• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Alterations of autophagic and innate immune responses by the Crohn’s disease-associated ATG16L1 mutation

    2022-07-30 10:03:12OkaiWatanabeMinagaKamataHonjoKudo
    World Journal of Gastroenterology 2022年26期

    Okai N, Watanabe T, Minaga K, Kamata K, Honjo H, Kudo M

    Abstract Crohn’s disease (CD) is driven by the loss of tolerance to intestinal microbiota and excessive production of pro-inflammatory cytokines. These pro-inflammatory cytokines are produced by macrophages and dendritic cells (DCs) upon sensing the intestinal microbiota by the pattern recognition receptors (PRRs). Impaired activation of PRR-mediated signaling pathways is associated with chronic gastrointestinal inflammation, as shown by the fact that loss-of-function mutations in the nucleotide-binding oligomerization domain 2 gene increase the risk of CD development. Autophagy is an intracellular degradation process,during which cytoplasmic nutrients and intracellular pathogens are digested.Given that impaired reaction to intestinal microbiota alters signaling pathways mediated by PRRs, it is likely that dysfunction of the autophagic machinery is involved in the development of CD. Indeed, the loss-of-function mutation T300A in the autophagy related 16 like 1 (ATG16L1) protein, a critical regulator of autophagy, increases susceptibility to CD. Recent studies have provided evidence that ATG16L1 is involved not only in autophagy, but also in PRR-mediated signaling pathways. ATG16L1 negatively regulates pro-inflammatory cytokine responses of macrophages and DCs after these cells sense the intestinal microbiota by PRRs. Here, we discuss the molecular mechanisms underlying the development of CD in the T300A ATG16L1 mutation by focusing on PRR-mediated signaling pathways.

    Key Words: ATG16L1; Crohn's disease; Autophagy; Innate immunity; Cytokine; Pattern recognition receptors

    lNTRODUCTlON

    Pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-12, and IL-23,underlie the immunopathogenesis of Crohn’s disease (CD), as evidenced by the clinical efficacy of targeting these cytokines for the treatment of patients[1,2]. These colitogenic cytokines are produced by macrophages and dendritic cells (DCs) upon sensing the intestinal microbiota by the pattern recognition receptors (PRRs), which are classified into Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), and retinoic acid-inducible gene I (RIG-I)-like receptors(RLRs)[3-6]. Thus, excessive pro-inflammatory cytokine responses caused by PRR activation play critical roles in the development of CD. This notion is fully supported by the identification of loss-of-function mutations inNOD2as one of the strongest risk factors for CD. NOD2 is an intracellular PRR that senses muramyl dipeptide (MDP) derived from bacterial cell wall components and negatively regulates TLRmediated pro-inflammatory cytokine responses[5,6].

    Autophagy refers to the process during which cytoplasmic components and intracellular pathogens are delivered to the lysosome for degradation in the form of double-membrane-bound autophagosomes[7]. The autophagy related 16 like 1 (ATG16L1) protein plays an indispensable role in the initiation and completion of the autophagic process. In addition to its role in autophagy, ATG16L1 has been shown to be involved in PRR-mediated innate immunity. ATG16L1 negatively regulates pro-inflammatory and type I interferon (IFN-I) responses mediated by TLRs, NLRs, and RLRs[8]. More importantly, the lossof-function mutation T300A inATG16L1has been identified as a risk factor for CD in parallel with mutations inNOD2[6]. In this minireview article, we summarize the molecular mechanisms by which the T300A mutation inATG16L1predisposes the host to CD development by focusing on the regulatory role of ATG16L1 in PRR-mediated signaling pathways.

    lNDUCTlON OF AUTOPHAGY BY ATG16L1

    ATG16L1 is an indispensable molecule for autophagic responses (Table 1). The autophagy process includes vesicle nucleation, vesicle elongation, vesicle completion, fusion with lysosome, degradation,and recycling[9]. Autophagy dysfunction is associated with neurodegenerative diseases, microbial infections, and aging[7]. Although autophagy has been identified as the primary cell response to the lack of nutrients, recent studies have highlighted the importance of autophagy in microbial infection and immune responses[9]. The autophagy process is negatively regulated by growth factors, which activate the mechanistic target of rapamycin (mTOR) and the phosphoinositide 3-kinase (PI3K)-AKT pathways[7,9]. On the contrary, nutrient starvation or rapamycin treatment promotes the autophagic process through the inhibition of mTOR. Thus, the PI3K-AKT-mTOR pathway negatively regulates autophagic process. On the molecular level, mTOR activation controls the initiation of autophagy by suppressing the activation of the primary initiation complex of autophagy, called Unc-51 Like autophagy activating kinase 1 (ULK1) complex, composed of ULK1/2, ATG101, ATG13, and RB1CC1/FIP200[9]. The formed ULK1 complex translocates to the site of the second complex, called the PI3K complex[9]. The latter PI3K complex recruits a number of ATG proteins to promote elongation and expansion of the autophagosome.

    Two ubiquitin-like conjugation systems, the ATG5-ATG12-ATG16L1 conjugation system and the microtubule-associated protein 1 Light chain 3 (LC3) conjugation system, play important roles in the elongation and expansion of the autophagosome[7,9]. The conjugation of the membrane lipid phosphatidylethanolamine with the soluble form of LC3 and formation of the ATG5-ATG12-ATG16L1 complex is necessary for the maturation of autophagosomes[7,9,10]. Matured autophagosomes are fused with lysosomes for the degradation of cellular materials. Vesicles containing ATG16L1 are necessary formembrane trafficking and autophagosome formation[7,9,10]. Thus, ATG16L1 is an essential protein for the induction and completion of autophagic responses.

