• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CONTINUOUS SELECTIONS OF THE SET-VALUED METRIC GENERALIZED INVERSE IN 2-STRICTLY CONVEX BANACH SPACES*

    2022-06-25 02:13:34ShaoqiangSHANG商紹強

    Shaoqiang SHANG (商紹強)

    College of Mathematical Sciences,Harbin Engineering University,Harbin 150001,China

    E-mail:sqshang@163.com

    Abstract In this paper,we prove that if X is an almost convex and 2-strictly convex space,linear operator T:X→Y is bounded,N (T) is an approximative compact Chebyshev subspace of X and R (T) is a 3-Chebyshev hyperplane,then there exists a homogeneous selection Tσ of T? such that continuous points of Tσ and T? are dense on Y.

    Key words Continuous selection;3-Chebyshev hyperplane;set-valued metric generalized inverses;2-strictly convex space

    1 Introduction

    LetXdenote a real Banach space with unit ballB(X) and unit sphereS(X).LetX*denote the dual space of Banach spaceXand letAf={x∈S(X):f(x)=1=‖f‖}.Let int (A) denote the interior ofAand diam (A) denote the diameter ofA,whereAis a subset ofX.LetTdenote a linear bounded operator fromXintoY.LetN(T) andR(T) denote the null space and the range ofT,respectively.LetHbe a subspace ofX.Then the metric projection operatorPH:X→His defined by

    LetπHdenote a selection forPH.It is well known thatHis said to be proximinal ifPH(x)? wheneverx∈X.Moreover,subspace spaceHis said to be a Chebyshev subspace ifPH(x) is a singleton wheneverx∈X.Lety0∈Yandx0∈X.If

    then the pointx0is said to be a best approximative solution of the equationTx=y0(see[5]).Define the set

    Then the set-valued mappingT?:D(T?)→2Xis said to be the set-valued metric generalized inverse ofT(see[5]),where

    In 1974,Nashed and Votruba gave the definition of the set-valued metric generalized inverse and further pointed out that the continuous selection of the set-valued metric generalized inverse is worth studying (see[5]).In 2019,Shaoqiang Shang and Yunan Cui proved the following theorem:

    Theorem 1.1(See[8]) Let Banach spaceXandYbe approximatively compact,letT:X→Ybe bounded,letN(T) be Chebyshev and letR(T) be 2-Chebyshev.Then the following statements are equivalent:

    (1) the pointy0is a continuous point ofT?;

    (2) for everyz∈T?(y0),there exists a selectionTσofT?such thatTσ(y0)=zandy0is a continuous point ofTσ;

    (3) the functiong?is continuous at pointy0andTT?is lower semicontinuous at pointy0,where

    The continuous selection of the set-valued metric generalized inverse has great depth and breadth,hence continuous selection has attracted the attention of a large number of mathematicians.However,since the continuous selection of generalized inverses is a very difficult problem,the research results have relatively few in this field.One of the difficulties in the study of the set-valued metric generalized inverse is that the development of geometric theory in Banach space is incomplete,and this affects the study of the set-valued metric generalized inverse.In order to further study the generalized inverse,Shaoqiang Shang and Yunan Cui gave the definition of almost convex space.

    Definition 1.2(See[1]) A Banach spaceXis said to be almost convex iffn∈S(X*),‖xn‖→1,fn(xn)→1 and the diameter ofAfnis greater than zero for alln∈N,so dist (xn,Afn)→0 asn→∞.

    Using almost convex space,Shaoqiang Shang and Yunan Cui studied continuous selection of the generalized inverses and gave the following theorem:

    Theorem 1.3(See[1]) LetXbe an almost convex and 2-strictly convex space,letT:X→Ybe a bounded linear operator,letN(T) be an approximative compact Chebyshev subspace ofXand letR(T) be a 2-Chebyshev hyperplane.Then there exists a homogeneous selectionTσofT?such that continuous points ofTσandT?are dense onY.

    In Theorem 1.2,we require thatR(T) is a 2-Chebyshev hyperplane ofY.It is well known that 2-Chebyshev space is an extension of the Chebyshev space.Furthermore,we have the concept ofk-Chebyshev space.

    Definition 1.4(See[11]) A subspaceHis called ak-Chebyshev subspace ofXifPH(x)? and dim (span{x-PH(x)})≤kwheneverx∈X.Moreover,ifk-Chebyshev subspaceHis a hyperplane ofX,thenHis called ak-Chebyshev hyperplane ofX.

    It is well known thatMis a 1-Chebyshev subspace ofXif and only ifMis a Chebyshev subspace ofX.Moreover,it is well known that

    and (k+1)-Chebyshev subspace is not necessarilyk-Chebyshev subspace.Moreover,ifR(T) is a 3-Chebyshev hyperplane,then the method of proof of Theorem 1.3 is completely invalid.Naturally,therefore,we have to ask:ifR(T) is 3-Chebyshev,is Theorem 1.3 true?In this paper,we prove that ifXis an almost convex and 2-strictly convex space,linear operatorT:X→Yis bounded,N(T) is an approximative compact Chebyshev subspace ofXandR(T) is a 3-Chebyshev hyperplane,then there exists a homogeneous selectionTσofT?such that continuous points ofTσandT?are dense onY.Moreover,ifR(T) is a 2-Chebyshev hyperplane ofY,then (1) continuous points ofT?are dense onwhereG0={y∈Y:diamT?(y)=0}andT?are continuous on(2) there exists a homogeneous selectionTσofT?such that continuous points ofTσare dense onand are continuous onOther results of generalized inverses are shown in[2–4]and[6–8].We next give some definitions that we will use later.

    Definition 1.5(See[9]) A pointx0is called a continuous point ofG:X→2Yifx0is an upper semicontinuous point and is a lower semicontinuous point ofG.

    Definition 1.6(See[11]) A closed subspaceMofXis called approximatively compact if?Mhas a subsequence of convergence wheneverx∈Xand ‖x-yn‖→dist (x,M).

    Definition 1.7(See[12]) A Banach spaceXis called 2-strictly convex ifx1,x2,x3are linearly dependent whenever{x1,x2,x3}?S(X) and ‖x1+x2+x3‖=3.

    2 Main Theorems

    Theorem 2.1LetXbe an almost convex and 2-strictly convex space,letT:X→Ybe a bounded linear operator,letN(T) be an approximative compact Chebyshev subspace ofXand letR(T) be a 3-Chebyshev hyperplane.Then there exists a homogeneous selectionTσofT?such that continuous points ofTσandT?are dense onY.

    In order to get the theorem,we give some lemmas.

