• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-pressure study of topological semimetals XCd2Sb2(X =Eu and Yb)

    2022-08-01 06:02:56ChuchuZhu朱楚楚HaoSu蘇豪ErjianCheng程二建LinGuo郭琳BinglinPan泮炳霖YeyuHuang黃燁煜JiaminNi倪佳敏YanfengGuo郭艷峰XiaofanYang楊小帆andShiyanLi李世燕
    Chinese Physics B 2022年7期
    關(guān)鍵詞:楚楚

    Chuchu Zhu(朱楚楚), Hao Su(蘇豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖),Yeyu Huang(黃燁煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艷峰),?,Xiaofan Yang(楊小帆),?, and Shiyan Li(李世燕),3,4,§

    1State Key Laboratory of Surface Physics and Department of Physics,F(xiàn)udan University,Shanghai 200438,China

    2School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China

    3Collaborative Innovation Center of Advanced Microstructures,Nanjing 210093,China

    4Shanghai Research Center for Quantum Sciences,Shanghai 201315,China

    Keywords: high pressure,topological semimetal,magnetism,superconductivity

    1. Introduction

    Topological materials have been widely investigated in recent years due to their novel physical properties and the potential application in electronic devices.[1–6]By introducing magnetism into the topological materials,the initial electronic structure is modified by the broken time-reversal symmetry.[7]The combination of intrinsic magnetic order and nontrivial topology provides a platform for the investigations of exotic quantum states, such as Weyl semimetals,[8–11]anomalous Hall effect,[12,13]and axion insulators.[1,14]

    In this context, the topological semimetals EuCd2M2(M=As and Sb)have recently attracted a lot of attention due to its special A-type AFM configuration.[15–26]The Eu spins order ferromagnetically in theabplane and stack antiferromagnetically alongcaxis below N′eel temperatureTN=9.5 K forM=As and 7.4 K forM=Sb.[15–17]First-principle theoretical calculations predicted that EuCd2M2(M= As and Sb) is an AFM Dirac semimetal candidate with unbrokenC3symmetry,[18]and a single pair of Weyl nodes could be generated by splitting the Dirac cone close to Fermi surface in ferromagnetic(FM)state.[19]Experimentally,in AFM phase,the EuCd2M2was revealed to hold several nontrivial topological states including axion insulator, AFM topological crystalline insulator, and higher order topological insulator.[15,16,20]In spin-polarized FM phase induced by an external magnetic field alongcaxis, a single pair of Weyl nodes is generated near Fermi level due to the break of nonsymmetric time-reversal symmetry.[17,20]In the paramagnetic phase aboveTN, quasistatic FM fluctuations lift the Kramers degeneracy, indicating a centrosymmetric Weyl semimetal state of EuCd2M2.[22]Furthermore, the magnetic order in EuCd2M2can be suppressed by substituting europium atoms with non-magnetic atoms,for instance,ytterbium. The Yb-based compounds behave paramagnetically and theC3symmetry is maintained,becoming ideal Dirac semimetal candidates.Therefore,XCd2M2(X=Eu and Yb,M=As and Sb)has provided an ideal platform for exploring the intriguing interplay between topology and magnetism.[23–25]

    Applying pressure is a clean and effective method of tuning crystal structure and electronic state. Under pressure,the magnetic ordering may be suppressed and novel ground states such as superconductivity may emerge.[27–32]In this paper, we report the high-pressure electrical transport studies on EuCd2Sb2and YbCd2Sb2. It is found that the AFM transition temperatureTNof EuCd2Sb2increases from 7.4 K at ambient pressure to 50.9 K at 14.9 GPa, then the magnetism disappears. No sign of superconductivity is observed down to 300 mK. In contrast, superconductivity emerges in YbCd2Sb2at 1.94 GPa, manifesting a superconducting dome in the temperature-pressure phase diagram. High-pressure xray diffraction (XRD) measurements on YbCd2Sb2show no structural phase transition at low pressure,but a crystalline-toamorphous phase transition at about 16 GPa.Similar structural phase transition may cause the disappearance of magnetism in EuCd2Sb2.

    2. Materials and methods

    The EuCd2Sb2single crystals were grown by using tin as flux.[16]High-quality single crystals of YbCd2Sb2were grown by self-flux method using a mixture of Yb(purity 99.9%),Cd(purity 99.99%),and Sb(purity 99.999%)powders with a molar ratio of 1:20:2. The mixture was loaded into a corundum crucible which was further sealed in a quartz ampoule under vacuum. Subsequently,the ampoule was heated at 730°C for 5000 minutes and then slowly cooled down to 430°C at a rate of 1°C/h. Single crystals can be obtained by removing excess flux in a centrifuge and cooling down to room temperature.