    Table 1 Physiological functions of autophagy related 16 like 1

    ATG16L1 AND lNNATE lMMUNlTY

    ATG16L1 has been shown to attenuate proinflammatory cytokine responses in innate immunity(Table 1)[8]. RLRs, including RIG-I and melanoma differentiation-associated gene 5 (MDA5), are sensors for RNA viruses[3]. IFN-I, which is produced after viral RNA is sensed by RLRs, plays a protective role in host defense[3]. Mouse embryonic fibroblasts deficient in ATG5 displayed enhanced production of IFN-I after exposure to vesicular stomatitis virus due to enhanced activation of IFN regulatory factor 3[11]. Enhanced production of IFN-I is associated with reduced viral load[11]. ATG16L1 is involved in the regulation of IFN-I mediated by RLRs. Two mitochondrial proteins, NLRX1 and its binding partner,Tu translation elongation factor, interact with ATG5, ATG12, and ATG16L1, and suppress RLR-induced IFN-I production and thereby promoting autophagy[12]. In addition, ATG16L1 has been shown to regulate IFN-I production by interacting with TLR3 and TLR4[13]. Samieet al[13] have provided evidence that macrophages deficient in ATG16L1 produced large amounts of IFN-I after stimulation with TLR3 and TLR4 Ligands (Figure 1). Mechanistically, the loss of ATG16L1 resulted in the accumulation of the toll-IL-1 receptor domain-containing adaptor inducing IFN-β protein (TRIF), leading to the excessive activation of TLR3- and TLR4-mediated signaling pathways. Interestingly, macrophages isolated from individuals bearing the CD-associated ATG16L1 T300A variant also exhibited enhanced IFN-I production upon stimulation with TLR3 and TLR4 Ligands[13]. Thus, ATG16L1 functions as a negative regulator of IFN-I production induced by TLR activation. Excessive activation of IFN-I signaling caused by ATG16L1 deficiency may protect against microbial infection. In fact, ATG16L1 hypomorphic mice displayed enhanced IFN-I signaling upon challenge withCitrobacter rodentium,which conferred protection from enteric pathogen infection[14]. This protection was mediated by mitochondrial antiviral signaling (MAVS) and stimulator of interferon genes (STING) proteins, because mice with hypomorphic ATG16L1 expression and deficient in MAVS or STING were not protected from theC.rodentiuminfection. Similarly, the clearance ofSalmonella typhimuriumfrom the intestine was augmented in mice with myeloid cell-specific ATG16L1 deficiency in an IFN-I-dependent manner[13].IL-22 is a barrier protective cytokine that stimulates antimicrobial responses in the intestine[15]. IL-22 induces STING-dependent IFN-I signaling, which is augmented in the absence of ATG16L1[15]. Such enhanced IFN-I signaling promotes TNF-α production, leading to ileal inflammation, suggesting that ATG16L1 deficiency mediates pro-inflammatory TNF-α responses through cooperative interaction between IL-22 and IFN-I[15]. Taken together, these studies suggest that ATG16L1 dampens IFN-I production mediated by RLRs and TLRs. In turn, the lack of negative regulation of IFN-I signaling owing to the absence of ATG16L1 or the presence of ATG16L1 T300A variant mediates protection from microbial infection in the gastrointestinal tract in an IFN-I-dependent manner.

    In addition to attenuating IFN-I production, ATG16L1 also suppresses IL-1β production by macrophages[16,17]. Macrophages expressing ATG16L1 that lacks the coiled-coil domain produced large amounts of IL-1β upon stimulation with lipopolysaccharide (LPS) (Figure 1)[17]. Pro-IL-1β is processed into the mature form of IL-1β by caspase-1[18]. Accumulation of TRIF is involved in enhanced IFN-I production in the absence ofATG16L1or presence of theATG16L1T300A mutation[13]. Similarly,TRIF-dependent activation of caspase-1 leads to increased production of IL-1β in macrophages lacking ATG16L1[17]. In a murine model of urinary tract infection, ATG16L1 deficiency promoted clearance of uropathogenicEscherichia colithrough excessive production of IL-1β[19]. Thus, ATG16L1 negatively regulates pro-inflammatory pathways mediated not only by IFN-I, but also by IL-1β.

    Regulatory T cells (Tregs) expressing forkhead box P3 (FOXP3) are a specialized T cell population that is indispensable for the establishment and maintenance of immunological self-tolerance[20].Impaired activation of Tregs leads to the development of autoimmune disorders.Bacteroides fragilis(B.fragilis) has been considered to stimulate beneficial immunoregulatory functions through induction of Tregs[21]. Chuet al[22] provided evidence that ATG16L1 expressed in DCs was required for the induction of Tregs expressing FOXP3 upon exposure to outer membrane vesicles (OMVs) ofB. fragilis.Oral administration of OMVs fromB. fragilisprotected wild-type mice from experimental colitis[22],and this effect was accompanied by increased proportions of Tregs expressing FOXP3 and IL-10. Such protective effect of oral administration of OMVs was not seen in mice with DC-specific ATG16L1 deficiency. Thus, ATG16L1 is involved in the maintenance of immune homeostasis through induction of Tregs expressing FOXP3.