    Lemma 2.2Suppose thatXis a Banach space,thatAis a convex subset ofX,that[x1,x2]?Aand that[x1,x2]∩intA?.Then (x1,x2)?intA,where (x1,x2)={tx1+(1-t)x2:t∈(0,1)}and[x1,x2]={tx1+(1-t)x2:t∈[0,1]}.

    ProofIt is easy to see that the Lemma is true,which completes the proof. □

    Lemma 2.3Suppose thatXis 2-strictly convex,thatT:X→Yis a bounded linear operator,that subspaceN(T) ofXis a proximinal and thatR(T) is ak-Chebyshev subspace ofY.Then for anyy∈Y,T?(y) is a line segment.

    ProofSinceR(T) is ak-Chebyshev subspace ofY,we get thatPR (T)(y) is compact for everyy∈Y.Define the linear operatorwhere[x]∈X/N(T) andx∈X.SinceR(T) is ak-Chebyshev subspace ofY,we obtain thatR(T) is closed.SinceTis a bounded linear operator,by the definition ofwe obtain thatis bounded.Therefore,by the inverse operator Theorem,we get thatis bounded.Let?PR (T)(y) such that

    SincePR (T)(y) is compact,we can assume thatzn→z0asn→∞.Then there exists a pointu0∈Xsuch thatTu0=z0.Hence we get thatu0-PN (T)(u0)?T?(y).This implies thatT?(y)? for everyy∈Y.Suppose that there exists a pointy0∈Ysuch thatT?(y0) is not a line segment.Then there exists a set{x1,x2,x3}?T?(y0) such that co{x1,x2,x3}is not a line segment.Moreover,we may assume thatT?(y0)?S(X).Therefore,by the convexity ofT?(y0),we get that

    Therefore,by the Hahn-Banach Theorem and the above formula,there exists a functional∈S(X*) such that

    This implies that ‖x1+x2+x3‖=‖x1‖+‖x2‖+‖x3‖=3 andSinceXis 2-strictly convex,we get thatx1,x2,x3are linearly dependent.Hence we may assume thatx3=t1x1+t2x2.Then.This implies thatt1+t2=1.Hence we havex3∈{λx1+(1-λ)x2:λ∈R},which contradicts the fact co{x1,x2,x3}is not a line segment.Hence we get thatT?(y) is a line segment for anyy∈Y,which completes the proof. □

    We next will prove Theorem 2.1.

    ProofSinceN(T) is an approximative compact Chebyshev subspace ofX,we get thatN(T) is proximinal.SinceXis a 2-strictly convex space andR(T) is a 3-Chebyshev hyperplane,by Lemma 2.3,we get that for everyy∈Y,T?(y) is a line segment.We divide the proof into five steps.

    Step 1Let us first prove thatT?is upper semicontinuous onY.Suppose thatT?is not upper semicontinuous at pointy0.Then there exists an open setW?T?(y0) and two sequences,xn∈T?(yn) and ‖yn-y0‖→0 asn→∞.Define the bounded linear operatorwhere[x]∈X/N(T) andx∈X.Then we obtain thatis a bounded linear operator.SinceT?(y) is a line segment for everyy∈Y,letT?(yn)=[x(1,n),x(2,n)]for everyn∈N.SinceN(T) is an approximative compact Chebyshev subspace ofX,by the proof of Theorem 5 of[1],we get the following formulas:

    Moreover,by the proof of Theorem 5 of[1],we get a contradiction.Hence we get thatT?is upper semicontinuous onY.

    Step 2SinceR(T) is a 3-Chebyshev hyperplane ofY,we get thatR(T) is proximinal.Therefore,by the proof of Theorem 5 of[1],there exists a functionalf∈S(X*) such that

    for ally∈Y.Pick a pointy0/∈R(T).Then we get thatf(y0)0.SinceR(T) is a 3-Chebyshev hyperplane ofY,by the formulaPR (T)(y)=y-f(y)Af,we have

    Hence,if dim (spanAf)=1,then the setT?(y) is a singleton for everyy∈Y.SinceT?is upper semicontinuous onY,we get thatT?is continuous onY.Moreover,if dim (spanAf)=2,thenR(T) is a 2-Chebyshev hyperplane ofY.Therefore,by Theorem 5 of[1],we get that there exists a homogeneous selectionTσofT?such that continuous points ofTσandT?are dense onY.Hence we may assume,without loss of generality,that dim (spanAf)=3.Since dim (spanAf)=3,there exists a set{z1,z2,z3}?Afsuch thatz1,z2,z3are linearly independent.Therefore,by the formula dim (spanAf)=3,we get thatHf={t1z1+t2z2+t3z3∈X:t1+t2+t3=1}?Afis a hyperplane of three-dimensional spaceX0=span{z1,z2,z3}.Pick a point

    Then,byAf?Hf,we haveAf-z0?Hf-z0.SinceHfis a hyperplane of three-dimensional space,we obtain thatHf-z0=span{Af-z0}is a two-dimensional space.Sincez1,z2,z3are linearly independent,we get thatAf-z0is a convex subset ofHf-z0and that int (Af-z0)?.

    Step 3DefineG0={y∈Y:diamT?(y)=0}.Letv0∈YG0.Then there exists a real numberr∈(0,+∞) such thatB(v0,r)?YG0,whereB(v0,r)={z∈X:‖z-v0‖≤r}.Define the set

    We claim thatGkis closed for everyk∈N.In fact,let?Gkand ‖yi-z0‖→0 asi→∞.LetT?(yi)=[u(1,i),u(2,i)]for everyi∈N.Then,from the proof of Step 1,we may assume that dist(Tu(1,i),TT?(z0))→0 asi→∞.Hence we may assume that there exists a pointu(1,0)∈T?(z0) such thatTu(1,i)→Tu(1,0)∈TT?(z0).Sinceis a bounded linear operator,there exists a sequence?N(T) such that ‖u(1,i)+zi-u(1,0)‖→0 asi→∞.Sinceis a bounded linear operator,byu(1,i)∈T?(zi) andu(1,0)∈T?(z0),we get that ‖u(1,i)‖→‖u(1,0)‖ asi→∞.Therefore,by the formulau(1,0)∈T?(z0),we have

    SinceN(T) is an approximative compact Chebyshev subspace ofX,by the formula ‖u(1,i)+zi-u(1,0)‖→0,we may assume thatis a Cauchy sequence.Hence we obtain thatis a Cauchy sequence.Let ‖u(1,i)-u0(1,0)‖→0 asi→∞.Then,by the formula ‖u(1,i)‖→‖u(1,0)‖,we get that ‖u(1,0)‖=‖u0(1,0)‖.Moreover,byTu(1,i)→Tu(1,0)∈TT?(z0) and ‖u(1,i)-u0(1,0)‖→0,we haveTu0(1,0)=Tu(1,0)∈TT?(z0).Therefore,byu(1,0)∈T?(z0) and ‖u(1,0)‖=‖u0(1,0)‖,we haveu0(1,0)∈T?(z0).Similarly,we get thatu(2,i)→u0(2,0)∈T?(z0) asi→∞.This implies that

