江鑫銘 李霄霞 趙春華
[摘要] 目的 探究低氧處理的人脂肪間充質(zhì)干細(xì)胞(hAMSCs)外泌體對(duì)巨噬細(xì)胞M1/M2分型的影響及其分子機(jī)制。方法 提取低氧處理的hAMSCs外泌體與M1巨噬細(xì)胞共培養(yǎng),采用流式細(xì)胞術(shù)檢測(cè)共培養(yǎng)后巨噬細(xì)胞表型M1/M2比例,實(shí)時(shí)熒光定量PCR(qPCR)檢測(cè)炎癥相關(guān)因子腫瘤壞死因子α(TNF-α)、白細(xì)胞介素1β(IL-1β)、一氧化氮合酶2(NOS-2)和白細(xì)胞介素12(IL-12)的表達(dá),Western blot檢測(cè)核因子κB(NF-κB)通路中P65和p-P65蛋白的表達(dá)。結(jié)果 加入低氧處理的hAMSCs外泌體后,巨噬細(xì)胞M1型比例下降,M2型比例增加(t=3.293、10.242,P<0.05),炎癥相關(guān)因子TNF-α、IL-1β、NOS-2以及IL-12的表達(dá)下調(diào)(F=10.820~222.942,P<0.05),p-P65/P65蛋白表達(dá)比值下降(F=375.634,P<0.05)。結(jié)論 低氧處理的hAMSCs外泌體能夠通過抑制NF-κB通路使巨噬細(xì)胞表型由M1型向M2型轉(zhuǎn)化。
[關(guān)鍵詞]間質(zhì)干細(xì)胞;脂肪組織;外泌體;細(xì)胞低氧;巨噬細(xì)胞;表型
[中圖分類號(hào)]R329.28[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2022)03-0373-06
doi:10.11712/jms.2096-5532.2022.58.056
EFFECT OF HYPOXIA-TREATED HUMAN ADIPOSE-DERIVED MESENCHYMAL STEM CELL-DERIVED EXOSOMES ON M1/M2 TYPING CHANGES OF MACROPHAGES AND ITS MOLECULAR MECHANISM
JIANG Xinming, LI Xiaoxia, ZHAO Chunhua
(School of Basic Medicine, Qingdao University, Qingdao 266071, China)
[ABSTRACT] Objective To explore the effect of exosomes derived from hypoxia-treated human adipose-derived mesenchymal stem cells (hAMSCs) on the M1/M2 typing changes of macrophages and its molecular mechanism.?Methods Hypoxia-treated hAMSC-derived exosomes were extracted and co-cultured with M1 macrophages. Flow cytometry was used to determine the M1/M2 ratio of the co-cultured macrophages. Quantitative real-time polymerase chain reaction was used to measure the expression of inflammation-related factors, i.e., tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), nitric oxide synthase-2 (NOS-2), and interleukin-12 (IL-12). Western blot was used to measure the protein expression of P65 and p-P65 in the nuclear factor-kappa B (NF-κB) pathway.?Results After addition of hypoxia-treated hAMSC-derived exosomes, the proportion of M1 macrophages was significantly reduced, while the proportion of M2 macrophages was significantly increased (t=3.293,10.242;P<0.05); inflammation-related factors TNF-α, IL-1β, NOS-2, and IL-12 had significantly down-regulated expression (F=10.820-222.942,P<0.05), and p-P65/P65 protein expression ratio was significantly reduced (F=375.634,P<0.05).?Conclusion Exosomes derived from hypoxia-treated hAMSCs can transform the phenotype of macrophages from M1 to M2 by inhibiting the NF-κB pathway.
