• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on submesoscale eddy and front near the South Shetland Islands (Antarctic Peninsula) using seismic oceanography data

    2022-07-20 01:35:58YANGShunSONGHaibinZHANGKun
    Advances in Polar Science 2022年1期
    關(guān)鍵詞:山丘區(qū)沭河東平湖

    YANG Shun, SONG Haibin* & ZHANG Kun

    Research on submesoscale eddy and front near the South Shetland Islands (Antarctic Peninsula) using seismic oceanography data

    YANG Shun1,2, SONG Haibin1,2*& ZHANG Kun1,2

    1School of Ocean and Earth Science, Tongji University, Shanghai 200092, China;2State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China

    The submesoscale processes, including submesoscale eddies and fronts, have a strong vertical velocity, can thus make important supplements to the nutrients in the upper ocean. Using legacy multichannel seismic data AP25 of cruise EW9101 acquired northeast of the South Shetland Islands (Antarctic Peninsula) in February 1991, we identified an oceanic submesoscale eddy with the horizontal scale of ~4 km and a steep shelf break front that has variable dip angles from 5oto 10o. The submesoscale eddy is an anticyclonic eddy, which carries warm core water, can accelerate ice shelves melting. The upwelling induced by shelf break front may play an important role in transporting nutrients to the sea surface. The seismic images with very high lateral resolution may provide a new insight to understand the submesoscale and even small-scale oceanic phenomena in the interior.

    submesoscale eddy, shelf break front,seismic oceanography,South Shetland Islands

    1 Introduction

    Heat and material transports in oceans play a dominant role in regulating global climate and in controlling the oceanic absorption of greenhouse gases that are responsible for global warming (Zhang et al., 2014). Oceanic eddies have been recognized as key contributors in transporting heat, dissolved carbon, and other biogeochemical tracers (McGillicuddy et al., 2007; Dong et al., 2014). Surface- intensified mesoscale eddies have been studied extensively using altimetric observations (Chelton et al., 2007). However, we know much less about the contribution of subsurface eddies, particularly submesoscale ones, due to their small spatial and temporal scales (McWilliams, 2016). Same as submesoscale eddies, oceanic fronts are also submesoscale processes (Capet et al., 2008; McWilliams, 2016). The submesoscale processes, including submesoscale eddies and fronts, have a strong vertical velocity that can even reach 100 m·d?1. These submesoscale processes can sustain vertical secondary circulation with time scales comparable with the nutrient uptake by phytoplankton, thus make important supplements to the nutrients in the upper ocean (McGillicuddy et al., 2007; Zhang et al., 2019).

    Oceanic eddies can be divided into cyclonic and anticyclonic eddies based on their different rotation modes. The cyclonic and anticyclonic eddies rotate counterclockwise (clockwise) and clockwise (counterclockwise) in the northern (southern) hemisphere, respectively (Pingree and Le Cann, 1992). There are downwellings in anticyclonic eddies for the Coriolis force induced by the earth’s rotation, thus can form concave isopycnal/isothermal surfaces (Zhang et al., 2014).

    Different from oceanic eddies and fronts in the low and middle latitudes, those in polar regions are more important in regulating global climate for a large number of ice shelves in polar regions. A study by NASA found that ocean waters melting the undersides of Antarctic ice shelves are responsible for most of the continent’s ice shelf mass loss (Rignot et al., 2013). The eddies can carry warm-core water mass for a long distance, while almost maintaining the properties of core water. Thus, the core water mass that is warmer than surface waters will melt the undersides of Antarctic ice shelves (Gunn et al., 2018). Up to now, however, there are few researches on imaging water columns using seismic data in polar regions except Gunn et al. (2018).

    Here, we found a submesoscale eddy and a shelf break front in north of the South Shetland Islands (SSI) using a new method named seismic oceanography (SO). SO uses multichannel seismic (MCS) reflection data to produce detailed images of the water column (Holbrook et al., 2003; Holbrook and Fer, 2005; Ruddick et al., 2009). Seismic imaging (i.e., acoustic reflection) can be approximately thought to be the smoothed vertical gradient of seawater temperature (Ruddick et al., 2009). Compared with the traditional physical oceanography methods, SO has the advantages of high acquisition efficiency, very high lateral resolution (~10 m) and full depth imaging of seawater column (Dong et al., 2010; Song et al., 2021). Many researchers have used seismic data to image oceanic eddies in different regions, including the west exit of the Mediterranean Sea (Biescas et al., 2008; Pinheiro et al., 2010; Song et al., 2011), South China Sea (Huang et al., 2013), Gulf of Alaska (Tang et al., 2014, 2020), southeast of New Zealand (Gorman et al., 2018), Bellingshausen Sea (Gunn et al., 2018), Middle Atlantic Bight (Gula et al., 2019), Southwest Atlantic Ocean (Gunn et al., 2020), Northwest Pacific Ocean (Zhang et al., 2021) and the Pacific coast of Central America (Yang et al., 2021). Compared with eddies, the researches on oceanic fronts are less and mainly consist of Newfoundland Basin of Northwest Atlantic Ocean (Holbrook et al., 2003), east of Japan (Nakamura et al., 2006), and Southwest Atlantic Ocean (Gunn et al., 2020). They used seismic data, combined withstation observations such as Conductivity-Temperature-Depth (CTD) and eXpendable Bathy-Thermograph (XBT), remote sensing observations of sea surface temperature (SST), sea surface height (SSH), chl-concentration, and sometimes numerical simulations of fluid dynamics, to study the oceanic eddies and fronts.

    Figure 1 Bathymetry of the study region. The red line is seismic line AP25, and the 5 red dots are CTD stations in February. The isolines are isobaths of 100, 200, 500, 1000, 2000, 3000, 4000, and 5000 m, respectively. SSI = South Shetland Islands and EI = Elephant Island.

    2 Oceanographic setting

    SSI is located in southern Drake Strait and the northern tip of the Antarctic Peninsula (AP). Due to the complex topography, the water masses and circulations around the SSI are complex and variable (Zhou et al., 2006). The dominant circulations north of the SSI are the northeastward Antarctic Circumpolar Current (ACC) and Antarctic Slope Current (ASC) that flow southwestward along the outer shelf. As the only eastward circulation connecting the major oceans, ACC consists of a series of oceanic fronts. From north to south, these fronts are Subantarctic Front (SF), Polar Front (PF), Southern ACC Front (SACCF), and Southern Boundary (SB) (Orsi et al., 1995; Zhou and Zhu, 2020).

