈現(xiàn)出中部低兩邊高的分布特征,裂隙發(fā)育高度進一步增大。5-1,5-2煤層相距較近,5-2,8煤相距較遠,8 煤開采中5-2煤工作面中部及兩側(cè)覆巖形態(tài)與上覆5-1煤層開采呈現(xiàn)相似的裂隙分布特征相較而言,8煤層開采擾動程度逐漸增大。

      綜上可知,上行開采結(jié)束,導(dǎo)水裂隙進入直羅組含水層頂部但未穿透直羅組含水層。下行開采結(jié)束,導(dǎo)水裂隙發(fā)育到直羅組含水層上方且距離洛河組含水層54.7 m。下行開采覆巖采動導(dǎo)水裂隙較上行開采更為發(fā)育。

      4涌水量實測分析

      綜合以上分析,確定采用上行開采順序,即依次回采8105,5105,5205工作面。8105工作面回采期間,工作面涌水量隨推進距離關(guān)系如圖15所示。

      由圖15可知,工作面推進初期,涌水量呈增長趨勢,推至200 m時,工作面初次見方,頂板來壓強烈,覆巖采動導(dǎo)水裂隙逐步向工作面上方發(fā)育,涌水量增大。推至400 m時,工作面二次見方,頂板充分垮落,覆巖破斷,導(dǎo)水裂隙持續(xù)發(fā)育,涌水量達60 m3/h。推至600 m時,工作面三次見方,覆巖采動導(dǎo)水裂隙發(fā)育明顯增高,測站一與測站二涌水量均達到最大值分別為77 m3/h與80 m3/h。隨著工作面的推進,覆巖沉降趨于緩慢,中部壓實,導(dǎo)水裂隙由密集分布狀態(tài)隨之變?yōu)橹饾u閉合。推至1 000 m時,涌水量趨于穩(wěn)定,且穩(wěn)定于31~33 m3/h,保證了工作面安全推進。

      5結(jié)論

      1)物理模擬表明,上行開采8,5-1,5-2煤層,導(dǎo)水裂隙帶最終發(fā)育高度為129.0 m,發(fā)育至直羅組含水層頂部但未貫通直羅組含水層。

      2)數(shù)值模擬表明,上行開采8,5-1,5-2煤層,導(dǎo)水裂隙帶最終發(fā)育高度為129.2 m,未貫通直羅組含水層。下行開采5-1,5-2,8煤層,導(dǎo)水裂隙帶最終發(fā)育高度為145.3 m,貫通直羅組含水層但未到達洛河組含水層,距洛河組含水層54.7 m。下行開采較上行開采裂隙發(fā)育。

      3)8105工作面涌水量實測表明,回采初期由于頂板垮落不充分,導(dǎo)水裂隙帶高度發(fā)育較小,涌水量小。隨著工作面推進,受頂板來壓影響,導(dǎo)水裂隙帶呈現(xiàn)快速增高趨勢,涌水量增速加快。工作面涌水量在采動充分后呈現(xiàn)降低趨勢,最終趨于穩(wěn)定。采用上行開采保證了工作面安全回采。

      參考文獻(References):

      [1]姚邦化,周海峰,陳龍.重復(fù)采動下覆巖裂隙發(fā)育規(guī)律模擬研究[J].采礦與安全工程學(xué)報,2010,27(3):443-446.YAO Banghua,ZHOU Haifeng,CHEN Long.Numerical simulation about fracture development in over rocks under repeated mining[J].Journal of Mining & Safety Engineering,2010,27(3):443-446.

      [2]孔杰,高峰,蔣升,等.極近距離下分層開采導(dǎo)水裂隙帶發(fā)育高度研究[J].煤礦安全,2013,44(1):22-24.KONG Jie,GAO Feng,JIANG Sheng,et al.Study on water-flowing fractured zone development height in lower slicing mining of contiguous seams[J].Safety in coal Mines,2010,44(1):22-24.

      [3]黃慶享.淺埋煤層保水開采巖層控制研究[J].煤炭學(xué)報,2017,42(1):50-55.HUANG Qingxiang.Research on roof control of water conservation mining in shallow seam[J].Journal of China Coal Society,2017,42(1):50-55.

      [4]張超,宋衛(wèi)東,付建新,等.海底礦山開采擾動下巖體穩(wěn)定性分析[J].中國礦業(yè)大學(xué)學(xué)報,2020,49(6):1035-1045.ZHANG Chao,SONG Weidong,F(xiàn)U Jianxin,et al.Stability analysis of rock mass under disturbance of submarine mine[J].Journal of China University of Mining & Technology,2020,49(6):1035-1045.