    High pressure was generated by a diamond anvil cell(DAC),in which diamond anvils with a culet size of diameter 300 μm and a non-magnetic Be–Cu gasket were employed.Cubic boron nitride (c-BN) and NaCl powders were used as insulating material and pressure transmitting medium,respectively.XCd2Sb2(X=Eu and Yb)single crystals were crashed into small pieces and loaded inside of a hole (120 μm in diameter) in the center of the gasket. Subsequently, four electrodes of 4-μm-thick platinum thin foils were laid on the sample. With applying pressure, the small single crystals were crashed into powder and compressed together solidly, allowing a standard ohmic contact between sample and electrodes.The solid pressure transmitting medium provides a quasihydrostatic condition.The pressure inside the DAC was scaled by monitoring the Ruby fluorescence at room temperature each time before and after the measurement.[33]High pressure resistance of EuCd2Sb2and YbCd2Sb2were measured in a physical property measurement system(PPMS,Quantum Design)and a3He cryostat with Van der Pauw method.

    The XRD measurement at ambient pressure was performed by using an x-ray diffractometer (D8 Advance,Bruker). The high-pressure synchrotron XRD experiments were carried out using a symmetric DAC with a 260-μm culet diamond. A rhenium gasket was pre-compressed to 30 μm in thickness followed by drilling the central part by laser to form a 90-μm diameter hole as the sample chamber. The sample chamber was filled with a mixture of the sample,a ruby chip,and silicone oil as the pressure transmitting medium. The experimental pressures were determined by the pressure-induced fluorescence shift of ruby. Synchrotron XRD measurements were carried out at beamline BL15U1 of the Shanghai Synchrotron Radiation Facility (SSRF) using a monochromatic beam of 0.6199 ?A.

    3. Results and discussion

    Figure 1(a)shows the crystal structure ofXCd2Sb2(X=Eu and Yb)at ambient pressure.XCd2Sb2crystallizes in trigonal structure with a space group ofP3m1 (No. 164).[34,35]The ionic [Cd2Sb2] slab is sandwiched between layers of ytterbium/europium cations alongcaxis. From the XRD patterns in Fig.1(b),only(00l)Bragg peaks are detected,demonstrating that the largest natural surface of as-grownXCd2Sb2single crystals isabplane. Typical resistivityρ(T) curves ofXCd2Sb2single crystals at ambient pressure are plotted in Fig. 1(c). At high temperature, the resistivity of EuCd2Sb2exhibits a metallic behavior. Below 100 K, with decreasing temperature the resistivity increases rapidly to a maximum atTN=7.4 K and then drops sharply.The low-temperature resistivity behavior of EuCd2Sb2resembles previous report on its sister compound EuCd2As2, which attributed the sharp drop belowTNto the reduced scattering from the ordered state of the Eu moments.[23]For paramagnetic YbCd2Sb2,its resistivity exhibits a weakly metallic behavior.

    Fig.1. (a)Schematic crystal structure of XCd2Sb2 (X =Eu and Yb). Green,purple,and orange balls represent Sb,Cd,and Eu/Yb atoms,respectively. (b)Room-temperature x-ray diffraction pattern of XCd2Sb2 (X =Eu and Yb) single crystals, showing that the largest natural surface is ab plane. (c) Typical resistivity curves of XCd2Sb2 (X =Eu and Yb)single crystals at ambient pressure. The peak at 7.4 K denotes the antiferromagnetic transition of EuCd2Sb2.

    Fig.2. Temperature dependence of the normalized resistance under different pressures for EuCd2Sb2(a)below 14.9 GPa and(b)above 14.9 GPa in a temperature range of 2 K–300 K,respectively. The arrows denote the N′eel temperature TN. The inset of(b)depicts the pressure dependence of R at T =2 K(red squares) and 300 K (blue circles). (c) The temperature–pressure phase diagram of EuCd2Sb2. The values of TN are obtained from panel(a).

    Figures 2(a)and 2(b)present the temperature-dependence normalized resistanceR/R300Kof EuCd2Sb2up to 43.7 GPa.The data are obtained from two samples with two experimental runs, which have consistent results. The application of 2.61 GPa and 5.12 GPa shiftTN(the peak position) towards higher values. For 9.56 GPa and above, the AFM peak becomes broader and lower, therefore we redefine the value ofTNas the point of intersection of two lines extrapolated from theR(T)curve below and above the temperatures of the broad peak. The value ofTNincreases substantially to a maximum of 50.9 K at 14.9 GPa, about 6.8 times of that at ambient pressure. When the pressure is above 14.9 GPa, the AFM peak completely vanishes,indicating the absence of magnetic phase transition. The absolute resistancesR2KandR300Kalso decrease to very small values, as shown in the inset of Fig. 2(b). From these results, we construct the temperaturepressure phase diagram of EuCd2Sb2in Fig. 2(c). There are two main features in the phase diagram: (i)TNincreases monotonously with the applied pressure up to 14.9 GPa,then drops to zero. A similar phase diagram has recently been reported in EuIn2As2, in which the increase ofTNis mainly attributed to the enhancement of intralayer ferromagnetic exchange coupling by pressure.[36](ii)A non-magnetic state appears after the collapse of AFM phase above 14.9 GPa. Similarly, for EuIn2As2, with increasing pressure up to 17 GPa,a crystalline-to-amorphous phase transition occurs,which impedes further enhancement ofTN.[36]This will be discussed later. In order to further check whether there is pressureinduced superconductivity in EuCd2Sb2,we also measure another sample down to 300 mK and no sign of superconductivity is observed(data not shown here).