    The waters associated with the ACC are the warm Antarctic Surface Water (ASW), the cold Winter Water (WW) below the ASW, and the warm Circumpolar Deep Water (CDW). The CDW can be further separated into the Upper CDW (UCDW) and the Lower CDW (LCDW) based on their origins from the Indian-Pacific oceans and the Atlantic Ocean, respectively (Zhou et al., 2010). WW is caused by the salt precipitation of sea ice, the sensible heat dissipation to the atmosphere, and the vertical mixing of seawater driven by wind (Zhou and Zhu, 2020). Figure 2 shows the properties of these water masses surrounding SSI.

    Figure 2 The legacy CTD data. a,Temperature; b,Salinity; c,Sound speed profiles; d,diagram. ASW = Antarctic Surface Water, WW = Winter Water, and CDW = Circumpolar Deep Water. The color of the dots indicates the depth of the samples. The contours are corresponding density anomalies calculated by the equation of the state of seawater.

    3 Seismic data and hydrographic data

    3.1 Seismic acquisition and processing

    Multi-channel seismic data was acquired during R/V Maurice Ewing Expedition EW9101 conducted in February 1991. The original purpose of the seismic data acquisition is the geophysical study of the Pacific margin of Antarctica, including the Antarctic Peninsula and areas south to the intersection of the Heezen Fracture Zone with the margin. The acoustic source is an airgun array with a capacity of 136.9 L (8353 cu in). The shot interval was 20 s for ~50 m, and the nominal distance between the shot and the nearest channel is 263 m. There are 144 channels originally recorded, and group spacing is 25 m. The sample interval is 4 ms, and the record length is 12 s. Here we only use seismic line AP25 that acquired on 22 February 1991, to analyze the water masses. Note that there are only 120 channels available because the nearest 24 channels are empty and no data is recorded, hence the actual distance between the shot and the nearest effective channel is 863 m.

    The data quality of distant channels is poor because of far offset and seawater reflections are much weaker than strata reflections, so we used the nearest channel (120th channel) of each shot to produce the common offset gathers (COGs). Then COGs are processed with normal moveout correction with a constant velocity of 1460 m·s?1. The velocity is referenced from the legacy sound speed of this region shown in Figure 2c. In addition, 1D and 2D filterings are needed to suppress the noise. To avoid strata interference during filterings, it is necessary to mute the reflections below the seafloor before filterings.

    3.2 Hydrographic data

    The seismic data was acquired in 1991, which is too early to find coincident hydrographic data. We used legacy CTD data to distinguish water masses and calculate sound speed using the equation of state of seawater. The temperature- salinity relationship of these CTD casts is shown in Figure 2d. Water masses surrounding SSI can be divided into ASW, coldest WW below ASW, and warm CDW below WW. The CTD data is collected from February 1994 to 1996, and from the National Center of Environmental Information (NCEI) of National Oceanic and Atmospheric Administration (NOAA) (https://www.ncei.noaa.gov/ access/global-temperature-salinity-profile-programme/gwi.html). We also used monthly mean chl-concentration data in February 2001 by MODIS-terra sensor from NASA’s Ocean Color Web (https://oceancolor.gsfc.nasa.gov/). The resolution of Chl-data is 4 km. We used daily sea ice area fraction on February 22, 2003 by multi-sensor satellites from Natural Environment Research Council (NERC) Earth Observation Data Acquisition and Analysis Service (NEODAAS, https://www.neodaas.ac.uk/Home). The horizontal resolution of sea ice data is 1 km.

    4 Results

    4.1 Submesoscale eddy

    Seismic line AP25 with a length of ~156 km is almost perpendicular to the coastline of SSI and passes through the shelf, slope and trench from southeast to northwest (Figure 1). From Figure 3a, we can identify these submarine topography. Figure 3b shows the water column reflections in the box in Figure 3a after special processing for the seawater column (described in subsection 3.1). There are two obvious features, which are concave reflections and oblique reflections in the left and right, respectively. We enlarge these reflections in Figures 3c and 3d, respectively.

    Based on previous researches on oceanic eddies using seismic data (Biescas et al., 2008; Pinheiro et al., 2010; Song et al., 2011; Gorman et al., 2018), we suggested that the concave reflections (Figure 3c) are the lower boundary of an eddy. This eddy should be anticyclonic. Unfortunately, the upper boundary of the eddy is muted during the processing of water direct wave suppression.

    Figure 3 The seismic image of line AP25. a, Sub-seafloor reflections after stack and migration. The shot spacing is ~50 m. The position of shelf break is marked. b, Water column reflections in the box in (a). The image shows oceanic eddy and front. The reflections below the seafloor are muted. c, Seismic image of submesoscale eddy in the box in (b). d, Seismic image of shelf break front in the box in (b). The reference slope angles of 2°, 5°, and 10° are shown. The reflections below the seafloor are muted. The reflections in the upper 100 m are also muted for the processing of direct wave suppression.

    The eddy has a maximum depth near 500 m, and the upper boundary is shallower than 100 m. Therefore, the vertical scale of the anticyclonic eddy is more than 400 m. The reflections of the left boundary are narrow and steep, while there are a series of sub-horizontal reflections on the right of the right boundary. The eddy has a horizontal scale of 4 km (equals to ~80 shots). The reflections of the core and the boundaries are weak and intense respectively, which demonstrates that the interior water is homogeneous and different from that around it.

    Submesoscale eddies have the radii smaller than the first baroclinic Rossby radii of deformationR,1and larger than turbulent boundary layer thickness (Mcwilliams, 1985, 2016).R,1is a function of the Brunt–V?is?l? frequency (density stratification), the scale height, andgeographic latitude (Chelton et al., 1998; Nurser and Bacon, 2014). TheR,1is about 9 km in the shelf of SSI (Chelton et al., 1998). Here, the eddy has a horizontal scale of ~4 km, which is smaller than the local first baroclinic Rossby radius, thus is a submesoscale eddy.

    4.2 Shelf break front

    As shown in Figure 3d, there are a series of oblique reflections near the shelf break. The dipping direction of the reflections is opposite to that of the continental slope. The foot of the reflections locates the upper slope and near the shelf break. We interpreted that the oblique structure is shelf break front. The front is located near the southern ACC boundary (SB) (Orsi et al., 1995). It is noted that the front is steep and has variable dip angles of ~5o in the upper part and ~10o in the lower part (Figure 5). The foot of the front reaching the slope is ~550 m deep. The front may reach the sea surface if the reflections in the upper 100 m were not muted.