    Thenz0∈Gk.This implies thatGkis closed for allk∈N.Hence we get thatGk∩B(v0,r) is closed for allk∈N.Since closed ballB(v0,r) is a complete metric space,by the Baire Theorem of categories,there exists a natural numberk0such thatGk0∩B(v0,r) has an interior point ofGk0∩B(v0,r).Hence there exists a pointy0∈Gk0∩B(v0,r) and a real numberδ∈(0,+∞) such that the pointy0is an interior point ofGk0∩B(v0,r) andB(y0,δ)∩R(T)=?.Letε>0.Sincey0is an interior point ofGk0∩B(v0,r),there existsd∈(0,min{ε,δ/2}) such that

    Moreover,sinceB(y0,δ)∩R(T)=? andd∈(0,min{ε,δ/2}),we get thatB(y0,d)∩R(T)=?.

    Step 4We will prove that continuous points ofT?are dense onY.In fact,sinceT?is upper semicontinuous onY,we obtain thatT?is continuous at every point ofG0={y∈Y:diamT?(y)=0}.Therefore,by the proof shown in Step 3,we just need to prove thatT?has a lower semicontinuous point onB(y0,d).Moreover,by the proof shown in Step 2,we know that there exists a functionalf∈S(X*) such that

    SincePR (T)(y)=y-f(y)Affor everyy∈Y,we obtain that ifπR (T)(y)∈PR (T)(y),then there exists a unique pointz∈Afsuch thatπR (T)(y)=y-f(y)zwhenevery∈YR(T).SinceT?(y) is a line segment for everyy∈Y,we obtain thatTT?(y) is a line segment for everyy∈Y.Hence we define a set-valued mappingF:YR(T)→2Ysuch thatF(y)=[z1,z2]?Af,where

    for everyy∈YR(T).For clarity,we will next divide the proof into two cases.

    Case IFor anyr>0 there exists a pointy∈B(y0,r) such that (F(y)-z0)∩int (Af-z0)?,where the definition ofz0see formula (2.1).Hence we can assume that

    Moreover,from the proof shown in Step 3,we know that there exists a natural numberk0∈Nand a real numberd>0 such that

    Let ‖yn-y0‖→0 asn→∞.Then we may assume,without loss of generality,thatB(y0,d/2).LetT?(y0)=[x(1,0),x(2,0)]andT?(yn)=[x(1,n),x(2,n)]for everyn∈N.Then ‖x(1,0)-x(2,0)‖≥1/k0and ‖x(1,n)-x(2,n)‖≥1/k0for alln∈N.Moreover,from the proof shown in Step 1,we can assume,without loss of generality,that

    Pick a pointx0∈T?(y0).We next will prove that there exists a pointxn∈T?(yn) such that ‖xn-x0‖→0 asn→∞.SinceT?is upper semicontinuous onY,we can assume,without loss of generality,thatx(1,n)→u(1,0)∈T?(y0) andx(2,n)→u(2,0)∈T?(y0) asn→∞.Then we get thatu(1,0)u(2,0).We claim thatTu(1,0)-Tu(2,0)0.Otherwise,we would haveu(2,0)-u(1,0)∈N(T).Hence 0∈PN (T)(u(1,0)) andu(1,0)-u(2,0)∈PN (T)(u(1,0)).SinceN(T) is an approximative compact Chebyshev subspace ofX,we get thatu(2,0)-u(1,0)=0,which is a contradiction.Therefore,by the formulasT?(y0)=[x(1,0),x(2,0)]andTu(1,0)-Tu(2,0)0,we get thatTx(1,0)-Tx(2,0)0.Moreover,by the formulaPR (T)(y)=y-f(y)Af,there exist two pointsz(1,0)∈Afandz(2,0)∈Afsuch that

    Moreover,there exist two pointsz(1,n)∈Afandz(2,n)∈Afsuch that

    for alln∈N.SinceTx(1,n)→Tu(1,0) andTx(2,n)→Tu(2,0),by formulas (2.2) and (2.3),we obtain that ‖z(1,n)-z(1,0)‖→0 and ‖z(2,n)-z(2,0)‖→0 asn→∞.Moreover,by the formulasT?(y0)=[x(1,0),x(2,0)]andu(1,0)-u(2,0)0,we get that

    SinceTu(1,0)-Tu(2,0)0,byTx(1,n)→Tu(1,0) andTx(2,n)→Tu(2,0),we can assume thatandx0∈[x(1,0),x(2,0)],by formula (2.4),we get that

    Moreover,by the formulasPR (T)(y0)=y0-f(y0)AfandTx0∈PR (T)(y0),there exists a pointv0∈Afsuch thatTx0=y0-f(y0)v0.Therefore,by formulas (2.2) and (2.5),we have

    Moreover,by the definition ofF,we havev0∈F(y0).Hence there existst0∈Rsuch that

    Therefore,by the formulas ‖z(1,n)-z(1,0)‖→0 and ‖z(2,n)-z(2,0)‖→0,we obtain that ‖vn-v0‖→0 asn→∞,where

    Then we get thatvn-z0∈span{Af-z0}.Sincez(1,0)-z0∈Af-z0,z(2,0)-z0∈Af-z0,z(1,n)-z0∈Af-z0andz(2,n)-z0∈Af-z0,by the convexity ofAf-z0,we have the formulas

    for alln∈N.Since (F(y0)-z0)∩int (Af-z0)?,by Lemma 2.2,we get thath0is an interior point ofAf-z0in two dimensional space span{Af-z0}.Hence there exists a real numberη∈(0,+∞) such that

    Moreover,since ‖z(1,n)-z(1,0)‖→0 and ‖z(2,n)-z(2,0)‖→0,by the above formula,we can assume that