      [5]余學(xué)義,毛旭魏,郭文彬.孟巴礦厚松散含水層下協(xié)調(diào)保水開采模式[J].煤炭學(xué)報,2019,44(3):739-746.YU Xueyi,MAO Xuwei,GUO Wenbin.Coordinated waterproof mining mode under thick loose sand stratum in Barapukuria coal mine[J].Journal of China Coal Society,2019,44(3):739-746.

      [6]袁瑞甫,杜鋒,宋常勝,等.綜放采場重復(fù)采動覆巖運移原位監(jiān)測與分析[J].采礦與安全工程學(xué)報,2018,35(4):717-724.YUAN Ruifu,DU Feng,SONG Changsheng,et al.In-site monitoring and analysis on overburden movements for multiple seam mining using longwall caving method[J].Journal of Mining & Safety Engineering,2018,35(4):717-724.

      [7]馬立強,張東升,董正筑.隔水層裂隙演變機理與過程研究[J].采礦與安全工程學(xué)報,2011,28(3):340-344.MA Liqiang,ZHANG Dongsheng,DONG Zheng zhu.Evolution mechanism and process of aquiclude fissures[J].Journal of Mining & Safety Engineering,2011,28(3):340-344.

      [8]王紅勝,李森林,李樹剛,等.近距離煤層群下伏厚煤層綜放開采下上行開采技術(shù)[J].西安科技大學(xué)學(xué)報,2016,35(5):622-627.WANG Hongsheng,LI Senlin,LI Shugang,et al.Ascending mining technology on condition of the underlying thick coal seam of the closed distance seam group with fully mechanized caving[J].Journal of Xian University of Science And Technology.2016,35(5):622-627.

      [9]張杰,侯忠杰.淺埋煤層導(dǎo)水裂隙發(fā)展規(guī)律物理模擬分析[J].礦山壓力與頂板管理,2004,21(4):32-34.ZHANG Jie,HOU Zhongjie.The simulation experiment analysis of the shallow coal seam water fluid cracks development law[J].Ground Pressure and Strata Control,2004,21(4):32-34.

      [10]余學(xué)義,王飛龍,趙兵朝.河流下限高協(xié)調(diào)開采方案[J].遼寧工程技術(shù)大學(xué)學(xué)報(自然科學(xué)版),2014,33(9):1183-1187.YU Xueyi,WANG Feilong,ZHAO Bingchao.Harmonic limited height under river mining project[J].Journal of Liaoning Technology University(Natural Science),2014,33(9):1183-1187.

      [11]趙高博,郭文兵,楊達明,等.綜放開采覆巖破壞模型及導(dǎo)水裂隙帶高度研究[J].中國安全科學(xué)學(xué)報,2017,27(11):144-149.ZHAO Gaobo,GUO Wenbing,YANG Daming,et al.Study on overburden failure models and height of water flowing fractured zone in fully mechanized caving mining[J].Chinese Safety Science Journal,2017,27(11):144-149.

      [12]李星亮,黃慶享.水體下特厚煤層綜放開采導(dǎo)水裂隙帶高度發(fā)育特征研究[J].采礦與安全工程學(xué)報,2022,39(1):54-61.LI Xingliang,HUANG Qingxiang.High development characteristics of water flowing fractured zone in fully mechanized top caving mining of extremely thick coal seam under water[J].Journal of Mining & Safety Engineering,2022,39(1):54-61.

      [13]QIANG W,SHEN J,LIU W,et al.A RBFNN-based method for the prediction of the developed height of a water-conductive fractured zone for fully mechanized mining with sublevel caving[J].Arabian Journal of Geosciences,2017,10(7):1-9.

      [14]LIU S L,LI W P,WANG Q Q.Height of the water-flowing fractured zone of the Jurassic coal seam in Northwestern China[J].Mine Water and the Environment,2018,37(2):312-321.

      [15]CHEN Y,ZHAO G Y,WANG S F,et al.A case study on the height of a water-flow fracture zone above undersea mining:Sanshaodan Gold Mine,China[J].Environmental Earth Sciences,2019,78(4):1-15.

      [16]GUO W B,ZOU Y F,HOU Q L.Fractured zone height of longwall mining and its effects on the overburden aquifers[J].International Journal of Mining Science and Technology,2012,22(5):603-606.

      [17]朱偉,滕永海,唐志新.潞安礦區(qū)綜采裂隙帶發(fā)育高度規(guī)律實測研究[J].煤炭科學(xué)技術(shù),2017,45(7):167-171.ZHU Wei,TENG Yonghai,TANG Zhixin.In-site study on development rule of fractured zone height by fully-mechanized mining in Luan Minefield[J].Coal Science and Technology,2017,45(7):167-171.

      [18]王曉振,許家林,韓紅凱,等.頂板導(dǎo)水裂隙高度隨采厚的臺階式發(fā)育特征[J].煤炭學(xué)報,2019,44(12):3740-3749.WANG Xiaozhen,XU Jialin,HAN Hongkai,et al.Stepped development characteristic of water flowing fracture height with variation of mining thickness[J] Journal of China Coal Society,2019,44(12):3740-3749.