    Mutations inNOD2are the strongest risk factor for the development of CD[5,6]. MDP, a bacterial component derived from intestinal bacteria, is a prototypical NOD2 ligand[23,24]. Activation of NOD2 by MDP induces autophagy in macrophages, DCs, and fibroblasts, but not in cells harboring CDassociatedNOD2mutations[25]. Physical interaction between NOD2 and ATG16L1 is induced by the stimulation with MDP[25,26]. Thus, MDP activation of NOD2 mediates bactericidal effects in an ATG16L1-dependent manner, and the presence of CD-associatedNOD2mutations promotes overgrowth of intestinal bacteria, leading to excessive production of pro-inflammatory cytokines.

    Receptor-interacting serine/threonine-protein kinase 2 (RIPK2) is a signaling molecule downstream of NOD2 and TLRs[23,24]. It remains unclear whether ATG16L1 binds to RIPK2 after activation of NOD2. In this regard, we confirmed that ATG16L1 binds to the kinase domain of RIPK2 in overexpression studies[26,27]. In human DCs, ATG16L1 interacted with RIPK2 after the stimulation with MDP and this interaction suppressed NF-κB-dependent proinflammatory responses mediated by TLRs[26,27]. Transfection of intactATG16L1, but not ofATG16L1with the T300A mutation, reduced TLR2-mediated NF-κB activation in human embryonic kidney cells. In the physiological setting, NF-κB activation, as assessed by the degradation of IκBα and expression of phospho-IκBα, was markedly suppressed in human DCs stimulated with TLR2 and NOD2 ligands as compared to the effect of stimulation with a TLR2 ligand alone[26,27]. Furthermore, knockdown ofATG16L1by its specific siRNA increased IL-6 and IL-12p40 production by human DCs upon exposure to TLR2 and NOD2 ligands as compared to the levels of those cytokines in cells transfected with control siRNA[26,27].These studies strongly suggest that ATG16L1 functions as a negative regulator of TLR2-mediated proinflammatory cytokine responses (Figure 1).

    NF-κB activation mediated by TLRs and NOD2 is tightly regulated by Lys (K63)- linked polyubiquitination of RIPK2[23,24,27,28]. As for the molecular mechanisms accounting for the suppression of TLR2-mediated NF-κB activation and pro-inflammatory cytokine production, ATG16L1 has been shown to inhibit polyubiquitination of RIPK2[26,28]. NOD2 activation by MDP also inhibited polyubiquitination of RIPK2 through the induction of interferon regulatory factor 4 (IRF4)[23,24]. Overexpression studies revealed that ATG16L1 and IRF4 act cooperatively to suppress K63-linked polyubiquitination of RIPK2[27]. Given that physical interaction between RIPK2 and IRF4 or ATG16L1 is induced after NOD2 activation by MDP, it is likely that NOD2 downregulates TLR-mediated proinflammatory cytokine responses through binding of ATG16L1 and IRF4 to RIPK2. This idea is fully supported by the fact that RIPK2 expression level is markedly elevated in the colonic mucosa of patients with CD and ulcerative colitis (UC), and it corelates with the levels of pro-inflammatory cytokines, such as TNF-α and IL-6[29].Furthermore, the percentages of lamina propria DCs expressing ATG16L1 and IRF4 in the colon inversely correlate with the expression levels of TNF-α and IL-6[27]. Collectively, these studies support the idea that ATG16L1 acts in concert with NOD2 to suppress excessive pro-inflammatory cytokine responses mediated by TLRs and thereby maintains intestinal homeostasis.

    ATG16L1 AND CD

    The polymorphism Thr300Ala (or T300A) in the coding region of theATG16L1gene confers increased risk for the development of CD[6,10,16]. This polymorphism is a loss-of-function mutation, which affects the induction of autophagy against invading bacteria and is associated with gut bacterial overgrowth and pro-inflammatory cytokine responses[6,10,16]. Recent studies have successfully elucidated some of the molecular mechanisms accounting for the development of CD in the presence of the ATG16L1 T300A variant. Given that ATG16L1 is constitutively expressed in epithelial cells,especially Paneth cells and myeloid cells, these studies have highlighted the importance of ATG16L1-mediated signaling pathways in innate immune cells for the immunopathogenesis of CD[17,25,28,30,31].

    Paneth cells are localized at the base of the crypts in the ileum, and they contribute to the maintenance of intestinal homeostasis through the secretion of antimicrobial peptides (AMPs) and inhibition of intestinal bacterial overgrowth[32]. Mice with hypomorphic expression of ATG16L1 and ATG16L1 T300A-knockin (KI) mice exhibit increased proportions of Paneth cells with abnormal phenotypes, as assessed by lysozyme localization and granule morphology[30-32]. Moreover, Paneth cells from patients with CD carrying ATG16L1 T300A have unusual granule morphology and accumulation of AMPs, with both having been observed also in mice deficient in ATG16L1 or expressing ATG16L1 T300A[32]. Furthermore, defective function of Paneth cells in the absence of ATG16L1 or the presence of theATG16L1T300A mutation led to higher susceptibility to TNF-α-mediated necroptosis and accumulation of the endoplasmic reticulum stress sensor IRE1a, indicating that necroptosis and endoplasmic reticulum stress are involved in the pathogenesis of CD[33]. Thus, the ileal mucosa of patients and mice bearing ATG16L1 T300A is characterized by the defective function of Paneth cells,which results in the overgrowth of intestinal bacteria. This notion is supported by the fact that CD patients bearing theATG16L1T300A mutation display impaired clearance of pathogenic bacteria in the ileal mucosa[34]. It is well established that CD occurs as a result of the interplay between genetic susceptibility and environmental factors. Cigarette smoking is a risk factor for developing CD[35].Interestingly, cigarette smoking has been suggested to amplify effects of theATG16L1T300A mutation,triggering Paneth cell defects, thereby causing chronic intestinal inflammation[31].