    This implies thathnis an interior point ofAf-z0in two dimensional Banach space span{Afz0}.Hence the origin point is an interior point ofAf-z0-hnin two dimensional Banach space span{Af-z0}.Hence,for anyn∈N,we define the Minkowski functional

    in two dimensional Banach space span{Af-z0}.Therefore,by formula (2.7) and the definition ofμKn,we have the formula

    whenevery∈span{Af-z0}.Letm=1/η.Then we get that|μKn(y)|≤m‖y‖ for everyn∈N.Therefore,byv0-z0∈Af-z0,we obtain thatv0-z0-hn∈Af-z0-hn.This implies thatμKn(v0-z0-hn)≤1 for alln∈N.Sincevn-z0∈span{Af-z0}andhn∈span{Af-z0},we obtain thatvn-z0-hn∈span{Af-z0}.Therefore,by the formulas|μKn(y)|≤m‖y‖ andvn-z0-hn∈span{Af-z0},we have the inequalities

    for alln∈N.Therefore,by the formulasμKn(v0-z0-hn)≤1 and ‖vn-v0‖→0,we have

    Therefore,by the above inequality,there exists a sequence?[0,1]such that

    Moreover,it is easy to see that

    for alln∈N.Sinceun∈Af-z0-hn,by the above formula,we have the formula

    for alln∈N.Sincevn-z0=t0(z(1,n)-z0)+(1-t0)(z(2,n)-z0) andhn=(z(1,n)-z0)/2+(z(2,n)-z0)/2,by the above formula,we have the formula

    for alln∈N.Therefore,by the above formula,we have the formula

    for alln∈N.Therefore,by the formulasλn→1 and ‖vn-v0‖→0,we get that ‖wn-v0‖→0 asn→∞.Therefore,by the formulas ‖yn-y0‖→0 and ‖wn-v0‖→0,we have

    Moreover,by the formulaPR (T)(yn)=yn-f(yn)Af,we obtain thatyn-f(yn)wn∈PR (T)(yn) for alln∈N.Therefore,by formulas (2.3) and (2.8),we have

    for alln∈N.SinceT?(yn)=[x(1,n),x(2,n)]for alln∈N,it is easy to see that (x(1,n)+x(2,n))/2∈T?(yn) for alln∈N.Therefore,by the formulasx(1,n)∈T?(yn) andx(2,n)∈T?(yn),we have the formula

    for alln∈N.Therefore,by the Hahn-Banach Theorem,there exists a functionalfn∈S(X*) such that

    for alln∈N.Therefore,by the formulasx(1,n)→u(1,0)∈T?(y0) andx(2,n)→u(2,0)∈T?(y0),we have the following formula:

    Therefore,by the above formula,we have the formula

    Moreover,we can assume thatT?(y0)?S(X).Therefore,by the formulasu(1,0)-u(2,0)0 andx0∈{tu(1,0)+(1-t)u(2,0):t∈R},we get thatfn(x0)→1 asn→∞.Moreover,by the formulaT?(y0)?S(X),we get that ‖x(1,n)‖→‖u(1,0)‖=1 asn→∞.SinceXis an almost convex and 2-strictly convex space,we get that

    Therefore,by the formula ‖x(1,n)‖Afn?{tx(1,n)+(1-t)x(2,n):t∈R},there exists a point

    such thatxn→x0and ‖xn‖=‖x(1,n)‖ for everyn∈N.Hence,ifTxn∈PR (T)(yn) for everyn∈N,we obtain thatxn∈T?(yn).Otherwise,we can assume thatTxnPR (T)(yn) for everyn∈N.Then,by formula (2.10) and the definition ofyn-f(yn)wn,there exist two sequences?Rsuch thatxn=λnx(1,n)+(1-λn)x(2,n) and

    for everyn∈N.Therefore,by the formula ‖xn-x0‖→0,we get that ‖Txn-Tx0‖→0 asn→∞.Therefore,by formula (2.9) and ‖yn-f(yn)wn-Tx0‖→0,we get that

    Therefore,by formula liminfn→∞‖Tx(1,n)-Tx(2,n)‖>0,we haveλn-tn→0 asn→∞.Moreover,by the formulasTxnPR (T)(yn) andyn-f(yn)wn∈PR (T)(yn),we may assume thatyn-f(yn)wn∈[Txn,Tx(1,n)]for everyn∈N.Define the sequence{en}∞n=1?X,whereen=tnx(1,n)+(1-tn)x(2,n) for alln∈N.Then,by the formulasλn-tn→0 andxn=λnx(1,n)+(1-λn)x(2,n),we have ‖en-xn‖→0 asn→∞.This implies that ‖en-x0‖→0 asn→∞.Therefore,byTen=yn-f(yn)wn∈PR (T)(yn) andyn-f(yn)wn∈[Txn,Tx(1,n)],we get thaten∈[xn,x(1,n)]for alln∈N.Then,byTen∈PR (T)(yn),we haveen∈T?(yn) for alln∈N.

    Case IIThere exists a real numberr>0 such that (F(y)-z0)∩int (Af-z0)=? for anyy∈B(y0,r).Pick a pointx0∈T?(y0) and letT?(yn)=[x(1,n),x(2,n)]and ‖yn-y0‖→0 asn→∞.Then,from the previous proof,we have that

    Moreover,by Step 1,we get thatT?is upper semicontinuous onY.Hence we may assume,without loss of generality,thatx(1,n)→u(1,0)∈T?(y0) andx(2,n)→u(2,0)∈T?(y0).Moreover,by the previous proof,we obtain thatTu(1,0)Tu(2,0).Therefore,by the formulaPR (T)(y)=y-f(y)Af,there exist two pointsz(1,0)∈Afandz(2,0)∈Afsuch that

    Moreover,there exist two pointsz(1,n)∈Afandz(2,n)∈Afsuch that

    for everyn∈N.Hencez(1,n)→z(1,0) andz(2,n)→z(2,0) asn→∞.Thenz(1,n)-z0→z(1,0)-z0andz(2,n)-z0→z(2,0)-z0asn→∞.Since there exists a real numberr>0 such that (F(y)-z0)∩int (Af-z0)=? for anyy∈B(y0,r),by Lemma 2.2,we get that

    Sincez(1,n)-z0∈Af-z0andz(2,n)-z0∈Af-z0,we get thatu(n)∈Af-z0andw(n)∈Af-z0.Therefore,by formula (2.14),we get thatu(n)int (Af-z0) andw(n)int (Af-z0) for everyn∈N.Pick a pointv(0)∈int (Af-z0).Then,by the formulau(0)int (Af-z0),we get thatv(1)=2u(0)-v(0)Af-z0.In fact,suppose thatv(1)=2u(0)-v(0)∈Af-z0.Then,by Lemma 2.2,we have that

    which is a contradiction.Since span{Af-z0}is a two dimensional space,it is easy to see thatu(0) andw(0) are two interior points ofG,where

    Therefore,by formulas ‖u(n)-u(0)‖→0 and ‖w(n)-w(0)‖→0,we can assume thatu(n)∈Gandw(n)∈G.Sincev(0)∈int (Af-z0) andv(1)=2u(0)-v(0)Af-z0,by formula (2.13),we have the following formula:

    Sinceu(n)∈Af-z0,u(n)∈G,w(n)∈Af-z0andw(n)∈G,by the definition ofGand the above formula,it is easy to see that

    for alln∈N.Moreover,sincev(0)∈int (Af-z0),by Lemma 2.2 and formula (2.13),we have

    Therefore,by the formulasu(n)int (Af-z0) andw(n)int (Af-z0),we have

    for alln∈N.Moreover,sinceTu(1,0)Tu(2,0),by the definitions ofu(0) andw(0),we get that ‖u(0)-w(0)‖>0.Therefore,by the formulas ‖u(n)-u(0)‖→0 and ‖w(n)-w(0)‖→0,we can assume that 2‖u(n)-w(n)‖>‖u(0)-w(0)‖>0 for alln∈N.Therefore,by formula (2.15),we have the equation

    for alln∈N.Therefore,by the above equation,we get that

    for alln∈N.SinceTu(1,0)-Tu(2,0)0,by the formulasTx0∈TT?(y0)?PR (T)(y0) and ‖yn-y0‖→0,there exists a pointw0∈Afsuch that

    Therefore,by the above formula and formula (2.11),there existst0∈Rsuch that

    Therefore,by the formulay0/∈R(T)=N(f),we havew0=t0z(1,0)+(1-t0)z(2,0).Therefore,by formula (2.16),there exists a sequence?Rsuch thatw0=tnz(1,n)+(1-tn)z(2,n).Therefore,by formula (2.12),we have the formula

    for everyn∈N.Repeating the proof used in Case I,by formulas (2.11)-(2.12) and (2.16),there exists a pointxn∈T?(yn) such that ‖xn-x0‖→0 asn→∞.

    Therefore,by Cases I and II,we get that lower-semicontinuous points ofT?are dense onY.SinceT?is upper semicontinuous onY,we get that continuous points ofT?are dense onY.

    Step 5LetT?(y)=[x(y,1),x(y,2)]for ally∈Y.Then we define a mappingTσ:Y→X,where

    Therefore,by the proof of Theorem 5 of[1],we get that continuous points ofTσare dense onY.We next will prove thatTσ:Y→Xis homogeneous.In fact,letv∈Yandλ∈R.Pick a pointu∈T?(v).Then

    SincePR (T)(λv)=λPR (T)(v),by the above formula,we get that

    HenceλT?(v)?T?(λv).Similarly,we get thatT?(λv)?λT?(v).Hence we get thatλT?(y)=T?(λy) for everyλ∈Randy∈Y.Therefore,by the definition ofTσandλT?(y)=T?(λy),we get thatTσ:Y→Xis a homogeneous mapping,which completes the proof. □

    Under the conditions of Theorem 2.1,it is easy to see that the setG0={y∈Y:diamT?(y)=0}is nonempty.In general,the setG={y∈Y:diamT?(y)>0}is nonempty.To illustrate this problem,we give an example.

    Example 2.4LetX=(R2,‖·‖0) andY=(R3,‖·‖1),where ‖(x,y)‖0=max{|x|,|y|}and ‖(x,y,z)‖1=max{|x|,|y|,|z|}.LetT:X→Ybe a bounded linear operator,whereT(x,y)=(x,y,0).ThenXis 2-strictly convex.Moreover,by Theorem 4 of[1],we get thatXis an almost convex space.It is easy to see thatR(T) is a 3-Chebyshev hyperplane ofY.Pick a point (0,3,1)∈Y.Then it is easy to see that

    Then diamT?(0,3,1)>0.Moreover,it is easy to see that there exists a neighbourhoodUof point (0,3,1) such that diamT?(x,y,z)>0 whenevery∈U.

    Definition 2.5(See[11]) A Banach spaceXis said to be uniformly convex if ‖xn-yn‖→0 wheneverand ‖xn+yn‖→2.

    Corollary 2.6LetXibe a product space of uniformly convex spaces,letT:X→Ybe bounded,letN(T) be Chebyshev and let hyperplaneR(T) be 3-Chebyshev.Then there exists a homogeneous selectionTσofT?such that continuous points ofTσandT?are dense onY,where ‖(x1,x2)‖=‖x1‖+‖x2‖.

    ProofBy Theorem 3 of[1],we obtain thatXis an almost convex and 2-strictly convex space.Moreover,sinceX1andX2are uniformly convex,we get that every closed subspace ofXis approximatively compact.Therefore,by Theorem 2.1,we get that there exists a homogeneous selectionTσofT?such that continuous points ofTσandT?are dense onY.This completes the proof. □

    Theorem 2.7LetXbe an almost convex and 2-strictly convex space,letT:X→Ybe a bounded linear operator,letN(T) be an approximative compact Chebyshev subspace ofXand letR(T) be a 2-Chebyshev hyperplane.Then,

    (1) continuous points ofT?are dense onandT?is continuous onwhereG0={y∈Y:diamT?(y)=0};

    (2) there exists a homogeneous selectionTσofT?such that continuous points ofTσare dense onandTσis continuous on

    ProofBy Theorem 2.1,we know thatT?is upper semicontinuous onY.SinceG0={y∈Y:diamT?(y)=0},we get that continuous points ofT?are dense onDefine the bounded linear operatorwhere[x]∈X/N(T) andx∈X.Pick a pointy0∈Then there exists a real numberr∈(0,+∞) such thatis not a singleton for everyy∈B(y0,r).Therefore,by the proof of Theorem 5 of[1],we get thatT?is continuous at pointy0.This implies thatT?are continuous onLetT?(y)=[x(y,1),x(y,2)]for ally∈Y.Pick a selectionTσofT?such that

    ThenTσis homogeneous.Moreover,by the proof of Theorem 5 of[1],we obtain that continuous points ofTσare dense onandTσis continuous onThis completes the proof. □