    Figure 4 a, Density profiles calculated from the legacy temperature and salinity data shown in Figure 2; b, Vertical density gradient calculated from the density in (a); The black solid lines are measured data, and the green solid line is the smoothed data; c, Brunt-V?is?l? frequency calculated from the density in (a). The black solid lines are measured data, and the green solid line is the smoothed data.

    Figure 5 Monthly mean sea surface temperature (a) and velocity (b) in February 1993. The solid black line is seismic line AP25. The black arrow indicates the reference velocity. The temperature and velocity data is from CMEMS.

    Figure 6 a, Distribution of shelf break front picked from the seismic profile; b, The slope angle of the shelf break front.

    Shelf-break front is frontal formations where cross-shelf waters encounter slope waters from the deeper oceans, often associated with upwelling (Condie, 1993; Gawarkiewicz and Plueddemann, 2020). The seasonally transitional features are sites of high temperature, salinity, and density gradients and often of high productivity where deep upwelled water contributes high nutrients.

    5 Discussion

    5.1 The influence on climate and ecosystem

    According to the traditional view, ablation from Antarctic ice shelves occurs mostly by iceberg calving, with basal melting only contributing 10%–28% of the total mass loss (Jacobs et al., 1992). New research indicated that ocean waters melting the undersides of Antarctic ice shelves are responsible for most of the continent’s ice shelf mass loss (Rignot et al., 2013). In the Southern Ocean, the lower CDW, which are warmer than upper ASW and WW, can transport warm water across the shelf and intrude the ice shelves. The cross-shelf transportation of warm water may increase the melting of the foundation, thereby promoting splitting glacier and ice loss (Rignot et al., 2008). The anticyclonic eddy can carry warm core water for a long distance, while almost maintaining the properties of core water (Mcwilliams, 1985). Thus, apart from the lower warm CDW, the core water mass that is warmer than surface water and surrounding water will melt the undersides of Antarctic ice shelves (Gunn et al., 2018). In this work, this submesoscale eddy may trap warm core water. This may promote the melting of sea ice.

    Submesoscale processes including submesoscale eddies and fronts are particularly relevant to phytoplankton productivity because the time scales on which they act are similar to those of phytoplankton growth (Zhang et al., 2019). The vertical secondary circulations in the fronts and the lateral boundaries of the eddies tend to destroy the lateral buoyancy gradient and restore the oceanic density stratification, which can induce upwelling (Capet et al., 2008; McWilliams et al., 2009; McWilliams, 2016) (Figure 7). The upwelling can transport nutrients from the bottom to the surface. Especially in the shelf-break front zone, there is almost the highest primary productivity (Gawarkiewicz and Plueddemann, 2020). A study in the Cosmonaut Sea found that half of the cumulative krill density across that survey was found within 80 km of the 1000 m isobath (the shelf break), and 40% within 40 km (Jarvis et al., 2010). Many researchers found that the zooplankton and related biological quantity are quite high near the shelf break of the SSI (Corzo et al., 2005; Reiss et al., 2008; Joiris and Dochy, 2013). As shown in Figure 8a, chl-concentration observed from MODIS-Terra near shelf-break is obviously higher than that north of shelf.

    Figure 7 Sketch of vertical secondary circulations of the anticyclonic eddy (left) and the shelf break front (right).

    5.2 Limitations of seismic data

    In this study, seismic data has some limitations. As shown in Figure 8b, there may be some thin ice covering the sea surface, which will increase the difficulty of seismic acquisition, and reduce the quality of seismic data. In addition, the minimum distance between the shot and geophone is 863 m, which is too far to acquire high signal-noise ratio data.

    The difference of water columns at middle and low latitudes is mainly caused by the temperature difference, while in polar regions, it is mainly caused by salinity difference. The seismic reflection coefficients are more affected by temperature than salinity (Ruddick et al., 2009). Therefore, seismic oceanographic imaging in polar regions will be more difficult. Sea ice cover will also have a certain impact on seismic acquisition and data signal-to-noise ratio. We may use a larger capacity airgun to collect seismic data in the ice-free period as far as possible to improve the signal-to-noise ratio.

    6 Conclusion

    Using legacy multichannel seismic data AP25 of cruise EW9101 acquired on the northeast of SSI in February 1991, we identified the oceanic submesoscale eddy with the horizontal scale ~4 km and a steep shelf break front that has variable dip angles from 5oto 10o. The submesoscale eddy is an anticyclonic eddy, which carries warm core water, can accelerate ice shelf melting. The upwelling induced by shelf break front may play an important role in transporting nutrients to the sea surface. The seismic images with very high lateral resolution may provide a new insight to understand the submesoscale and even small-scale oceanic phenomena in the interior.

    Figure 8 a, The monthly mean Chl-concentration around SSI in February 2001 from MODIS-Terra. The black line is seismic line AP25. Note that the color scale is displayed in logarithm. b, Thedaily area fraction of sea ice around SSI on February 22, 2003 from NEODAAS.

    Acknowledgements We thank the cruise members of R/V Maurice Ewing cruise EW9101 for acquiring the seismic data. The seismic data is provided by MGDS (https://www.marine-geo.org/tools/search/Files. php?data_set_uid=6923). The legacy CTD data is provided by NCEI (https://www.ncei.noaa.gov/access/global-temperature-salinity-profile- programme/gwi.html). The Chl-data is provided by NASA’s Ocean Color Web (https://oceancolor.gsfc.nasa.gov/). The sea ice data is provided by NEODAAS (https://www.neodaas.ac.uk/Home). This work was financially supported by National Polar Special Program “Impact and Response of Antarctic Seas to Climate Change” (Grant nos. IRASCC 01-03-01, 01-03-02), and is funded by the National Natural Science Foundation of China (Grant no. 41976048), and the National Key R&D Program of China (Grant no. 2018YFC0310000). We would like to thank four anonymous reviewers, and Guest Editor Prof. Jiuxin Shi, for their valuable suggestions and comments thatimproved this article.

    Biescas B, Sallarès V, Pelegrí J L, et al. 2008. Imaging meddy finestructure using multichannel seismic reflection data. Geophys Res Lett, 35(11): L11609, doi:10.1029/2008gl033971.

    Capet X, McWilliams J C, Molemaker M J, et al. 2008. Mesoscale to submesoscale transition in the California Current system. part II: frontal processes. J Phys Oceanogr, 38(1): 44-64, doi:10.1175/ 2007jpo3672.1.

    Chelton D B, deSzoeke R A, Schlax M G, et al. 1998. Geographical variability of the first baroclinic Rossby radius of deformation. J Phys Oceanogr, 28(3): 433-460, doi:10.1175/1520-0485(1998)028<0433: gvotfb>2.0.co;2.