    Pro-inflammatory cytokine responses play an important role in the development of CD[1]. TheATG16L1T300A mutation has been shown to enhance pro-inflammatory cytokine responses in the intestine. Mice lacking ATG16L1 in hematopoietic cells were susceptible to dextran sodium sulfate(DSS)-induced colitis[17]. Aggravated DSS-induced colitis in mice lacking ATG16L1 was alleviated by blocking IL-1β-mediated signaling pathways[17]. Furthermore, macrophages lacking ATG16L1 produced more IL-1β upon stimulation with LPS[17]. As for the molecular mechanisms accounting for enhanced production of IL-1β in the absence of ATG16L1, Saitohet al[17] showed that ATG16L1 deficiency resulted in increased production of this cytokine through the TRIF-dependent activation of caspase-1. Thus, ATG16L1 deficiency predisposed mice to DSS-induced colitis by activating IL-1βmediated signaling pathways. In line with these data obtained in mice lacking ATG16L1 in hematopoietic cells, ATG16L1 T300A-KI mice displayed enhanced production of IL-1β upon exposure to LPS[16]. These studies, which utilized ATG16L1-deficient and ATG16L1 T300A-KI mice, support the idea that intact ATG16L1-medaited signaling pathways limit pro-inflammatory cytokine responses triggered by activation of TLRs. In this regard, we and others have reported that ATG16L1 negatively regulates pro-inflammatory cytokine responses mediated by RIPK2, a downstream signaling molecule of TLRs and NLRs[27,28]. Binding of ATG16L1 to the kinase domain of RIPK2 inhibits polyubiquitination of RIPK2, followed by suppression of NF-κB activation[27,28]. These studies strongly suggest that ATG16L1 activation maintains intestinal homeostasis and attenuates reactions against microbiota by inhibiting TLR-mediated pro-inflammatory cytokine responses in macrophages and DCs. Strong support for this idea also comes from the observations that colonic pro-inflammatory cytokine expression inversely correlates with the percentage of CD11c+DCs expressing ATG16L1 in patients with CD and that induction of remission is accompanied by accumulation of CD11c+DCs expressing ATG16L1 in the gastrointestinal tract of patients with CD[27].

    ATG16L1 negatively regulates IFN-I responses mediated by RLRs and TLRs[11-14]. Isolated macrophages from patients with CD bearing theATG16L1T300A mutation produced more IFN-I upon stimulation with TLR3 and TLR4 ligands than macrophages from patients with intact ATG16L1[13,36].Excessive production of IFN-I is involved in the immunopathogenesis of CD and UC. Expression levels of the IFN-stimulated genes was shown to be higher in the inflamed colonic mucosa of patients with CD or UC than in healthy controls[13]. Moreover, expression levels of IFN-stimulated genes rapidly declined in response to infliximab treatment. Although the presence of theATG16L1T300A variant is associated with colitogenic IFN-I responses, the enhanced production of IFN-I may improve survival of patients with colorectal cancer[36].

    Similar to the molecular mechanisms of chronic inflammation in the presence of CD-associated mutations inNOD2,theATG16L1T300A mutation promotes the development of CD by causing impaired production of AMPs in Paneth cells and excessive secretion of TLR-mediated pro-inflammatory cytokines by macrophages and DCs. MDP activation of NOD2 induces robust production of AMPs from Paneth cells, thereby preventing bacterial overgrowth in the intestine[5]. Paneth cells deficient in NOD2 or bearing CD-associatedNOD2mutations fail to produce AMPs[5]. With regard to the pro-inflammatory cytokine responses, activation of intact NOD2 by MDP negatively regulates the production of TLR-mediated pro-inflammatory cytokines through the induction of IRF4[23,24]. In the absence of intactNOD2or the presence of CD-associatedNOD2mutations, pro-inflammatory cytokine responses by DCs are markedly enhanced upon exposure to TLR ligands derived from the intestinal microbiota[5]. Thus, impaired function of Paneth cells and excessive pro-inflammatory cytokine responses by TLRs underlie the immunopathogenesis of CD in the presence ofATG16L1andNOD2mutations.

    CONCLUSlON

    The autophagic protein ATG16L1 plays an indispensable role in the maintenance of intestinal homeostasis. TheATG16L1T300A mutation confers an increased risk for the development of CD as it is associated with increased bacterial burden and excessive pro-inflammatory cytokine responses in the gastrointestinal tract. Elucidation of the molecular mechanisms by which theATG16L1T300A variant leads to the development of CD has provided new insights into the immunopathogenesis of CD induced by impaired induction of autophagy.

    ACKNOWLEDGEMENTS

    We appreciate Ms. Yukiko Ueno for her secretarial support.

    FOOTNOTES

    Author contributions:Okai N and Watanabe T drafted the manuscript; Watanabe T, Minaga K, Kamata K, Honjo H,and Kudo M revised the manuscript; OKai N, Watanabe T, Minaga K, Kamata K, Honjo H and Kudo M have read and approved the final manuscript.

    Conflict-of-interest statement:The authors declare that they have no conflicts of interest to disclose.