    性欧美人与动物交配| 亚洲乱码一区二区免费版| 97人妻精品一区二区三区麻豆| 亚洲,欧美精品.| 男女视频在线观看网站免费| 亚洲人成网站在线播| 国产伦在线观看视频一区| 不卡一级毛片| 99在线人妻在线中文字幕| 一本久久中文字幕| 高清在线国产一区| 女同久久另类99精品国产91| 国产精品久久久久久精品电影| 我要搜黄色片| 国产v大片淫在线免费观看| 国产精品电影一区二区三区| 亚洲成人久久性| 国产精品,欧美在线| 国产高清有码在线观看视频| 亚洲avbb在线观看| 欧美精品啪啪一区二区三区| 亚洲片人在线观看| 少妇的逼好多水| 毛片女人毛片| 亚洲在线自拍视频| 久久热精品热| 国产一区二区亚洲精品在线观看| bbb黄色大片| 日韩大尺度精品在线看网址| 亚洲精品在线美女| 亚洲精品粉嫩美女一区| 精品无人区乱码1区二区| 国产精品电影一区二区三区| 男人舔奶头视频| 有码 亚洲区| 99在线视频只有这里精品首页| 老女人水多毛片| 精品不卡国产一区二区三区| 美女高潮喷水抽搐中文字幕| 麻豆成人午夜福利视频| 亚洲在线自拍视频| 国产乱人视频| 美女xxoo啪啪120秒动态图 | 一区二区三区激情视频| 亚洲18禁久久av| 亚洲成av人片免费观看| 99精品在免费线老司机午夜| 99国产极品粉嫩在线观看| 国产精品爽爽va在线观看网站| 精品一区二区三区视频在线| 人人妻人人看人人澡| 91午夜精品亚洲一区二区三区 | 亚洲国产色片| 高潮久久久久久久久久久不卡| 成人特级黄色片久久久久久久| 国产精品一及| 久久久国产成人免费| 国内精品久久久久精免费| 精品一区二区三区视频在线观看免费| 九色成人免费人妻av| 久久性视频一级片| 真人做人爱边吃奶动态| 最好的美女福利视频网| 婷婷色综合大香蕉| 听说在线观看完整版免费高清| 国产中年淑女户外野战色| 在线国产一区二区在线| 亚洲乱码一区二区免费版| 国内毛片毛片毛片毛片毛片| 蜜桃久久精品国产亚洲av| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利18| 日韩欧美免费精品| 亚洲不卡免费看| 少妇高潮的动态图| 亚洲av美国av| 热99re8久久精品国产| 成人精品一区二区免费| 日韩欧美国产一区二区入口| 舔av片在线| 久久久久性生活片| 伦理电影大哥的女人| 最新中文字幕久久久久| 嫩草影院入口| 99精品在免费线老司机午夜| 日韩成人在线观看一区二区三区| 日本 欧美在线| 尤物成人国产欧美一区二区三区| 悠悠久久av| 床上黄色一级片| 一进一出抽搐动态| 在线十欧美十亚洲十日本专区| 少妇丰满av| 国产精品久久久久久人妻精品电影| 亚洲人成网站在线播| 在线观看66精品国产| 亚洲综合色惰| 一进一出抽搐动态| 国产熟女xx| 亚洲自拍偷在线| 搡老妇女老女人老熟妇| 成年女人毛片免费观看观看9| 一个人看视频在线观看www免费| 少妇被粗大猛烈的视频| 在线观看美女被高潮喷水网站 | 亚洲精品亚洲一区二区| av视频在线观看入口| 精品久久久久久成人av| 色哟哟哟哟哟哟| 波多野结衣高清作品| 99在线视频只有这里精品首页| 免费一级毛片在线播放高清视频| 亚洲 国产 在线| 亚洲性夜色夜夜综合| 极品教师在线视频| 亚洲成人免费电影在线观看| 精品久久久久久久久av| 婷婷丁香在线五月| 国产一区二区三区视频了| 我的女老师完整版在线观看| 亚洲国产色片| 国产熟女xx| 少妇丰满av| 俺也久久电影网| 天堂影院成人在线观看| 精品人妻偷拍中文字幕| 亚洲aⅴ乱码一区二区在线播放| 亚洲美女搞黄在线观看 | 99久久99久久久精品蜜桃| 亚洲成人精品中文字幕电影| 国产成人影院久久av| 亚洲三级黄色毛片| av天堂在线播放| 欧美日韩乱码在线| 十八禁国产超污无遮挡网站| 亚洲av成人不卡在线观看播放网| 夜夜爽天天搞| 欧美高清性xxxxhd video| 中文亚洲av片在线观看爽| 久久人人爽人人爽人人片va | 欧美日韩黄片免| 欧美日韩中文字幕国产精品一区二区三区| 亚洲人成伊人成综合网2020| 国语自产精品视频在线第100页| 亚洲一区高清亚洲精品| 99国产极品粉嫩在线观看| 国产精品不卡视频一区二区 | 丰满人妻熟妇乱又伦精品不卡| netflix在线观看网站| 国产精品亚洲美女久久久| 免费无遮挡裸体视频| 精品人妻1区二区| eeuss影院久久| 国产毛片a区久久久久| 亚洲精品在线美女| 亚洲国产精品999在线| 高清日韩中文字幕在线| 欧美性猛交黑人性爽| 18禁裸乳无遮挡免费网站照片| 99热6这里只有精品| 在线看三级毛片| 亚洲在线自拍视频| 搞女人的毛片| 熟女电影av网| 精品人妻视频免费看| 日韩欧美三级三区| 岛国在线免费视频观看| 国产美女午夜福利| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 三级国产精品欧美在线观看| eeuss影院久久| 国产精品精品国产色婷婷| 亚洲五月天丁香| 两人在一起打扑克的视频| 精品一区二区三区av网在线观看| 欧美日韩瑟瑟在线播放| 国产高清视频在线播放一区| 亚洲av.av天堂| av视频在线观看入口| 美女 人体艺术 gogo| 国产精品永久免费网站| 欧美日本视频| 欧美日韩综合久久久久久 | 熟女电影av网| 午夜a级毛片| 观看美女的网站| 欧美日韩福利视频一区二区| 九色国产91popny在线| 日韩国内少妇激情av| 好男人电影高清在线观看| 99热只有精品国产| 日韩av在线大香蕉| 国产视频内射| 国产av麻豆久久久久久久| 小说图片视频综合网站| 亚洲成人中文字幕在线播放| 国产一区二区亚洲精品在线观看| 午夜老司机福利剧场| 91麻豆av在线| 国产亚洲精品综合一区在线观看| 国产一区二区三区视频了| 国产一区二区在线观看日韩| 极品教师在线免费播放| av女优亚洲男人天堂| 中文字幕人妻熟人妻熟丝袜美| 欧美精品啪啪一区二区三区| 国产av在哪里看| 