    Chelton D B, Schlax M G, Samelson R M, et al. 2007. Global observations of large oceanic eddies. Geophys Res Lett, 34(15): L15606, doi:10.1029/2007gl030812.

    Condie S A. 1993. Formation and stability of shelf break fronts. J Geophys Res, 98(C7): 12405, doi:10.1029/93jc00624.

    Corzo A, Rodríguez-Gálvez S, Lubian L, et al. 2005. Spatial distribution of transparent exopolymer particles in the Bransfield Strait, Antarctica. J Plankton Res, 27(7): 635-646, doi:10.1093/plankt/fbi038.

    Dong C M, McWilliams J C, Liu Y, et al. 2014. Global heat and salt transports by eddy movement. Nat Commun, 5: 3294, doi:10.1038/ ncomms4294.

    Dong C Z, Song H B, Bai Y, et al. 2010. The latest development of Seismic Oceanography. Prog Geophys, 25(1): 109-123 (in Chinese with English abstract).

    Gawarkiewicz G, Plueddemann A J. 2020. Scientific rationale and conceptual design of a process-oriented shelfbreak observatory: the OOI Pioneer Array. J Oper Oceanogr, 13(1): 19-36, doi:10.1080/1755876X.2019.1679609.

    Gorman A R, Smillie M W, Cooper J K, et al. 2018. Seismic characterization of oceanic water masses, water mass boundaries, and mesoscale eddies SE of New Zealand. J Geophys Res Oceans, 123(2): 1519-1532, doi:10.1002/2017jc013459.

    Gula J, Blacic T M, Todd R E. 2019. Submesoscale coherent vortices in the Gulf Stream. Geophys Res Lett, 46(5): 2704-2714, doi:10.1029/ 2019gl081919.

    Gunn K L, White N, Caulfield C C P. 2020. Time-lapse seismic imaging of oceanic fronts and transient lenses within south Atlantic Ocean. J Geophys Res Oceans, 125(7): e2020JC016293, doi:10.1029/2020jc 016293.

    Gunn K L, White N J, Larter R D, et al. 2018. Calibrated seismic imaging of eddy-dominated warm-water transport across the Bellingshausen Sea, Southern Ocean. J Geophys Res Oceans, 123(4): 3072-3099, doi:10.1029/2018jc013833.

    Holbrook W S, Fer I. 2005. Ocean internal wave spectra inferred from seismic reflection transects. Geophys Res Lett, 32(15): L15604, doi:10.1029/2005gl023733.

    Holbrook W S, Pa?ramo P, Pearse S, et al. 2003. Thermohaline fine structure in an oceanographic front from seismic reflection profiling. Science, 301(5634): 821-824, doi:10.1126/science.1085116.

    Huang X H, Song H B, Bai Y, et al. 2013. Estimation of geostrophic velocity from seismic images of mesoscale eddy in the South China Sea. Chin J Geophys, 56(1): 181-187 (in Chinese with English abstract).

    Jacobs S S, Helmer H H, Doake C S M, et al. 1992. Melting of ice shelves and the mass balance of Antarctica. J Glaciol, 38(130): 375-387, doi:10.3189/s0022143000002252.

    Jarvis T, Kelly N, Kawaguchi S, et al. 2010. Acoustic characterisation of the broad-scale distribution and abundance of Antarctic krill () off East Antarctica (30-80°E) in January-March 2006. Deep Sea Res Part II Top Stud Oceanogr, 57(9-10): 916-933, doi:10.1016/j.dsr2.2008.06.013.

    Joiris C R, Dochy O. 2013. A major autumn feeding ground for fin whales, southern fulmars and grey-headed albatrosses around the South Shetland Islands, Antarctica. Polar Biol, 36(11): 1649-1658, doi:10.1007/s00300-013-1383-8.

    McWilliams J C. 1985. Submesoscale, coherent vortices in the ocean. Rev Geophys, 23(2): 165, doi:10.1029/rg023i002p00165.

    McWilliams J C. 2016. Submesoscale currents in the ocean. Proc R Soc A, 472(2189): 20160117, doi:10.1098/rspa.2016.0117.

    McWilliams J C, Colas F, Molemaker M J. 2009. Cold filamentary intensification and oceanic surface convergence lines. Geophys Res Lett, 36(18): L18602, doi:10.1029/2009gl039402.

    Nakamura Y, Noguchi T, Tsuji T, et al. 2006. Simultaneous seismic reflection and physical oceanographic observations of oceanic fine structure in the Kuroshio extension front. Geophys Res Lett, 33(23): L23605, doi:10.1029/2006gl027437.

    Nurser A J G, Bacon S. 2014. The Rossby radius in the Arctic Ocean. Ocean Sci, 10(6): 967-975, doi:10.5194/os-10-967-2014.

    Orsi A H, Whitworth T, Nowlin W D. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res Part I Oceanogr Res Pap, 42(5): 641-673, doi:10.1016/0967-0637(95) 00021-W.

    Pingree R D, Le Cann B. 1992. Three anticyclonic slope water oceanic eDDIES (SWODDIES) in the Southern Bay of Biscay in 1990. Deep Sea Res A Oceanogr Res Pap, 39(7-8): 1147-1175, doi:10.1016/0198- 0149(92)90062-X.

    Pinheiro L M, Song H B, Ruddick B, et al. 2010. Detailed 2-D imaging of the Mediterranean outflow and meddies off W Iberia from multichannel seismic data. J Mar Syst, 79(1-2): 89-100, doi:10.1016/j.jmarsys.2009.07.004.

    一是加快雨洪資源利用,著力提升現(xiàn)代水網(wǎng)保障能力。加快南水北調(diào)配套工程建設(shè),開工建設(shè)引黃濟(jì)青改擴(kuò)建工程。積極推進(jìn)雨洪資源利用,先期規(guī)劃實(shí)施一期工程18座大中型水庫增容,新建8座山丘區(qū)水庫、6座地下水庫和32座平原水庫,以及沂沭河洪水調(diào)配東線工程和東平湖增容工程,努力提高水資源供給能力。

    Reiss C S, Cossio A M, Loeb V, et al. 2008. Variations in the biomass of Antarctic krill () around the South Shetland Islands, 1996–2006. ICES J Mar Sci, 65(4): 497-508, doi:10.1093/icesjms/ fsn033.

    Rignot E, Bamber J L, van den Broeke M R, et al. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci, 1(2): 106-110, doi:10.1038/ngeo102.