    Open-Access:This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BYNC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

    Country/Territory of origin:Japan

    ORClD number:Natsuki Okai 0000-0002-3167-4927; Tomohiro Watanabe 0000-0001-7781-6305; Kosuke Minaga 0000-0001-5407-7925; Ken Kamata 0000-0003-1568-0769; Hajime Honjo 0000-0002-0888-3384; Masatoshi Kudo 0000-0002-4102-3474.

    Corresponding Author's Membership in Professional Societies:The Japanese Society of Gastroenterology, No. 34410.

    S-Editor:Ma YJ

    L-Editor:A

    P-Editor:Ma YJ

    午夜福利影视在线免费观看| 一区福利在线观看| 国产精品一区二区在线观看99| 欧美精品一区二区免费开放| 亚洲情色 制服丝袜| 亚洲va日本ⅴa欧美va伊人久久| 黑人巨大精品欧美一区二区蜜桃| 捣出白浆h1v1| 18禁黄网站禁片午夜丰满| 黄色a级毛片大全视频| 九色亚洲精品在线播放| 国产不卡一卡二| 性高湖久久久久久久久免费观看| 亚洲天堂av无毛| 多毛熟女@视频| 久久 成人 亚洲| 99精品在免费线老司机午夜| 国内毛片毛片毛片毛片毛片| 视频在线观看一区二区三区| 中国美女看黄片| bbb黄色大片| 国产男女内射视频| 久久99热这里只频精品6学生| 免费一级毛片在线播放高清视频 | 亚洲黑人精品在线| 天堂中文最新版在线下载| 亚洲国产欧美一区二区综合| 中文字幕人妻熟女乱码| 99热网站在线观看| 午夜久久久在线观看| 国产一区二区 视频在线| 色播在线永久视频| 亚洲专区字幕在线| 黄色成人免费大全| 欧美 日韩 精品 国产| 亚洲美女黄片视频| 久久久精品免费免费高清| 精品人妻熟女毛片av久久网站| 午夜福利在线免费观看网站| 高清黄色对白视频在线免费看| 香蕉国产在线看| 亚洲国产欧美在线一区| 午夜免费鲁丝| 一区二区三区乱码不卡18| 999精品在线视频| 中文字幕人妻丝袜一区二区| 亚洲熟女精品中文字幕| 国产99久久九九免费精品| 欧美日韩黄片免| 人人妻人人爽人人添夜夜欢视频| 亚洲人成电影免费在线| 亚洲欧美一区二区三区久久| 精品人妻1区二区| 午夜福利在线免费观看网站| 成人国语在线视频| 亚洲精品美女久久久久99蜜臀| 国产黄色免费在线视频| av国产精品久久久久影院| 999精品在线视频| 亚洲精品美女久久av网站| 男女边摸边吃奶| 在线播放国产精品三级| 久久久久久免费高清国产稀缺| 亚洲,欧美精品.| 桃红色精品国产亚洲av| 啦啦啦视频在线资源免费观看| 纯流量卡能插随身wifi吗| 日韩三级视频一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 窝窝影院91人妻| 午夜精品国产一区二区电影| 欧美激情高清一区二区三区| 亚洲免费av在线视频| 国产亚洲精品一区二区www | 精品久久久久久久毛片微露脸| 一进一出抽搐动态| 我要看黄色一级片免费的| 亚洲美女黄片视频| 一级,二级,三级黄色视频| 亚洲欧洲精品一区二区精品久久久| 欧美成人午夜精品| 亚洲中文av在线| 国产一区二区在线观看av| 欧美乱码精品一区二区三区| 两个人免费观看高清视频| 一级,二级,三级黄色视频| 亚洲精品国产色婷婷电影| 亚洲欧美日韩另类电影网站| 久久久水蜜桃国产精品网| 99香蕉大伊视频| 日日摸夜夜添夜夜添小说| 亚洲 国产 在线| 国产成人精品在线电影| 久久久久久亚洲精品国产蜜桃av| 午夜福利影视在线免费观看| 国产主播在线观看一区二区| 欧美亚洲 丝袜 人妻 在线| 人人妻人人添人人爽欧美一区卜| 亚洲国产成人一精品久久久| 免费女性裸体啪啪无遮挡网站| 一级片'在线观看视频| 一二三四在线观看免费中文在| 亚洲精品一二三| 成人手机av| 精品国内亚洲2022精品成人 | 国产真人三级小视频在线观看| 欧美精品一区二区大全| 欧美国产精品一级二级三级| 久久久久久久国产电影| 国产男女超爽视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产视频一区二区在线看| 高清视频免费观看一区二区| 在线av久久热| 欧美日韩精品网址| 日本黄色日本黄色录像| 亚洲免费av在线视频| 一边摸一边抽搐一进一出视频| 国产主播在线观看一区二区| 国产极品粉嫩免费观看在线| 亚洲午夜精品一区,二区,三区| 蜜桃在线观看..