[KEY WORDS] mesenchymal stem cells; adipose tissue; exosomes; cell hypoxia; macrophages; phenotype
間充質(zhì)干細(xì)胞(MSCs)是一類具有高度自我更新能力、多向分化潛能、低免疫原性及重要免疫調(diào)節(jié)能力的多能成體干細(xì)胞[1]。因較易獲取且易于分離提取,人脂肪間充質(zhì)干細(xì)胞(hAMSCs)的臨床研究較為廣泛。由于MSCs在體外培養(yǎng)時(shí),通常處于常
氧狀態(tài)中,即培養(yǎng)環(huán)境中氧氣的體積分?jǐn)?shù)為0.209左右,但是在自然生理?xiàng)l件下,體內(nèi)環(huán)境中氧氣的體積分?jǐn)?shù)只有0.02~0.08,甚至更低。所以,研究低氧狀態(tài)下的MSCs更有利于將來其臨床應(yīng)用。
外泌體是由細(xì)胞分泌的來自細(xì)胞內(nèi)多囊泡體的一種脂質(zhì)雙分子層組成的囊泡,是MSCs旁分泌作用和細(xì)胞間通訊的重要遞質(zhì)[2]。它們可以通過轉(zhuǎn)移分子貨物來影響受體細(xì)胞的功能,例如蛋白質(zhì)、微小RNA(miRNA)和mRNA等[3-4]。與干細(xì)胞相比,源自MSCs的外泌體具有很多優(yōu)點(diǎn),例如更容易通過組織屏障,能減少排斥反應(yīng)的風(fēng)險(xiǎn)[5]。
巨噬細(xì)胞作為人體內(nèi)重要的抗原呈遞細(xì)胞和免疫調(diào)節(jié)細(xì)胞,在多種疾病中發(fā)揮重要作用[6]。巨噬細(xì)胞根據(jù)其不同的激活方式和發(fā)揮免疫功能方式,分為M1型和M2型。M1型巨噬細(xì)胞為促炎性的,M2型巨噬細(xì)胞為抑炎性的[7]。MSCs能調(diào)節(jié)巨噬細(xì)胞由M1型向M2型轉(zhuǎn)化來減輕炎癥反應(yīng)以及加速損傷修復(fù)[8]。有研究表明,在硫酸葡聚糖誘導(dǎo)炎癥性腸病小鼠模型中,腹腔注射MSCs可誘導(dǎo) M2 型巨噬細(xì)胞產(chǎn)生從而明顯改善結(jié)腸炎癥[9];在腎動(dòng)脈狹窄損傷模型中,MSCs可以通過調(diào)控巨噬細(xì)胞表型改善腎功能[10]。本研究旨在探討低氧狀態(tài)下hAMSCs外泌體對(duì)巨噬細(xì)胞M1/M2分型的影響及其分子機(jī)制,為其將來應(yīng)用于臨床治療奠定基礎(chǔ)?,F(xiàn)將結(jié)果報(bào)告如下。
1材料與方法
1.1細(xì)胞和試劑
本實(shí)驗(yàn)所用的hAMSCs來自于吸脂術(shù)病人術(shù)后廢棄的脂肪組織(已經(jīng)征得病人的知情同意),經(jīng)提取原代細(xì)胞后擴(kuò)增所得。巨噬細(xì)胞RAW264.7為實(shí)驗(yàn)室自存細(xì)胞系。本實(shí)驗(yàn)所用的RPMI、高糖DMEM和DME/F12培養(yǎng)液均購自美國(guó)Hyclone公司;胎牛血清購自Ex-cell公司;青霉素、鏈霉素、總RNA提取試劑、胰蛋白酶、RIPA裂解液、抗體稀釋液均購自新賽美公司;膠原酶P購自美國(guó)Roche公司;脂多糖(LPS)購自美國(guó)Sigma公司;逆轉(zhuǎn)錄試劑盒、SYBR Green Master Mix試劑盒購自上海翊圣公司;PBS緩沖液購自biosharp公司;直標(biāo)抗體CD80、CD206購自美國(guó)BD公司。
1.2hAMSCs的分離培養(yǎng)
取廢棄脂肪組織用PBS沖洗后分裝至離心管中,以700 r/min離心3 min后吸棄PBS,加入2 g/L膠原酶P適量,置37 ℃恒溫?fù)u床中消化30 min,消化液經(jīng)過100目濾網(wǎng)過濾濾去未消化組織后加入足量PBS,以1 000 r/min離心5 min,棄上清,留底部細(xì)胞沉淀。重復(fù)2次后,將細(xì)胞沉淀重懸接種于含體積分?jǐn)?shù)0.10胎牛血清的DME/F12培養(yǎng)液中,置于37 ℃恒溫CO2培養(yǎng)箱內(nèi)培養(yǎng),每2 d換液1次,待細(xì)胞生長(zhǎng)至約80%融合時(shí)進(jìn)行傳代培養(yǎng)。