    Rignot E, Jacobs S, Mouginot J, et al. 2013. Ice-shelf melting around Antarctica. Science, 341(6143): 266-270, doi:10.1126/science.1235798.

    Ruddick B, Song H B, Dong C Z, et al. 2009. Water column seismic images as maps of temperature gradient. Oceanography, 22(1): 192-205, doi:10.5670/oceanog.2009.19.

    Sallarès V, Biescas B, Buffett G, et al. 2009. Relative contribution of temperature and salinity to ocean acoustic reflectivity. Geophys Res Lett, 36: L00D06, doi:10.1029/2009gl040187.

    Sheen K L, White N, Caulfield C P, et al. 2011. Estimating geostrophic shear from seismic images of oceanic structure. J Atmos Ocean Technol, 28(9): 1149-1154, doi:10.1175/jtech-d-10-05012.1.

    Song H B, Chen J X, Pinheiro L M, et al. 2021. Progress and prospects of seismic oceanography. Deep Sea Res Part I Oceanogr Res Pap, 177: 103631, doi:10.1016/j.dsr.2021.103631.

    Song H B, Pinheiro L M, Ruddick B, et al. 2011. Meddy, spiral arms, and mixing mechanisms viewed by seismic imaging in the Tagus Abyssal Plain (SW Iberia). J Mar Res, 69(4): 827-842, doi:10.1357/0022240 11799849309.

    Tang Q S, Gulick S P S, Sun J, et al. 2020. Submesoscale features and turbulent mixing of an oblique anticyclonic eddy in the Gulf of Alaska investigated by marine seismic survey data. J Geophys Res Oceans, 125(1): e2019JC015393, doi:10.1029/2019jc015393.

    Tang Q S, Gulick S P S, Sun L T. 2014. Seismic observations from a Yakutat eddy in the northern Gulf of Alaska. J Geophys Res Oceans, 119(6): 3535-3547, doi:10.1002/2014jc009938.

    Yang S, Song H B, Fan W H, et al. 2021. Submesoscale features of a cyclonic eddy in the Gulf of Papagayo, Central America. Chin J Geophys, 64(4): 1328-1340, doi:10.6038/cjg2021O0204 (in Chinese with English abstract).

    Zhang J C, Luo Y M, Xing J H. 2021. Seismic images of shallow waters over the Shatsky Rise in the Northwest Pacific Ocean. J Ocean Univ China, 20(5): 1079-1088, doi:10.1007/s11802-021-4581-y.

    Zhang Z G, Qiu B, Klein P, et al. 2019. The influence of geostrophic strain on oceanic ageostrophic motion and surface chlorophyll. Nat Commun, 10: 2838, doi:10.1038/s41467-019-10883-w.

    Zhang Z G, Wang W, Qiu B. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322-324, doi:10.1126/science.1252418.

    Zhou M, Niiler P P, Zhu Y W, et al. 2006. The western boundary current in the Bransfield Strait, Antarctica. Deep Sea Res Part I Oceanogr Res Pap, 53(7): 1244-1252, doi:10.1016/j.dsr.2006.04.003.

    Zhou M, Zhu Y W, Dorland R D, et al. 2010. Dynamics of the current system in the southern Drake Passage. Deep Sea Res Part I Oceanogr Res Pap, 57(9): 1039-1048, doi:10.1016/j.dsr.2010.05.012.

    Zhou M X, Zhu G P. 2020. Water mass structure in the euphotic zone around south Shetland Islands, Antarctic during summer 2013. Chin J Polar Res, 32(1): 90-101 (in Chinese with English abstract).

    31 March 2021;

    17 February 2022;

    30 March 2022

    10.13679/j.advps.2021.0004

    , ORCID: 0000-0001-8031-9983, E-mail: hbsong@#edu.cn

    : Yang S, Song H B, Zhang K.Research on submesoscale eddy and front near the South Shetland Islands (Antarctic Peninsula) using seismic oceanography data. Adv Polar Sci, 2022, 33(1): 110-118,doi:10.13679/j.advps.2021.0004