| 国产av又大| 免费一级毛片在线播放高清视频 | 成人18禁高潮啪啪吃奶动态图| 精品一区二区三区视频在线观看免费 | 菩萨蛮人人尽说江南好唐韦庄| 美国免费a级毛片| 国产日韩欧美在线精品| 中国美女看黄片| 免费在线观看日本一区| 国产成人系列免费观看| 国产黄频视频在线观看| 日韩免费高清中文字幕av| 一区福利在线观看| 成人黄色视频免费在线看| 一区二区三区国产精品乱码| 久久毛片免费看一区二区三区| 欧美成狂野欧美在线观看| 精品少妇内射三级| 国产主播在线观看一区二区| 两性夫妻黄色片| 真人做人爱边吃奶动态| 巨乳人妻的诱惑在线观看| 国产成人影院久久av| 亚洲精品av麻豆狂野| 亚洲成人免费av在线播放| 69av精品久久久久久 | 黑丝袜美女国产一区| 亚洲第一欧美日韩一区二区三区 | 狠狠狠狠99中文字幕| 久久久精品94久久精品| 国产在线一区二区三区精| 亚洲av第一区精品v没综合| 久久久久精品国产欧美久久久| 亚洲精品国产区一区二| 99精国产麻豆久久婷婷| www.熟女人妻精品国产| 国产欧美日韩一区二区三区在线| 满18在线观看网站| 日日夜夜操网爽| 国产在线观看jvid| 国产欧美日韩一区二区精品| 亚洲国产欧美网| 国产精品香港三级国产av潘金莲| 国产黄频视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 久久狼人影院| 国产国语露脸激情在线看| 岛国在线观看网站| 国产在线免费精品| 亚洲精品国产色婷婷电影| 男人舔女人的私密视频| 一级,二级,三级黄色视频| 日日爽夜夜爽网站| 日韩视频在线欧美| 久久久精品国产亚洲av高清涩受| 曰老女人黄片| 久久精品人人爽人人爽视色| 搡老乐熟女国产| 伊人久久大香线蕉亚洲五| 亚洲国产精品一区二区三区在线| 中文字幕av电影在线播放| 国产xxxxx性猛交| 国产精品成人在线| 色综合婷婷激情| 午夜福利欧美成人| 老司机午夜十八禁免费视频| 曰老女人黄片| 99国产综合亚洲精品| 国产片内射在线| 国产欧美日韩一区二区三区在线| 18在线观看网站| 制服人妻中文乱码| 一级a爱视频在线免费观看| 国产又色又爽无遮挡免费看| 亚洲一码二码三码区别大吗| 在线av久久热| 夜夜骑夜夜射夜夜干| 十八禁高潮呻吟视频| 国产精品一区二区在线观看99| 免费在线观看黄色视频的| 国产99久久九九免费精品| 热re99久久精品国产66热6| 18禁国产床啪视频网站| 久久精品成人免费网站| 国产片内射在线| 变态另类成人亚洲欧美熟女 | 黑丝袜美女国产一区| 极品人妻少妇av视频| 亚洲国产欧美网| videos熟女内射| 黄色视频,在线免费观看| 少妇的丰满在线观看| 水蜜桃什么品种好| 日韩欧美一区视频在线观看| 99久久精品国产亚洲精品| 久热爱精品视频在线9| 一个人免费在线观看的高清视频| 黄色怎么调成土黄色| 波多野结衣av一区二区av| 大香蕉久久成人网| 9热在线视频观看99| 女性生殖器流出的白浆| 天堂8中文在线网| tube8黄色片| 青草久久国产| 老司机在亚洲福利影院| 国产男女超爽视频在线观看| 久久热在线av| 两个人免费观看高清视频| 菩萨蛮人人尽说江南好唐韦庄| 中文亚洲av片在线观看爽 | 久久久精品国产亚洲av高清涩受| 亚洲精品国产区一区二| 久久精品成人免费网站| 国产精品国产高清国产av | 在线观看免费午夜福利视频| 亚洲欧美日韩另类电影网站| 欧美精品一区二区大全| av不卡在线播放| 亚洲精品粉嫩美女一区| 免费av中文字幕在线| 十八禁高潮呻吟视频| 成人手机av| 色老头精品视频在线观看| av有码第一页| 人人妻人人添人人爽欧美一区卜| 18禁国产床啪视频网站| 色尼玛亚洲综合影院| 极品少妇高潮喷水抽搐| 无人区码免费观看不卡 | 日韩一卡2卡3卡4卡2021年| 丰满少妇做爰视频| 99国产精品免费福利视频| 欧美黄色淫秽网站| 人人妻,人人澡人人爽秒播| 久久性视频一级片| 麻豆成人av在线观看| 丝袜美腿诱惑在线| 美女福利国产在线| 深夜精品福利| 欧美中文综合在线视频| 涩涩av久久男人的天堂| 女警被强在线播放| 女人被躁到高潮嗷嗷叫费观| 欧美亚洲 丝袜 人妻 在线| 热99国产精品久久久久久7| 女人久久www免费人成看片| 制服人妻中文乱码| 欧美变态另类bdsm刘玥| 美女扒开内裤让男人捅视频| 欧美av亚洲av综合av国产av| 女人精品久久久久毛片| 久久精品国产a三级三级三级| 国产精品偷伦视频观看了| 免费日韩欧美在线观看| 成人免费观看视频高清| 精品国内亚洲2022精品成人 | 成人亚洲精品一区在线观看| 一级毛片精品| 欧美激情 高清一区二区三区| 高清av免费在线| 日韩欧美国产一区二区入口| 