1.3hAMSCs外泌體的提取及鑒定
將第5代hAMSCs細(xì)胞接種于10 cm培養(yǎng)皿中,待細(xì)胞生長(zhǎng)至80%~90%融合時(shí),換無血清高糖DMEM培養(yǎng)液,將細(xì)胞置于低氧小室(氧氣的體積分?jǐn)?shù)為0.025)培養(yǎng)24 h,取上清液置于分子量為100 000規(guī)格的離心過濾器內(nèi),以3 500 r/min離心30 min,收集離心過濾器內(nèi)的外泌體。使用透射電子顯微鏡觀察并拍攝外泌體,使用納米顆粒追蹤分析儀進(jìn)行外泌體粒徑檢測(cè),采用Western blot方法檢測(cè)外泌體相關(guān)標(biāo)志蛋白表達(dá)。
1.4巨噬細(xì)胞M1/M2表型誘導(dǎo)以及流式細(xì)胞術(shù)鑒定
巨噬細(xì)胞正常生長(zhǎng)至80%左右融合時(shí)進(jìn)行傳代,接種于6孔板中,培養(yǎng)48 h后換無血清RPMI培養(yǎng)液。設(shè)置2孔為對(duì)照組(A組),2孔為單純LPS誘導(dǎo)組(B組),2孔為L(zhǎng)PS和hAMSCs外泌體共處理組(C組)。對(duì)照組無處理措施;單純LPS誘導(dǎo)組加入濃度為1 mg/L的LPS誘導(dǎo)12 h,以PBS洗去LPS,換無血清RPMI培養(yǎng)液繼續(xù)培養(yǎng)24 h;LPS和hAMSCs外泌體共處理組首先加入濃度為1 mg/L的LPS誘導(dǎo)12 h,以PBS洗去LPS后換無血清RPMI培養(yǎng)液,然后加入濃度為50 mg/L的hAMSCs外泌體繼續(xù)培養(yǎng)24 h。收集細(xì)胞、RNA和蛋白進(jìn)行鑒定。用胰蛋白酶消化后收集細(xì)胞,以PBS清洗、重懸,加入CD80直標(biāo)抗體4 ℃下孵育30 min,以PBS清洗2次,洗去未結(jié)合直標(biāo)抗體,用PBS重懸細(xì)胞;以PBS清洗、重懸,用40 g/L多聚甲醛固定3 min,以PBS洗去多聚甲醛后用體積分?jǐn)?shù)0.001的tritonX重懸細(xì)胞,同時(shí)加入CD206直標(biāo)抗體4 ℃孵育30 min,以PBS洗2次洗去殘留的tritonX和直標(biāo)抗體后用PBS重懸。采用流式細(xì)胞術(shù)檢測(cè)CD80和CD206在各組細(xì)胞的表達(dá)。實(shí)驗(yàn)重復(fù)3次。
1.5實(shí)時(shí)熒光定量PCR(qPCR)檢測(cè)巨噬細(xì)胞炎癥因子表達(dá)
按總RNA提取試劑說明書提取各組RNA,隨后按照逆轉(zhuǎn)錄試劑說明書進(jìn)行總RNA的逆轉(zhuǎn)錄。先進(jìn)行殘留組基因的去除,條件為42 ℃、2 min;然后進(jìn)行逆轉(zhuǎn)錄,條件為25 ℃、5 min,42 ℃、30 min,85 ℃、5 min。按照熒光定量所需的SYBR Green Master Mix試劑盒使用說明配制反應(yīng)體系,設(shè)置反應(yīng)條件:預(yù)變性95 ℃、5 min,變性95 ℃、10 s;退火/延伸60 ℃、30 s,循環(huán)39次。實(shí)驗(yàn)所用基因引物序列見表1。以GAPDH為內(nèi)參照基因,采用2-△△Ct方法計(jì)算腫瘤壞死因子α(TNF-α)、白細(xì)胞介素1β(IL-1β)、一氧化氮合酶2(NOS-2)和白細(xì)胞介素12(IL-12)的mRNA表達(dá)水平。每組樣本設(shè)置3個(gè)副孔,實(shí)驗(yàn)獨(dú)立重復(fù)3次。
1.6Western blot檢測(cè)核因子κB(NF-κB)通路相關(guān)蛋白表達(dá)