    猜你喜歡
    山丘區(qū)沭河東平湖
    美麗的沭河公園
    修復(fù)漁業(yè)資源,改善水域環(huán)境
    ——東平湖增殖放流活動實(shí)施
    我家門前沭水流
    1990—2016年東平湖水位變化及其對水質(zhì)的影響
    山丘區(qū)高效節(jié)水灌溉模式與投資控制分析
    蘆 葦
    再去看看東平湖(外二首)
    核桃源(2019年3期)2019-11-14 05:38:55
    城市山丘區(qū)防汛安置點(diǎn)規(guī)劃模型探析
    基于Landsat數(shù)據(jù)的近30年東平湖濕地植被覆蓋演變研究
    山丘區(qū)排澇流量計(jì)算與分析
    最新美女视频免费是黄的| 老司机福利观看| 国产精品 欧美亚洲| 久久精品国产综合久久久| 身体一侧抽搐| 欧美黄色片欧美黄色片| 又大又爽又粗| 国产又黄又爽又无遮挡在线| 一个人看视频在线观看www免费 | 欧美激情久久久久久爽电影| 人人妻,人人澡人人爽秒播| 中国美女看黄片| 日韩高清综合在线| 中亚洲国语对白在线视频| 国产午夜精品论理片| 成人18禁在线播放| 丁香六月欧美| 啦啦啦韩国在线观看视频| 久久草成人影院| 操出白浆在线播放| 亚洲欧美日韩高清专用| 最近最新免费中文字幕在线| 一个人免费在线观看的高清视频| 日韩免费av在线播放| 国产高潮美女av| 黑人巨大精品欧美一区二区mp4| 国产综合懂色| www.精华液| 欧美另类亚洲清纯唯美| 久久国产精品人妻蜜桃| 麻豆成人av在线观看| 国产高清激情床上av| 91av网站免费观看| 操出白浆在线播放| netflix在线观看网站| 久久久久久人人人人人| 一二三四社区在线视频社区8| 久久天堂一区二区三区四区| 91字幕亚洲| 99精品欧美一区二区三区四区| 黄色视频,在线免费观看| 国产真实乱freesex| 欧美一级a爱片免费观看看| 精品不卡国产一区二区三区| 亚洲,欧美精品.| 日本 欧美在线| 亚洲avbb在线观看| 亚洲色图av天堂| 色噜噜av男人的天堂激情| 露出奶头的视频| 真人一进一出gif抽搐免费| 国产人伦9x9x在线观看| 成年女人看的毛片在线观看| 老汉色av国产亚洲站长工具| 麻豆国产av国片精品| 欧美大码av| 色老头精品视频在线观看| 97人妻精品一区二区三区麻豆| 香蕉av资源在线| 亚洲av熟女| 亚洲精品456在线播放app | 色在线成人网| 亚洲精品中文字幕一二三四区| 日本一二三区视频观看| 啦啦啦观看免费观看视频高清| 亚洲无线观看免费| 女人高潮潮喷娇喘18禁视频| 精品久久久久久久毛片微露脸| 麻豆av在线久日| 国产成人一区二区三区免费视频网站| 国产在线精品亚洲第一网站| 亚洲一区二区三区色噜噜| 99久久精品热视频| 午夜a级毛片| 国产伦人伦偷精品视频| 性欧美人与动物交配| 国产亚洲精品一区二区www| 伊人久久大香线蕉亚洲五| 琪琪午夜伦伦电影理论片6080| 岛国在线免费视频观看| www国产在线视频色| 国产伦一二天堂av在线观看| 国产又色又爽无遮挡免费看| a在线观看视频网站| 中文在线观看免费www的网站| 国产探花在线观看一区二区| 大型黄色视频在线免费观看| 国产一区二区激情短视频| 国产成人一区二区三区免费视频网站| 国内精品久久久久精免费| 亚洲中文字幕一区二区三区有码在线看 | 在线视频色国产色| 观看美女的网站| 国产69精品久久久久777片 | 久久亚洲真实| 亚洲人成网站高清观看| 999久久久国产精品视频| 草草在线视频免费看| 久久亚洲真实| 亚洲欧美日韩高清在线视频| 此物有八面人人有两片| 噜噜噜噜噜久久久久久91| xxxwww97欧美| 婷婷亚洲欧美| 婷婷六月久久综合丁香| 久久久久九九精品影院| 成人欧美大片| 欧美av亚洲av综合av国产av| 欧美zozozo另类| 精品久久久久久成人av| 欧美三级亚洲精品| 99精品欧美一区二区三区四区| 欧美zozozo另类| 欧美中文综合在线视频| 亚洲国产高清在线一区二区三| www日本黄色视频网| 国产成人精品无人区| 亚洲av电影不卡..在线观看| 999久久久精品免费观看国产| 国产精品久久久久久亚洲av鲁大| 视频区欧美日本亚洲| 亚洲人成电影免费在线| 欧美乱码精品一区二区三区| 香蕉av资源在线| 午夜精品在线福利| 好看av亚洲va欧美ⅴa在| 国产成人系列免费观看| 亚洲国产精品成人综合色| 99久久综合精品五月天人人| 成人高潮视频无遮挡免费网站| 成人国产一区最新在线观看| 最近最新中文字幕大全免费视频| 老司机福利观看| 黄色成人免费大全| 床上黄色一级片| 国内精品久久久久久久电影| 国产精品1区2区在线观看.| 色在线成人网| 给我免费播放毛片高清在线观看| 熟女少妇亚洲综合色aaa.| 亚洲专区字幕在线| 亚洲 欧美 日韩 在线 免费| 亚洲欧美精品综合一区二区三区| 中文字幕最新亚洲高清| 国产aⅴ精品一区二区三区波| 两人在一起打扑克的视频| 亚洲国产中文字幕在线视频| 天堂网av新在线| 日日摸夜夜添夜夜添小说| 岛国在线观看网站| 一二三四在线观看免费中文在| h日本视频在线播放| 一进一出抽搐gif免费好疼| 少妇丰满av| 久久精品综合一区二区三区| 岛国在线免费视频观看| 在线观看日韩欧美| 在线十欧美十亚洲十日本专区| 欧美日韩黄片免| 一进一出好大好爽视频| 国产av不卡久久| 黄色丝袜av网址大全| 中出人妻视频一区二区| 激情在线观看视频在线高清| 精品久久久久久,| 少妇裸体淫交视频免费看高清| 免费看美女性在线毛片视频| 午夜精品久久久久久毛片777| 精品一区二区三区视频在线 | 男插女下体视频免费在线播放| 真人一进一出gif抽搐免费| 成人av在线播放网站| 高清在线国产一区| 精品福利观看| 人人妻人人澡欧美一区二区| 美女高潮喷水抽搐中文字幕| 国产欧美日韩精品亚洲av| 性色av乱码一区二区三区2| 国产亚洲精品久久久com| 亚洲人与动物交配视频| 久久久久精品国产欧美久久久| 91麻豆av在线| 天堂网av新在线| 欧美日韩精品网址| 亚洲乱码一区二区免费版| 久久香蕉国产精品| 国模一区二区三区四区视频 | 白带黄色成豆腐渣| 中文字幕人妻丝袜一区二区| 成年女人毛片免费观看观看9| 