女警被强在线播放| 久久久久久久国产电影| 精品熟女少妇八av免费久了| 久久国产精品影院| 国产91精品成人一区二区三区 | 精品人妻在线不人妻| 嫁个100分男人电影在线观看| 在线观看免费高清a一片| 国产伦理片在线播放av一区| 久久久久精品国产欧美久久久| 亚洲国产毛片av蜜桃av| 国产精品亚洲av一区麻豆| 久久久久久人人人人人| 男人操女人黄网站| 精品一区二区三区视频在线观看免费 | 下体分泌物呈黄色| 亚洲七黄色美女视频| 黑人操中国人逼视频| 啦啦啦 在线观看视频| 欧美久久黑人一区二区| 国产91精品成人一区二区三区 | 亚洲男人天堂网一区| 高清av免费在线| 波多野结衣av一区二区av| 精品一区二区三区四区五区乱码| 中文字幕制服av| 桃红色精品国产亚洲av| 天堂俺去俺来也www色官网| 一夜夜www| 亚洲午夜理论影院| 日韩视频一区二区在线观看| 亚洲av片天天在线观看| 美女高潮到喷水免费观看| 欧美国产精品一级二级三级| 成年动漫av网址| 十分钟在线观看高清视频www| 日韩免费av在线播放| 久久久久国内视频| 国产日韩欧美视频二区| 在线观看免费日韩欧美大片| 精品国产超薄肉色丝袜足j| a级毛片在线看网站| 美女国产高潮福利片在线看| 久久99一区二区三区| 欧美人与性动交α欧美软件| 免费观看人在逋| 亚洲中文日韩欧美视频| 国产精品九九99| 久久热在线av| 99re6热这里在线精品视频| 久久久国产一区二区| 国产精品久久久av美女十八| 国产97色在线日韩免费| 亚洲精品在线观看二区| 日本vs欧美在线观看视频| 国产欧美日韩一区二区三区在线| 黄色片一级片一级黄色片| 午夜视频精品福利| 亚洲人成电影免费在线| 欧美+亚洲+日韩+国产| 99精品久久久久人妻精品| 妹子高潮喷水视频| 大香蕉久久成人网| 亚洲精品中文字幕在线视频| 成人手机av| 国产亚洲一区二区精品| tocl精华| 天天躁夜夜躁狠狠躁躁| 无人区码免费观看不卡 | 两人在一起打扑克的视频| 中文字幕制服av| 亚洲精品粉嫩美女一区| 黄色a级毛片大全视频| 亚洲男人天堂网一区| 久久国产精品人妻蜜桃| a级片在线免费高清观看视频| 免费av中文字幕在线| 一区二区日韩欧美中文字幕| 亚洲精品国产一区二区精华液| 丁香欧美五月| 亚洲国产中文字幕在线视频| 久久毛片免费看一区二区三区| 欧美国产精品一级二级三级| a级片在线免费高清观看视频| 成人18禁高潮啪啪吃奶动态图| 欧美老熟妇乱子伦牲交| 久久久精品94久久精品| 欧美激情 高清一区二区三区| 久久人妻av系列| 18禁国产床啪视频网站| 日本av手机在线免费观看| 亚洲久久久国产精品| 黄色a级毛片大全视频| www.999成人在线观看| 青青草视频在线视频观看| 99re6热这里在线精品视频| 色视频在线一区二区三区| 深夜精品福利| 黄色毛片三级朝国网站| 黑丝袜美女国产一区| 日日爽夜夜爽网站| 亚洲性夜色夜夜综合| 国产亚洲精品一区二区www | svipshipincom国产片| 日韩欧美一区视频在线观看| 国产日韩一区二区三区精品不卡| 亚洲精品美女久久av网站| 亚洲精品av麻豆狂野| 亚洲av日韩精品久久久久久密| 精品少妇内射三级| 免费女性裸体啪啪无遮挡网站| 免费日韩欧美在线观看| 久久天躁狠狠躁夜夜2o2o| 国产亚洲av高清不卡| 青草久久国产| 久久人人97超碰香蕉20202| 日韩一卡2卡3卡4卡2021年| 精品亚洲成a人片在线观看| 国产成人欧美在线观看 | 亚洲精华国产精华精| 水蜜桃什么品种好| 超色免费av| 精品国产超薄肉色丝袜足j| 波多野结衣一区麻豆| 12—13女人毛片做爰片一| 免费在线观看黄色视频的| 亚洲av成人不卡在线观看播放网| 中文字幕色久视频| 考比视频在线观看| 精品少妇久久久久久888优播| 美女高潮到喷水免费观看| 黑人操中国人逼视频| 久久人妻熟女aⅴ| 热99国产精品久久久久久7| 精品福利永久在线观看| 精品国产亚洲在线| 午夜精品久久久久久毛片777| 韩国精品一区二区三区| 欧美一级毛片孕妇| 久久毛片免费看一区二区三区| 国产精品一区二区免费欧美| 岛国毛片在线播放| av电影中文网址| 欧美在线一区亚洲| 精品国产亚洲在线| 亚洲国产av新网站| 亚洲第一av免费看| 欧美大码av| 老汉色av国产亚洲站长工具| 王馨瑶露胸无遮挡在线观看| 亚洲欧美一区二区三区黑人| 亚洲欧美日韩另类电影网站| 99香蕉大伊视频| 国产日韩欧美亚洲二区| 亚洲熟女毛片儿| 亚洲精品粉嫩美女一区| 亚洲专区字幕在线| 天天操日日干夜夜撸| 亚洲色图av天堂| 一区二区三区精品91| 国产欧美日韩一区二区三区在线| 国产单亲对白刺激| 国产一卡二卡三卡精品| 久久国产亚洲av麻豆专区| 天天添夜夜摸| 亚洲一区中文字幕在线| 欧美精品一区二区免费开放| 99国产极品粉嫩在线观看| 狂野欧美激情性xxxx| 