細(xì)胞加入RIPA裂解液裂解后提取細(xì)胞總蛋白,參照SDS-PAGE凝膠試劑盒操作說明書在制膠后采用恒壓電泳將所提取的蛋白樣品分離,然后將蛋白轉(zhuǎn)移到硝酸纖維素膜上。使用100 g/L的脫脂奶粉室溫封閉90 min,加入一抗(β-actin、P65、p-P65,以1∶1 000抗體稀釋液稀釋)4 ℃孵育過夜,加入羊抗兔二抗(以1∶5 000抗體稀釋液稀釋)室溫孵育60 min。使用超敏ECL發(fā)光檢測(cè)試劑盒進(jìn)行顯影。應(yīng)用Image J軟件分析蛋白電泳條帶灰度值,以β-actin作為內(nèi)參照蛋白,計(jì)算P65、p-P65蛋白的相對(duì)表達(dá)量。實(shí)驗(yàn)獨(dú)立重復(fù)3次。
1.7統(tǒng)計(jì)學(xué)分析
本實(shí)驗(yàn)所得數(shù)據(jù)結(jié)果使用GraphPad Prism 7和SPSS 26軟件進(jìn)行統(tǒng)計(jì)分析。符合正態(tài)分布、方差齊的計(jì)量數(shù)據(jù)以x±s表示,多組比較采用單因素方差分析,組間兩兩比較采用LSD法。以P<0.05為差異具有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1低氧處理的hAMSCs外泌體的鑒定
應(yīng)用超速離心法提取了低氧處理的hAMSCs的外泌體,在電鏡下觀察其形態(tài)為盤狀囊泡形(圖1A)。使用納米粒徑分析儀檢測(cè)外泌體直徑分布,結(jié)果顯示直徑118.5 nm的外泌體占比為95.8%(圖1B和表2)。Western blot方法檢測(cè)外泌體相關(guān)標(biāo)志蛋白的表達(dá),結(jié)果顯示,只能檢測(cè)到外泌體標(biāo)志蛋白TSG101的表達(dá),而沒有檢測(cè)到細(xì)胞質(zhì)特異性蛋白CALNEXIN的表達(dá)(圖1C),表明所提取的盤狀囊泡是外泌體而非胞質(zhì)部分。
2.2巨噬細(xì)胞炎癥因子表達(dá)情況和流式細(xì)胞術(shù)檢測(cè)細(xì)胞表型
qPCR檢測(cè)結(jié)果顯示,相較于對(duì)照組,加入LPS誘導(dǎo)后巨噬細(xì)胞炎癥因子TNF-α、IL-1β、NOS-2和IL-12的mRNA相對(duì)表達(dá)量顯著升高;而LPS和hAMSCs外泌體共處理組細(xì)胞與單純LPS誘導(dǎo)組細(xì)胞相比較,上述炎癥因子mRNA的相對(duì)表達(dá)量明顯下降,差異均有統(tǒng)計(jì)學(xué)意義(F=10.820~222.942,P<0.05)。表明經(jīng)低氧處理的hAMSCs外泌體可以降低M1型巨噬細(xì)胞炎癥因子的表達(dá)。見表3。
流式細(xì)胞術(shù)檢測(cè)結(jié)果顯示,與單純LPS誘導(dǎo)組相比,LPS和hAMSCs外泌體共處理組M1型巨噬細(xì)胞比例下降,M2型巨噬細(xì)胞比例增加(t=3.293、10.242,P<0.05)。見表4和圖2。
2.3巨噬細(xì)胞NF-κB信號(hào)通路蛋白的變化
本文Western blot檢測(cè)結(jié)果顯示,對(duì)照組、單純LPS誘導(dǎo)組、LPS和hAMSCs外泌體共處理組細(xì)胞的p-P65/P-65蛋白表達(dá)比值分別為0.602±0.032、1.560±0.035和1.251±0.059(n=3)。與單純LPS誘導(dǎo)組相比,LPS和hAMSCs外泌體共處理組細(xì)胞p-P65蛋白表達(dá)減少(圖3),p-P65/P-65蛋白表達(dá)比值下降,差異具有統(tǒng)計(jì)學(xué)意義(F=375.634,P<0.05)。表明M1巨噬細(xì)胞經(jīng)外泌體處理后其NF-κB信號(hào)通路受到抑制。
3討論
MSCs是一種多潛能干細(xì)胞,具有免疫調(diào)節(jié)特性(包括免疫抑制和免疫促進(jìn))和低免疫原性[11-13],已被應(yīng)用于多種治療中。但是MSCs的體內(nèi)治療的效果與體外實(shí)驗(yàn)結(jié)果存在差異,體內(nèi)治療效果通常不如體外實(shí)驗(yàn)結(jié)果[14-16],所以越來越多的研究選擇將MSCs進(jìn)行預(yù)處理以后再應(yīng)用于治療。本研究對(duì)MSCs進(jìn)行低氧處理以模擬其在體內(nèi)條件下所處的氣體環(huán)境。