色综合婷婷激情| 亚洲国产精品sss在线观看| 亚洲精华国产精华精| 99热精品在线国产| 久久精品国产亚洲av香蕉五月| 日韩av在线大香蕉| 看片在线看免费视频| 男女午夜视频在线观看| 亚洲五月天丁香| 中文字幕久久专区| 精华霜和精华液先用哪个| 18禁裸乳无遮挡免费网站照片| 精品99又大又爽又粗少妇毛片 | www.www免费av| 国产伦精品一区二区三区四那| 国产精品综合久久久久久久免费| 天堂动漫精品| 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看视频国产中文字幕亚洲| 亚洲五月婷婷丁香| 91av网一区二区| 美女大奶头视频| 亚洲av美国av| 制服丝袜大香蕉在线| 精品熟女少妇八av免费久了| 两人在一起打扑克的视频| 国产亚洲精品av在线| 每晚都被弄得嗷嗷叫到高潮| 国产91精品成人一区二区三区| 色噜噜av男人的天堂激情| 嫩草影院精品99| 1024手机看黄色片| 久久国产精品人妻蜜桃| 国语自产精品视频在线第100页| 激情在线观看视频在线高清| www日本黄色视频网| 久久中文字幕人妻熟女| 国内精品久久久久精免费| 动漫黄色视频在线观看| 亚洲欧美日韩卡通动漫| 亚洲午夜理论影院| 精品乱码久久久久久99久播| 狂野欧美激情性xxxx| 又紧又爽又黄一区二区| 日本a在线网址| 91老司机精品| 男女下面进入的视频免费午夜| 国产成人精品久久二区二区91| 精品久久久久久成人av| 久久久久亚洲av毛片大全| 久久天躁狠狠躁夜夜2o2o| 色综合婷婷激情| 国产精品久久久人人做人人爽| 亚洲九九香蕉| 91老司机精品| 国产高清激情床上av| 中文字幕精品亚洲无线码一区| 亚洲av成人一区二区三| 日本精品一区二区三区蜜桃| 美女扒开内裤让男人捅视频| 丝袜人妻中文字幕| 99久久99久久久精品蜜桃| 国内揄拍国产精品人妻在线| 欧美丝袜亚洲另类 | 国产成+人综合+亚洲专区| 亚洲成av人片在线播放无| 免费看a级黄色片| 淫秽高清视频在线观看| 国产69精品久久久久777片 | 欧美xxxx黑人xx丫x性爽| 国产视频内射| 日日摸夜夜添夜夜添小说| 欧美三级亚洲精品| 免费电影在线观看免费观看| 十八禁人妻一区二区| 热99re8久久精品国产| 九色国产91popny在线| 又黄又爽又免费观看的视频| 久久人人精品亚洲av| 女生性感内裤真人,穿戴方法视频| 91久久精品国产一区二区成人 | 国产一区二区在线av高清观看| 亚洲无线在线观看| 久99久视频精品免费| 观看免费一级毛片| 欧美日韩综合久久久久久 | 一级黄色大片毛片| 精品人妻1区二区| 久久天堂一区二区三区四区| 久久精品91无色码中文字幕| 亚洲男人的天堂狠狠| 一个人看的www免费观看视频| 午夜福利高清视频| 哪里可以看免费的av片| 丝袜人妻中文字幕| 国内精品久久久久精免费| 不卡一级毛片| 九九久久精品国产亚洲av麻豆 | 日本一二三区视频观看| 丰满人妻熟妇乱又伦精品不卡| 国产av麻豆久久久久久久| 成人特级黄色片久久久久久久| 日韩 欧美 亚洲 中文字幕| 国产精品久久久久久人妻精品电影| 中文字幕精品亚洲无线码一区| 最近在线观看免费完整版| 免费看日本二区| 一级毛片高清免费大全| 国产高潮美女av| 琪琪午夜伦伦电影理论片6080| 色精品久久人妻99蜜桃| 99热这里只有是精品50| 国产极品精品免费视频能看的| 国产精品一区二区三区四区久久| 无人区码免费观看不卡| 12—13女人毛片做爰片一| 国产成人影院久久av| 天天一区二区日本电影三级| 精品国产乱码久久久久久男人| 精品日产1卡2卡| 国产三级中文精品| 国产精品美女特级片免费视频播放器 | 很黄的视频免费| 又紧又爽又黄一区二区| 欧美成人性av电影在线观看| 无限看片的www在线观看| 99在线人妻在线中文字幕| 高清在线国产一区| 国产一区在线观看成人免费| 久久久久性生活片| 老汉色∧v一级毛片| 久久天躁狠狠躁夜夜2o2o| 超碰成人久久| 一个人免费在线观看电影 | 国产高清视频在线观看网站| 国产综合懂色| 18禁国产床啪视频网站| 99久久综合精品五月天人人| 国产野战对白在线观看| 欧美色欧美亚洲另类二区| 久久久久久人人人人人| 别揉我奶头~嗯~啊~动态视频| 欧美日韩国产亚洲二区| 国产精品爽爽va在线观看网站| 国产69精品久久久久777片 | 精品一区二区三区四区五区乱码| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品色激情综合| 丰满人妻熟妇乱又伦精品不卡| 一区二区三区高清视频在线| 18禁裸乳无遮挡免费网站照片| 99精品在免费线老司机午夜| АⅤ资源中文在线天堂| 看免费av毛片| 国产精品,欧美在线| 亚洲男人的天堂狠狠| 成人三级黄色视频| 最新在线观看一区二区三区| 亚洲av成人不卡在线观看播放网| 久久亚洲真实| 国产毛片a区久久久久| 午夜亚洲福利在线播放| 日韩国内少妇激情av| 亚洲中文av在线| 国产成人av激情在线播放| 男人舔女人下体高潮全视频| 精品99又大又爽又粗少妇毛片 | АⅤ资源中文在线天堂| 后天国语完整版免费观看| av黄色大香蕉| 九色国产91popny在线| 精品福利观看| 欧美日本亚洲视频在线播放| 最近视频中文字幕2019在线8| 日本一二三区视频观看| 观看免费一级毛片| 小说图片视频综合网站| 国产视频一区二区在线看| 搡老岳熟女国产| 两个人视频免费观看高清| 欧美丝袜亚洲另类 | 美女cb高潮喷水在线观看 | 亚洲精品粉嫩美女一区| 淫妇啪啪啪对白视频| 欧美在线黄色| 黄片大片在线免费观看| 亚洲无线观看免费| 国内揄拍国产精品人妻在线| 欧美成人一区二区免费高清观看 | 无限看片的www在线观看| 五月伊人婷婷丁香| 黄频高清免费视频| 特大巨黑吊av在线直播| 搞女人的毛片| 大型黄色视频在线免费观看| 国产私拍福利视频在线观看| 麻豆av在线久日| 日本三级黄在线观看| 亚洲电影在线观看av| 国产成年人精品一区二区| 在线观看免费午夜福利视频| 一级黄色大片毛片| 69av精品久久久久久| 99国产精品一区二区三区| 国产精品女同一区二区软件 | 99re在线观看精品视频| 色尼玛亚洲综合影院| 久久久成人免费电影| svipshipincom国产片| 九九久久精品国产亚洲av麻豆 | 亚洲精品一区av在线观看| 最新在线观看一区二区三区| 少妇丰满av| 色尼玛亚洲综合影院| 18禁国产床啪视频网站| 精品国内亚洲2022精品成人| 露出奶头的视频| 亚洲一区二区三区不卡视频| 两个人视频免费观看高清| 欧美日韩瑟瑟在线播放| 成人无遮挡网站| av天堂中文字幕网| 成年人黄色毛片网站| av在线蜜桃| 熟女人妻精品中文字幕| 村上凉子中文字幕在线| www.