考比视频在线观看| 国精品久久久久久国模美| 国产精品自产拍在线观看55亚洲 | 国产又色又爽无遮挡免费看| 9色porny在线观看| 性高湖久久久久久久久免费观看| 欧美国产精品va在线观看不卡| 亚洲国产欧美一区二区综合| 黄色 视频免费看| 操美女的视频在线观看| 少妇精品久久久久久久| 欧美大码av| 国产一区二区三区综合在线观看| 一区二区三区乱码不卡18| 母亲3免费完整高清在线观看| 亚洲中文字幕日韩| 国产麻豆69| 日本欧美视频一区| 久久热在线av| 国产av精品麻豆| 97人妻天天添夜夜摸| 十八禁人妻一区二区| 午夜精品国产一区二区电影| 精品午夜福利视频在线观看一区 | 国产精品久久电影中文字幕 | 黄频高清免费视频| 欧美精品亚洲一区二区| 亚洲人成电影免费在线| 巨乳人妻的诱惑在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲av日韩精品久久久久久密| 在线十欧美十亚洲十日本专区| 亚洲人成电影观看| 国产深夜福利视频在线观看| 一级片'在线观看视频| 一本一本久久a久久精品综合妖精| 丝袜美足系列| 国产精品久久久久久人妻精品电影 | 狠狠狠狠99中文字幕| 亚洲熟女毛片儿| 精品一区二区三区四区五区乱码| 一区二区日韩欧美中文字幕| 日日摸夜夜添夜夜添小说| 久久精品国产亚洲av高清一级| 成人特级黄色片久久久久久久 | 午夜视频精品福利| 婷婷丁香在线五月| 欧美黄色片欧美黄色片| 日日摸夜夜添夜夜添小说| 日本a在线网址| 日韩一区二区三区影片| 国产麻豆69| 一区二区日韩欧美中文字幕| 国产1区2区3区精品| 69av精品久久久久久 | 日韩中文字幕视频在线看片| 一本一本久久a久久精品综合妖精| 久久精品国产综合久久久| 色精品久久人妻99蜜桃| 黑人巨大精品欧美一区二区蜜桃| 多毛熟女@视频| 美女高潮到喷水免费观看| a级毛片黄视频| 成人黄色视频免费在线看| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久久久免费视频了| 中文字幕人妻丝袜制服| 国产无遮挡羞羞视频在线观看| av片东京热男人的天堂| 他把我摸到了高潮在线观看 | 欧美精品一区二区大全| 中文字幕制服av| 亚洲精品国产一区二区精华液| 99在线人妻在线中文字幕 | 一区二区日韩欧美中文字幕| 国产成人免费无遮挡视频| 亚洲av日韩在线播放| 在线观看www视频免费| 成人国语在线视频| 中文字幕人妻丝袜一区二区| 热99国产精品久久久久久7| 后天国语完整版免费观看| 乱人伦中国视频| 在线播放国产精品三级| 天天添夜夜摸| 日本黄色视频三级网站网址 | 国产老妇伦熟女老妇高清| 亚洲天堂av无毛| 精品国产一区二区三区四区第35| 啦啦啦在线免费观看视频4| 69av精品久久久久久 | 欧美另类亚洲清纯唯美| 深夜精品福利| 欧美精品啪啪一区二区三区| 中文字幕人妻熟女乱码| 成年动漫av网址| 一区二区三区国产精品乱码| 免费看十八禁软件| 国产野战对白在线观看| 人人妻人人添人人爽欧美一区卜| 久久99一区二区三区| 纯流量卡能插随身wifi吗| 欧美中文综合在线视频| 久久精品亚洲熟妇少妇任你| 亚洲色图 男人天堂 中文字幕| 欧美在线黄色| 啦啦啦中文免费视频观看日本| 亚洲黑人精品在线| 男人舔女人的私密视频| 正在播放国产对白刺激| 久久中文字幕人妻熟女| 亚洲精品国产区一区二| 高清av免费在线| 色94色欧美一区二区| 欧美成人午夜精品| 成年女人毛片免费观看观看9 | 最近最新中文字幕大全免费视频| 日韩免费av在线播放| www.熟女人妻精品国产| 国内毛片毛片毛片毛片毛片| 黄色 视频免费看| 国产亚洲午夜精品一区二区久久| 欧美日韩中文字幕国产精品一区二区三区 | 欧美黑人精品巨大| 王馨瑶露胸无遮挡在线观看| 91国产中文字幕| 精品一区二区三卡| 热re99久久国产66热| 一区二区三区精品91| 国产xxxxx性猛交| 成人精品一区二区免费| 黄片大片在线免费观看| 日本欧美视频一区| 成人精品一区二区免费| 黄片大片在线免费观看| 国产真人三级小视频在线观看| 99国产精品99久久久久| 99riav亚洲国产免费| 搡老岳熟女国产| 丁香六月欧美| 久久精品成人免费网站| 国产精品麻豆人妻色哟哟久久| 一级毛片女人18水好多| 电影成人av| 久久久国产欧美日韩av| 国精品久久久久久国模美| 亚洲av国产av综合av卡| 欧美av亚洲av综合av国产av| 啦啦啦视频在线资源免费观看| 日韩大码丰满熟妇| 欧美在线黄色| 99久久99久久久精品蜜桃| 久久九九热精品免费| 亚洲精品久久成人aⅴ小说| 在线观看舔阴道视频| 如日韩欧美国产精品一区二区三区| h视频一区二区三区| 香蕉久久夜色| 日韩有码中文字幕| 热99久久久久精品小说推荐| 久久精品亚洲熟妇少妇任你| 国产精品秋霞免费鲁丝片|