国产黄a三级三级三级人| 免费搜索国产男女视频| 97超级碰碰碰精品色视频在线观看| 免费人成在线观看视频色| 夜夜看夜夜爽夜夜摸| 国内揄拍国产精品人妻在线| 国内毛片毛片毛片毛片毛片| 18禁黄网站禁片午夜丰满| 天堂网av新在线| 国产精品久久久久久久电影| 少妇被粗大猛烈的视频| 极品教师在线免费播放| 51国产日韩欧美| 中文在线观看免费www的网站| 亚洲色图av天堂| av天堂在线播放| 成年女人永久免费观看视频| 桃红色精品国产亚洲av| 久久伊人香网站| 特级一级黄色大片| 日韩欧美国产一区二区入口| a级毛片免费高清观看在线播放| 久9热在线精品视频| 亚洲在线自拍视频| 真人一进一出gif抽搐免费| 国内精品久久久久久久电影| 中文字幕久久专区| 国内精品美女久久久久久| 搡女人真爽免费视频火全软件 | av专区在线播放| 欧美一区二区精品小视频在线| 我的女老师完整版在线观看| 女人十人毛片免费观看3o分钟| 国产成人欧美在线观看| 午夜免费男女啪啪视频观看 | 久久伊人香网站| 欧美不卡视频在线免费观看| 精品久久久久久久久亚洲 | 一边摸一边抽搐一进一小说| 亚洲美女搞黄在线观看 | 亚洲欧美精品综合久久99| 老司机深夜福利视频在线观看| 97碰自拍视频| 听说在线观看完整版免费高清| 久久久久性生活片| 国产精品野战在线观看| 久久久久久九九精品二区国产| 男女下面进入的视频免费午夜| 免费观看人在逋| 亚洲成a人片在线一区二区| 搡老熟女国产l中国老女人| 久久久久久九九精品二区国产| 亚洲av日韩精品久久久久久密| 国产成人aa在线观看| 中文字幕久久专区| 国产高潮美女av| a级毛片免费高清观看在线播放| 非洲黑人性xxxx精品又粗又长| 色综合婷婷激情| 亚洲乱码一区二区免费版| 99国产综合亚洲精品| 国产日本99.免费观看| 日日摸夜夜添夜夜添av毛片 | 亚洲美女视频黄频| 毛片一级片免费看久久久久 | 国产欧美日韩一区二区精品| 高潮久久久久久久久久久不卡| 亚洲中文字幕一区二区三区有码在线看| 亚洲18禁久久av| 亚洲欧美日韩高清专用| 国产伦精品一区二区三区四那| 神马国产精品三级电影在线观看| 欧美精品国产亚洲| 欧美xxxx性猛交bbbb| 国产精品电影一区二区三区| 久久欧美精品欧美久久欧美| 免费看美女性在线毛片视频| 精品午夜福利视频在线观看一区| 免费无遮挡裸体视频| 国产欧美日韩一区二区三| av女优亚洲男人天堂| 亚洲一区二区三区不卡视频| 亚洲自拍偷在线| 亚洲国产精品成人综合色| 午夜久久久久精精品| av在线蜜桃| 欧美日韩中文字幕国产精品一区二区三区| 国产精品伦人一区二区| 成年版毛片免费区| 亚洲,欧美精品.| 非洲黑人性xxxx精品又粗又长| 99国产精品一区二区三区| 国产免费av片在线观看野外av| 久久九九热精品免费| 麻豆一二三区av精品| 丁香欧美五月| 欧美日韩乱码在线| 久久精品国产亚洲av天美| 欧美日韩黄片免| 少妇的逼好多水| 国产单亲对白刺激| 一个人看的www免费观看视频| 国产私拍福利视频在线观看| 日韩有码中文字幕| 一本综合久久免费| 欧美午夜高清在线| 无人区码免费观看不卡| 欧美乱色亚洲激情| 99久久精品热视频| 久久久国产成人免费| 日韩国内少妇激情av| 日韩欧美三级三区| 亚洲人成网站在线播| 人妻夜夜爽99麻豆av| 国产伦人伦偷精品视频| 久久久久精品国产欧美久久久| 日本黄大片高清| 一夜夜www| 99久久成人亚洲精品观看| 亚洲 欧美 日韩 在线 免费| 我要看日韩黄色一级片| 欧美极品一区二区三区四区| 看十八女毛片水多多多| 日本精品一区二区三区蜜桃| 狂野欧美白嫩少妇大欣赏| 欧美+日韩+精品| 一进一出好大好爽视频| 久久久色成人| 欧美日韩国产亚洲二区| 免费av毛片视频| 1024手机看黄色片| 18+在线观看网站| 搡老岳熟女国产| 午夜免费激情av| 国产伦精品一区二区三区四那| 亚洲国产精品sss在线观看| 亚洲五月天丁香| 丁香六月欧美| 美女大奶头视频| 男人的好看免费观看在线视频| 国产亚洲精品综合一区在线观看| 一区福利在线观看| 日本一二三区视频观看| 国产av一区在线观看免费| 久久欧美精品欧美久久欧美| 成年人黄色毛片网站| 看片在线看免费视频| 久久婷婷人人爽人人干人人爱| www.www免费av| 国产欧美日韩精品一区二区| 天天一区二区日本电影三级| 国产午夜精品久久久久久一区二区三区 | 国产私拍福利视频在线观看| av在线天堂中文字幕| 简卡轻食公司| 色5月婷婷丁香| 一级a爱片免费观看的视频| 亚洲国产精品成人综合色| 中文在线观看免费www的网站| 精品一区二区三区人妻视频| 国产av不卡久久| 在线看三级毛片| 757午夜福利合集在线观看| 色综合亚洲欧美另类图片| 免费观看的影片在线观看| 人妻丰满熟妇av一区二区三区| 91午夜精品亚洲一区二区三区 | 亚洲国产精品成人综合色| 高潮久久久久久久久久久不卡| 欧美日本亚洲视频在线播放| 亚洲五月天丁香| 午夜视频国产福利| 一a级毛片在线观看| 久久午夜福利片| 丁香六月欧美| 色噜噜av男人的天堂激情| 99在线视频只有这里精品首页| 搡老熟女国产l中国老女人| 免费av毛片视频| 久久久久性生活片| 精品不卡国产一区二区三区| 淫秽高清视频在线观看| 亚洲精品乱码久久久v下载方式| 亚洲精品亚洲一区二区| 久久午夜福利片| 国产激情偷乱视频一区二区| 亚洲精品日韩av片在线观看| 欧美乱妇无乱码| 欧美激情久久久久久爽电影| a级毛片a级免费在线| 免费黄网站久久成人精品 | 毛片一级片免费看久久久久 | 国产高清三级在线| 五月伊人婷婷丁香| 51国产日韩欧美| 999久久久精品免费观看国产| 一级毛片久久久久久久久女| 中文字幕av在线有码专区| 国产精品,欧美在线| 亚洲男人的天堂狠狠| 亚洲乱码一区二区免费版| 国内精品久久久久久久电影| 夜夜看夜夜爽夜夜摸| 一区二区三区四区激情视频 | 91av网一区二区| 日韩有码中文字幕| 