有研究表明,MSCs在全身給藥后存活不到1周,但其治療效果可以持續(xù)產(chǎn)生,由此可見MSCs的免疫抑制功能至少部分是由旁分泌介導(dǎo)的,其中外泌體可能是主要的活性媒介[17-19]。外泌體是細(xì)胞間通訊中獨(dú)特的分泌性囊泡,是具有雙層膜結(jié)構(gòu)的膜囊,含有復(fù)雜而豐富的蛋白質(zhì)、核酸和其他活性分子[20],其功能涉及多個(gè)方面,包括免疫應(yīng)答、抗原提呈、細(xì)胞遷移、細(xì)胞分化和腫瘤侵襲等。與細(xì)胞相比,外泌體具有較低的免疫原性、更強(qiáng)的跨越生物屏障能力以及較少的安全問題等優(yōu)點(diǎn)[21-23]。MSCs是一種可以產(chǎn)生大量外泌體的細(xì)胞,其中骨髓MSCs來源的外泌體正在被探索作為MSCs的治療替代方案,因?yàn)樗鼈兛赡芘c細(xì)胞具有類似的治療效果[24]。
本研究旨在探討低氧處理后的MSCs外泌體對(duì)巨噬細(xì)胞表型的影響。正常MSCs外泌體對(duì)免疫細(xì)胞具有免疫抑制作用,如誘導(dǎo)促炎表型Th1細(xì)胞向Th2細(xì)胞轉(zhuǎn)變、減少促炎因子的分泌、增加抗炎因子的分泌等[25]。MSCs外泌體的免疫抑制作用與其生物活性分子如miRNA和蛋白質(zhì)有關(guān)[26]。已證實(shí),含有miR-142-3p、miR-223-3p和miR-126-3p的MSCs外泌體調(diào)控樹突狀細(xì)胞成熟,并在其他疾病模型中促進(jìn)其抗炎潛能[27]。巨噬細(xì)胞作為免疫細(xì)胞的一員,同樣受MSCs外泌體的免疫調(diào)控。巨噬細(xì)胞作為天然的免疫細(xì)胞,在免疫反應(yīng)和組織修復(fù)中起重要作用[7,28]。MSCs外泌體通過誘導(dǎo)抗炎M2巨噬細(xì)胞的產(chǎn)生和抑制促炎因子的表達(dá)來觸發(fā)免疫抑制效應(yīng)[29]。本研究結(jié)果顯示,低氧處理的hAMSCs外泌體同樣可以誘導(dǎo)巨噬細(xì)胞由促炎M1型向抑炎M2型轉(zhuǎn)化,并且可以使巨噬細(xì)胞炎性因子表達(dá)下降。本研究同時(shí)檢測(cè)了NF-κB信號(hào)通路的P65和p-P65蛋白的表達(dá)情況,結(jié)果顯示,與單純LPS誘導(dǎo)組相比,LPS和hAMSCs外泌體共處理組細(xì)胞p-P65/P65蛋白表達(dá)比值明顯降低,表明M1型巨噬細(xì)胞NF-κB信號(hào)通路受到抑制。提示MSCs外泌體對(duì)巨噬細(xì)胞表型的影響是通過抑制NF-κB信號(hào)通路實(shí)現(xiàn)的,但這一信號(hào)通路更精確的影響因子仍需進(jìn)一步的實(shí)驗(yàn)來探究。例如已有研究發(fā)現(xiàn),三結(jié)構(gòu)域蛋白(TRIM)家族是天然免疫系統(tǒng)不可或缺的組成成分,作為E3泛素連接酶的成員可以使視黃酸誘導(dǎo)基因蛋白Ⅰ(RIG-Ⅰ)降解[30-32],而RIG-Ⅰ是NF-κB信號(hào)通路的重要成員[33]。低氧處理的MSCs外泌體是否是通過RIG-Ⅰ抑制NF-κB信號(hào)通路仍需進(jìn)一步實(shí)驗(yàn)研究。
總而言之,MSCs具有抗炎和免疫調(diào)節(jié)能力,長(zhǎng)期以來科研人員一直致力于將MSCs應(yīng)用于多種免疫性疾病的治療。由于MSCs體內(nèi)外治療效果不同,因而在體外對(duì)MSCs進(jìn)行預(yù)處理以及使用有類似處理效果的MSCs外泌體進(jìn)行體外實(shí)驗(yàn)是近年來的研究熱點(diǎn)。完善與此相關(guān)的免疫調(diào)節(jié)機(jī)制信號(hào)通路的實(shí)驗(yàn)研究有利于MSCs將來的臨床應(yīng)用,從而提升臨床治療效果。
[參考文獻(xiàn)]
[1]MEHLER V J, BURNS C, MOORE M L. Concise review: exploring immunomodulatory features of mesenchymal stromal cells in humanized mouse models[J].? Stem Cells (Dayton, Ohio), 2019,37(3):298-305.