      [19]張軍,王建鵬,楊文光.綜采工作面冒落高度模糊綜合預(yù)測模型研究[J].中國礦業(yè)大學(xué)學(xué)報,2014,43(3):426-431.ZHANG Jun,WANG Jianpeng,YANG Wenguang.Research on the fuzzy comprehensive predicting model for caved zone height of fully mechanized working face[J].Journal of China University of Mining & Technology,2014,43(3):426-431.

      [20]王曉振,許家林,韓紅凱,等.頂板導(dǎo)水裂隙高度隨采厚的臺階式發(fā)育特征[J].煤炭學(xué)報,2019,44(12):3740-3749.WANG Xiaozhen,XU Jialin,HAN Hongkai,et al.Stepped development characteristic of water flowing fracture height with variation of mining thickness[J] Journal of China Coal Society,2019,44(12):3740-3749.

      [21]張杰,何義峰,羅南洪,等.淺埋煤層群重復(fù)采動覆巖運移及裂隙演化規(guī)律研究[J].煤礦安全,2022,53(3):58-65.ZHANG Jie,HE Yifeng,LUO Nanhong,et al.Research on overburden movement and fracture evolution of repeated mining in shallow coal seams group[J].Safety in Coal Mines,2022,53(3):58-65.

      [22]李樹剛,丁洋,安朝峰,等.近距離煤層重復(fù)采動覆巖裂隙形態(tài)及其演化規(guī)律實驗研究[J].采礦與安全工程學(xué)報,2016,33(5):904-910.LI Shugang,DING Yang,AN Chaofeng,et al.Experimental research on the shape and dynamic evolution of repeated mining-induced fractures in short-distance coal seams[J].Journal of Mining & Safety Engineering,2016,33(5):904-910.

      [23]蘇學(xué)貴,宋選民,原鴻鵠,等.受上覆采空區(qū)影響的巷道群穩(wěn)定性控制研究[J].采礦與安全工程學(xué)報,2016,33(3):415-422.SU Xuegui,SONG Xuanmin,YUAN Honghu,et al.Stability control of the roadway group under the influence of overlying goaf[J].Journal of Mining & Safety Engineering,2016,33(3):415-422.

      [24]黃萬朋,高延法,王波,等.覆巖組合結(jié)構(gòu)下導(dǎo)水裂隙帶演化規(guī)律與發(fā)育高度分析[J].采礦與安全工程學(xué)報,2017,34(2):330-335.HUANG Wanpeng,GAO Yanfa,WANG Bo,et al.Evolution rule and development height of permeable fractured zone under combined-strata structure[J].Journal of Mining & Safety Engineering,2017,34(2):330-335.

      [25]楊國樞,王建樹.近距離煤層群二次采動覆巖結(jié)構(gòu)演化與礦壓規(guī)律[J].煤炭學(xué)報,2018,43(S2):353-358.YANG Guoshu,WANG Jianshu.Overburden structure evolution and pressure law of second mining in close-range coal seam group[J].Journal of China Coal Society,2018,43(S2):353-358.

      猜你喜歡
      涌水量
      某礦井水資源論證項目涌水量預(yù)測分析
      胡家河煤礦涌水特征及規(guī)律分析
      陜西煤炭(2022年4期)2022-07-23 01:50:40
      隆德煤礦下組煤開拓延深工程涌水量預(yù)測
      陜西煤炭(2021年5期)2021-09-23 13:53:20
      神南礦區(qū)張家峁礦井涌水量預(yù)測與分析
      廣西忻城某石材礦山涌水量預(yù)測研究
      石材(2020年6期)2020-08-24 08:26:50
      小浪底引黃工程干線1#隧洞涌水量預(yù)測
      重慶魚田堡煤礦礦井涌水量變化特征研究
      復(fù)雜地質(zhì)條件下隧道涌水量預(yù)測與結(jié)果分析
      黃石互通淺埋隧道涌水量預(yù)測分析
      模糊數(shù)學(xué)在預(yù)測大孤山鐵礦深部涌水量中的應(yīng)用
      扶沟县| 紫阳县| 徐汇区| 冕宁县| 泾源县| 云和县| 乌什县| 鄂尔多斯市| 日照市| 黎川县| 金湖县| 乾安县| 滨海县| 耿马| 广宗县| 铜川市| 南雄市| 霍城县| 海盐县| 贞丰县| 屯留县| 静海县| 洪洞县| 阿拉善右旗| 扎兰屯市| 临西县| 连江县| 定州市| 公安县| 象州县| 正安县| 呼和浩特市| 南丹县| 丹东市| 田林县| 五寨县| 罗田县| 莱阳市| 集贤县| 通江县| 克什克腾旗|