精华液| 国产私拍福利视频在线观看| 成人欧美大片| 我要搜黄色片| 国产精品99久久99久久久不卡| 99国产精品一区二区蜜桃av| 黑人巨大精品欧美一区二区mp4| 国产精品久久久久久人妻精品电影| 免费看光身美女| 亚洲欧美日韩卡通动漫| 在线观看66精品国产| 两性夫妻黄色片| ponron亚洲| 欧美色欧美亚洲另类二区| 国产成人系列免费观看| 99久久成人亚洲精品观看| 国产精品免费一区二区三区在线| 日本三级黄在线观看| 在线免费观看的www视频| 亚洲在线观看片| 久久久久久国产a免费观看| 日韩欧美在线乱码| 亚洲av第一区精品v没综合| 国产精品98久久久久久宅男小说| 真人做人爱边吃奶动态| 欧美午夜高清在线| 97超级碰碰碰精品色视频在线观看| 国产成人精品久久二区二区免费| 久久国产精品影院| 噜噜噜噜噜久久久久久91| 无限看片的www在线观看| 日本精品一区二区三区蜜桃| 一区二区三区国产精品乱码| 国产精品,欧美在线| 亚洲 欧美一区二区三区| 亚洲国产精品sss在线观看| 中文字幕人妻丝袜一区二区| 99久久成人亚洲精品观看| 亚洲自拍偷在线| 国产精品美女特级片免费视频播放器 | 国产97色在线日韩免费| 精华霜和精华液先用哪个| 午夜激情欧美在线| 99re在线观看精品视频| 99久久精品国产亚洲精品| 亚洲成人精品中文字幕电影| 别揉我奶头~嗯~啊~动态视频| 久久精品91蜜桃| 亚洲狠狠婷婷综合久久图片| 久久草成人影院| 日韩人妻高清精品专区| 99国产综合亚洲精品| 亚洲精品456在线播放app | 久久精品人妻少妇| 九九热线精品视视频播放| 99久国产av精品| 国产一级毛片七仙女欲春2| 99久久无色码亚洲精品果冻| 国产又黄又爽又无遮挡在线| 久久久久久九九精品二区国产| 九九久久精品国产亚洲av麻豆 | 天天添夜夜摸| 中文字幕久久专区| 男女午夜视频在线观看| 男女视频在线观看网站免费| 欧美3d第一页| 免费av不卡在线播放| 国产精品女同一区二区软件 | 人妻丰满熟妇av一区二区三区| 日本一本二区三区精品| 香蕉久久夜色| 两个人的视频大全免费| 亚洲熟妇中文字幕五十中出| 精品熟女少妇八av免费久了| 一级毛片精品| 2021天堂中文幕一二区在线观| 免费观看人在逋| 日本在线视频免费播放| 国产视频一区二区在线看| 国产av不卡久久| 精品一区二区三区视频在线 | 免费观看人在逋| 欧美另类亚洲清纯唯美| 好看av亚洲va欧美ⅴa在| 美女午夜性视频免费| 露出奶头的视频| 亚洲精品粉嫩美女一区| 国产精品永久免费网站| 国内揄拍国产精品人妻在线| 欧美色视频一区免费| 搞女人的毛片| 日本免费a在线| 欧美极品一区二区三区四区| 中文亚洲av片在线观看爽| 亚洲国产看品久久| 欧美中文日本在线观看视频| 欧美日韩精品网址| 亚洲精品粉嫩美女一区| 啦啦啦韩国在线观看视频| 日韩成人在线观看一区二区三区| 午夜福利在线观看吧| 精品一区二区三区av网在线观看| 天天躁狠狠躁夜夜躁狠狠躁| а√天堂www在线а√下载| 窝窝影院91人妻| 99国产精品99久久久久| 少妇丰满av| 欧美成人免费av一区二区三区| 婷婷精品国产亚洲av| 久久久国产精品麻豆| 亚洲第一电影网av| 97超视频在线观看视频| 欧美黄色淫秽网站| 在线国产一区二区在线| 日韩 欧美 亚洲 中文字幕| 长腿黑丝高跟| 99久久成人亚洲精品观看| 丁香欧美五月| 精品久久蜜臀av无| 老熟妇仑乱视频hdxx| 90打野战视频偷拍视频| 国产久久久一区二区三区| 女人高潮潮喷娇喘18禁视频| 久久这里只有精品19| 女同久久另类99精品国产91| 亚洲性夜色夜夜综合| 精品久久久久久久久久久久久| 国产精品久久久久久亚洲av鲁大| 美女高潮喷水抽搐中文字幕| 久久草成人影院| 999精品在线视频| 成人性生交大片免费视频hd| 少妇熟女aⅴ在线视频| 欧美一区二区国产精品久久精品| 特大巨黑吊av在线直播| 亚洲专区中文字幕在线| 在线观看美女被高潮喷水网站 | 久久香蕉国产精品| 免费看日本二区| 久久久久久九九精品二区国产| 哪里可以看免费的av片| 国产成人aa在线观看| 老司机在亚洲福利影院| 99热只有精品国产| 麻豆成人午夜福利视频| 欧美日韩黄片免| 波多野结衣高清作品| 色视频www国产| 亚洲 欧美 日韩 在线 免费| 丝袜人妻中文字幕| 色综合婷婷激情| 国产精品免费一区二区三区在线| 久久久久性生活片| 亚洲成av人片在线播放无| 伊人久久大香线蕉亚洲五| 18禁美女被吸乳视频| 中文字幕av在线有码专区| 国产一区二区激情短视频| 色尼玛亚洲综合影院| 亚洲国产精品999在线| 欧美丝袜亚洲另类 | 亚洲国产欧美人成| 国内精品久久久久久久电影| 免费av不卡在线播放| 中亚洲国语对白在线视频| 可以在线观看毛片的网站| 国产精品一及| 99久久国产精品久久久| 亚洲精品一卡2卡三卡4卡5卡| 日韩 欧美 亚洲 中文字幕| 黄色片一级片一级黄色片| 午夜免费成人在线视频| 成年人黄色毛片网站| 欧美日韩瑟瑟在线播放| 99国产精品一区二区蜜桃av| 色综合婷婷激情| 久久久水蜜桃国产精品网| 波多野结衣巨乳人妻| 丰满人妻一区二区三区视频av | 亚洲av成人精品一区久久| 久久亚洲精品不卡| 久久草成人影院| 色哟哟哟哟哟哟| 性色av乱码一区二区三区2| 日韩欧美国产在线观看| 波多野结衣高清作品| 法律面前人人平等表现在哪些方面| 黄色成人免费大全| 国产成人精品久久二区二区91| 亚洲男人的天堂狠狠| 午夜免费成人在线视频| 国产成人影院久久av| 久久国产精品影院| 叶爱在线成人免费视频播放| 国产人伦9x9x在线观看| 亚洲精品色激情综合| 在线播放国产精品三级| 女人高潮潮喷娇喘18禁视频| 久久久久国产一级毛片高清牌|