[2]HARRELL C R, JANKOVIC M G, FELLABAUM C, et al. Molecular mechanisms responsible for anti-inflammatory and immunosuppressive effects of mesenchymal stem cell-derived factors[J].? Advances in Experimental Medicine and Biology, 2019,1084:187-206.
[3]FERREIRA J R, TEIXEIRA G Q, SANTOS S G, et al. Me-senchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning[J].? Frontiers in Immunology, 2018,9:2837.
[4]WANG S Y, HONG Q, ZHANG C Y, et al. miRNAs in stem cell-derived extracellular vesicles for acute kidney injury treatment: comprehensive review of preclinical studies[J].? Stem Cell Research & Therapy, 2019,10(1):281.
[5]IYER S R, SCHEIBER A L, YAROWSKY P, et al. Exosomes isolated from platelet-rich plasma and mesenchymal stem cells promote recovery of function after muscle injury[J].? The American Journal of Sports Medicine, 2020,48(9):2277-2286.
[6]ZHANG X, LIU J G, WU L, et al. MicroRNAs of the miR-17-9 family maintain adipose tissue macrophage homeostasis by sustaining IL-10 expression[J].? eLife, 2020,9:e55676.
[7]MURRAY P J, ALLEN J E, BISWAS S K, et al. Macrophage activation and polarization: nomenclature and experimental guidelines[J].? Immunity, 2014,41(1):14-20.
[8]WANG J M, XIA J, HUANG R Q, et al. Mesenchymal stem cell-derived extracellular vesicles alter disease outcomes via endorsement of macrophage polarization[J].? Stem Cell Research & Therapy, 2020,11(1):424.
[9]SONG W J, LI Q, RYU M O, et al. TSG-6 released from intraperitoneally injected canine adipose tissue-derived mesenchymal stem cells ameliorate inflammatory bowel disease by inducing M2 macrophage switch in mice[J].? Stem Cell Research & Therapy, 2018,9(1):91.
[10]ZHAO Y, ZHU X Y, SONG T R, et al. Mesenchymal stem cells protect renal tubular cells via TSG-6 regulating macrophage function and phenotype switching[J].? American Journal of Physiology Renal Physiology, 2021,320(3):F454-F463.
[11]ABUMAREE M H, ABOMARAY F M, ALSHABIBI M A, et al. Immunomodulatory properties of human placental me-senchymal stem/stromal cells[J].? Placenta, 2017,59:87-95.
[12]SALAMI F, TAVASSOLI A, MEHRZAD J, et al. Immunomodulatory effects of mesenchymal stem cells on leukocytes with emphasis on neutrophils[J].? Immunobiology, 2018,223(12):786-791.
[13]RUSSELL K A, CHOW N H, DUKOFF D, et al. Characte-rization and immunomodulatory effects of canine adipose tissue- and bone marrow-derived mesenchymal stromal cells[J].? PLoS One, 2016,11(12):e0167442. doi:10.1371/journal.pone.0167442.
[14]HUANG Y, TAN F B, ZHUO Y, et al. Hypoxia-precondi-tioned olfactory mucosa mesenchymal stem cells abolish cerebral ischemia/reperfusion-induced pyroptosis and apoptotic death of microglial cells by activating HIF-1α[J].? Aging, 2020,12(11):10931-10950.