欧美三级亚洲精品| 男女视频在线观看网站免费| 日日摸夜夜添夜夜添av毛片 | 国产精品久久久久久亚洲av鲁大| 18禁裸乳无遮挡免费网站照片| 成人高潮视频无遮挡免费网站| 少妇的逼水好多| 日韩国内少妇激情av| 色在线成人网| 久久精品国产自在天天线| 我的老师免费观看完整版| 中文资源天堂在线| 好看av亚洲va欧美ⅴa在| 男女做爰动态图高潮gif福利片| 老司机午夜十八禁免费视频| 亚洲成人免费电影在线观看| 免费搜索国产男女视频| 久久精品国产亚洲av涩爱 | 亚洲第一欧美日韩一区二区三区| 91午夜精品亚洲一区二区三区 | 成年女人毛片免费观看观看9| 两个人的视频大全免费| 亚洲av一区综合| 一卡2卡三卡四卡精品乱码亚洲| 亚洲最大成人中文| 亚洲性夜色夜夜综合| 欧美3d第一页| 欧美日韩黄片免| 亚洲av一区综合| 国产精品不卡视频一区二区 | 一级av片app| 国产大屁股一区二区在线视频| 亚洲色图av天堂| 欧美成人性av电影在线观看| 午夜日韩欧美国产| 亚洲精品粉嫩美女一区| 51国产日韩欧美| 国产精品亚洲美女久久久| 淫秽高清视频在线观看| 人妻丰满熟妇av一区二区三区| 国产av在哪里看| 美女 人体艺术 gogo| 一区二区三区高清视频在线| 国产精品三级大全| 欧美日韩福利视频一区二区| 99久久久亚洲精品蜜臀av| 久久午夜亚洲精品久久| 亚洲成人免费电影在线观看| 亚洲成人精品中文字幕电影| 在线看三级毛片| 91午夜精品亚洲一区二区三区 | 国产淫片久久久久久久久 | 欧美最黄视频在线播放免费| 久久精品国产亚洲av香蕉五月| 免费搜索国产男女视频| 国产乱人伦免费视频| 免费大片18禁| 国产在线精品亚洲第一网站| 日韩欧美三级三区| 老司机午夜十八禁免费视频| 日韩欧美国产一区二区入口| 一进一出抽搐动态| 在线观看av片永久免费下载| 亚洲七黄色美女视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲成人精品中文字幕电影| 免费观看的影片在线观看| 在线观看免费视频日本深夜| 亚洲欧美日韩卡通动漫| 国产精品一区二区三区四区免费观看 | 日本三级黄在线观看| 国产一区二区在线观看日韩| 麻豆av噜噜一区二区三区| 亚洲精品在线观看二区| 久久亚洲精品不卡| a级毛片免费高清观看在线播放| 中国美女看黄片| 精品熟女少妇八av免费久了| 三级国产精品欧美在线观看| 国产欧美日韩一区二区精品| 成年女人看的毛片在线观看| 亚洲av免费高清在线观看| 国产午夜福利久久久久久| 亚洲av免费高清在线观看| 国产精品一区二区性色av| 国产人妻一区二区三区在| 成人av一区二区三区在线看| 综合色av麻豆| 99久久99久久久精品蜜桃| 精品乱码久久久久久99久播| 日韩欧美精品免费久久 | 午夜亚洲福利在线播放| 国产在线男女| 露出奶头的视频| 欧美国产日韩亚洲一区| 国产一区二区在线观看日韩| 日韩有码中文字幕| 国产高清视频在线播放一区| or卡值多少钱| 韩国av一区二区三区四区| 欧美一区二区亚洲| 好看av亚洲va欧美ⅴa在| 日本成人三级电影网站| 日本一二三区视频观看| av在线蜜桃| 免费搜索国产男女视频| 一级黄色大片毛片| 国产精华一区二区三区| 91在线观看av| 久久这里只有精品中国| 午夜激情福利司机影院| 国产精品影院久久| 青草久久国产| ponron亚洲| 国产精品美女特级片免费视频播放器| 亚洲一区二区三区不卡视频| 成人特级av手机在线观看| 在线观看舔阴道视频| 最近视频中文字幕2019在线8| 国产69精品久久久久777片| 无遮挡黄片免费观看| 午夜福利视频1000在线观看| 91在线观看av| 国产精品爽爽va在线观看网站| 国产亚洲精品av在线| 亚洲av成人av| 国产精品美女特级片免费视频播放器| 伦理电影大哥的女人| 亚洲狠狠婷婷综合久久图片| 如何舔出高潮| 国产精品久久久久久亚洲av鲁大| 狠狠狠狠99中文字幕| 国产免费男女视频| 一级a爱片免费观看的视频| 精品99又大又爽又粗少妇毛片 | 身体一侧抽搐| 精品久久久久久久末码| 欧美日韩黄片免| 久久久久国内视频| 麻豆久久精品国产亚洲av| 淫秽高清视频在线观看| 一个人看视频在线观看www免费| 日本 欧美在线| 成人国产综合亚洲| 国产精品久久视频播放| 免费无遮挡裸体视频| av在线天堂中文字幕| 国产毛片a区久久久久| 亚洲av第一区精品v没综合| h日本视频在线播放| a级毛片a级免费在线| 亚洲成av人片在线播放无| 欧美在线一区亚洲| 亚洲人成网站在线播放欧美日韩| 极品教师在线免费播放| 欧美不卡视频在线免费观看| 极品教师在线免费播放| 成人国产综合亚洲| 最后的刺客免费高清国语| 国产老妇女一区| 国产精品嫩草影院av在线观看 | 中文字幕免费在线视频6| 丰满人妻一区二区三区视频av| 怎么达到女性高潮| 日韩精品青青久久久久久| 人妻久久中文字幕网| 国产免费av片在线观看野外av| 校园春色视频在线观看| 久久亚洲精品不卡| 欧美最黄视频在线播放免费| 欧美一区二区亚洲| 国产探花在线观看一区二区| 亚洲av一区综合| 成人永久免费在线观看视频| 嫩草影院入口| 人妻制服诱惑在线中文字幕| 嫁个100分男人电影在线观看| 99精品在免费线老司机午夜| 国内毛片毛片毛片毛片毛片| 欧美日韩综合久久久久久 | 亚洲精品日韩av片在线观看| 天堂影院成人在线观看| 91午夜精品亚洲一区二区三区 | 国产v大片淫在线免费观看| 国产野战对白在线观看| 日本黄色片子视频| 国产欧美日韩一区二区三| 啦啦啦韩国在线观看视频| av在线天堂中文字幕| 国产亚洲精品av在线| 噜噜噜噜噜久久久久久91| 免费无遮挡裸体视频| 欧美成人性av电影在线观看| 亚洲精品在线美女| 69av精品久久久久久| 色哟哟哟哟哟哟| 国产单亲对白刺激| 在线免费观看的www视频| 美女高潮的动态| 国产精品,欧美在线| 91在线观看av| 亚洲欧美日韩卡通动漫|