[15]MORA-BOZA A, GARC?A-FERN?NDEZ L, BARBOSA F A, et al. Glycerylphytate crosslinker as a potential osteoinductor of chitosan-based systems for guided bone regeneration[J]. Carbohydrate Polymers, 2020,241:116269.
[16]DING X L, HUANG Y, LI X M, et al. Three-dimensional silk fibroin scaffolds incorporated with graphene for bone regeneration[J].? Journal of Biomedical Materials Research Part A, 2021,109(4):515-523.
[17]KIM H Y, KUMAR H, JO M J, et al. Therapeutic efficacy-potentiated and diseased organ-targeting nanovesicles derived from mesenchymal stem cells for spinal cord injury treatment[J].? Nano Letters, 2018,18(8):4965-4975.
[18]SUN Y X, SHI H, YIN S Q, et al. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction[J].? ACS Nano, 2018,12(8):7613-7628.
[19]DENG H, SUN C, SUN Y X, et al. Lipid, protein, and MicroRNA composition within mesenchymal stem cell-derived exosomes[J].? Cellular Reprogramming, 2018,20(3):178-186.
[20]FANG S H, HE T M, JIANG J R, et al. Osteogenic effect of tsRNA-10277-loaded exosome derived from bone mesenchymal stem cells on steroid-induced osteonecrosis of the femoral head[J].? Drug Design, Development and Therapy, 2020,14:4579-4591.
[21]WILLIS G R, FERNANDEZ-GONZALEZ A, ANASTAS J, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation[J].? American Journal of Respiratory and Critical Care Medicine, 2018,197(1):104-116.
[22]NI Z H, ZHOU S R, LI S, et al. Exosomes: roles and therapeutic potential in osteoarthritis[J].? Bone Research, 2020,8:25.
[23]UMBAUGH D S, JAESCHKE H. Extracellular vesicles: Roles and applications in drug-induced liver injury[J].? Advances in Clinical Chemistry, 2021,102:63-125.
[24]WU J Y, KUANG L, CHEN C, et al. miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis[J].? Biomaterials, 2019,206:87-100.
[25]LO SICCO C, REVERBERI D, BALBI C, et al. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization[J].? Stem Cells Translational Medicine, 2017,6(3):1018-1028.
[26]GUO M T, YIN Z Y, CHEN F L, et al. Mesenchymal stem cell-derived exosome: a promising alternative in the therapy of Alzheimers disease[J].? Alzheimers Research & Therapy, 2020,12(1):109.
[27]REZA-ZALDIVAR E E, HERN?NDEZ-SAPI?NS M A, MINJAREZ B, et al. Potential effects of MSC-derived exosomes in neuroplasticity in Alzheimers disease[J].? Frontiers in Cellular Neuroscience, 2018,12:317.
[28]MURAILLE E, LEO O, MOSER M. TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism[J]?? Frontiers in Immunology, 2014,5:603.
[29]WILLIS G R, FERNANDEZ-GONZALEZ A, REIS M, et al. Macrophage immunomodulation: the gatekeeper for mesenchymal stem cell derived-exosomes in pulmonary arterial hypertension[J]??? International Journal of Molecular Sciences, 2018,19(9):E2534.
[30]ARIMOTO K I, TAKAHASHI H, HISHIKI T, et al. Negative regulation of the RIG-Ⅰ signaling by the ubiquitin ligase RNF125[J].? PNAS, 2007,104(18):7500-7505.
[31]WANG W D, JIANG M H, LIU S, et al. RNF122 suppresses antiviral type Ⅰ interferon production by targeting RIG-Ⅰ CARDs to mediate RIG-Ⅰ degradation[J].? Proceedings of the National Academy of Sciences of the United States of America, 2016,113(34):9581-9586.
[32]FIORENTINI F, ESPOSITO D, RITTINGER K. Does it take two to tango? RING domain self-association and activity in TRIM E3 ubiquitin ligases[J].? Biochemical Society Transactions, 2020,48(6):2615-2624.
[33]TOY R, KEENUM M C, PRADHAN P, et al. TLR7 and RIG-Ⅰ dual-adjuvant loaded nanoparticles drive broadened and synergistic responses in dendritic cells in vitro and generate unique cellular immune responses in influenza vaccination[J].? Journal of Controlled Release: Official Journal of the Controlled Release Society, 2021,330:866-877.
(本文編輯馬偉平)