    The resistanceR(T)from 0.3 K to 300 K for YbCd2Sb2sample A under pressures up to 29.2 GPa is plotted in Fig.3(a).At low temperature, a resistance drop is clearly observed under 1.94 GPa,and becomes more pronounced with increasing pressure, as shown in Fig. 3(b). The value ofTc(defined at the 10%drop of normal-state resistance,),first increases to a maximum of 1.67 K at 5.22 GPa then decreases, eventually drops to below 0.3 K at 29.2 GPa. Noting that no zero resistance is observed for YbCd2Sb2sample A in the whole pressure range. To confirm that theRdrop is due to superconducting transition,we measure the resistance of sample A at different magnetic fields under 10.0 GPa. TheRdrop is gradually suppressed upon increasing magnetic field and completely disappears at 0.6 T. The upper critical fieldμ0Hc2(T)as a function of temperature is extracted and plotted in the inset of Fig. 3(c). It can be well fitted by the empirical Ginzburg–Landau(GL)formula[37]

    The zero-temperature upper critical fieldμ0Hc2(0) is determined to be 0.41 T,which is much lower than the Pauli paramagnetic limit fieldHp(0)=1.84Tc≈1.86 T,[38,39]indicating the absence of Pauli pair breaking.

    Fig. 3. High-pressure resistance curves of YbCd2Sb2 sample A. (a) Temperature dependence of resistance under different pressures up to 300 K.(b)Low-temperature resistance shows the superconducting transition. The inset in panel (b) demonstrates that pressure-induced superconductivity emerges at 1.94 GPa. (c)Temperature dependence of resistance at different magnetic fields under 10.0 GPa. The superconducting transition temperature Tc is defined at the 10%drop of normal-state resistance(T10%c ).The inset in panel(c)depicts the upper critical field μ0Hc2 as a function of Tc, which can be well fitted by Ginzburg–Landau formula.

    Fig. 4. (a) Low-temperature resistance under different pressures for YbCd2Sb2 sample B. (b) Temperature dependence of resistance under 0 T and 1 T at 6.96 GPa. (c)Temperature–pressure phase diagram of YbCd2Sb2,showing a dome-shaped pressure-induced superconductivity.

    In order to reproduce the pressure-induced superconductivity in YbCd2Sb2, a new sample B obtained from a different batch was measured under pressures from 3.85 GPa to 28.8 GPa, as shown in Fig. 4(a). For sample B, zero resistance is observed and the highestTcis 1.65 K under 6.96 GPa, consistent with sample A. When an external field 1 T is applied, theRdrop of sample B under 6.96 GPa is completely suppressed, as shown in Fig. 4(b).These results confirm the pressure-induced superconductivity in YbCd2Sb2. Combining the results of sample A with sample B, the temperature–pressure phase diagram of YbCd2Sb2is mapped out in Fig.4(c),which shows a clear superconducting dome. Note that the data points of 24.9 GPa for sample A and 25.2 GPa for sample B are not shown,since theTcs are below our lowest temperature 0.3 K.For the data points of 29.2 GPa for sample A and 28.8 GPa for sample B,we estimate that theTcs are very close to zero.These do not affect the overall shape of the superconducting dome in Fig.4(c).

    To check whether the pressure-induced superconductivity arises from a structural phase transition, we performed high-pressure synchrotron XRD measurements on YbCd2Sb2sample, shown in Fig. 5(a) for different pressures. The ambient–pressure phase persists up to 12.3 GPa,since no new diffraction peaks appear. Therefore, the superconductivity in YbCd2Sb2is not related to a pressure-induced structural phase transition. The pressure dependence of lattice parametersa,b,and unit-cell volumeV/Zare plotted in Figs. 5(b) and 5(c),obtained by fitting the XRD data with GSAS software. There is no anomaly ina,b,andV/Zexcept that the volume is compressed by 15.3%. Below 12.3 GPa,the evolution ofV/Zcan be well fitted by Birch–Murnaghan equation[40]

    whereB0,B′0,andV0are the bulk modulus,first-order derivative of the bulk modulus, and the derived zero-pressure volume, respectively. The fitting givesV0= 145.2 ?A3,B0=34.6 GPa,andB′0=9.1.

    Fig. 5. (a) High-pressure x-ray diffraction (λ = 0.6199 ?A) patterns of YbCd2Sb2 under pressures ranging from 0.1 GPa to 22.7 GPa. (b) and (c)Pressure dependence of the lattice parameters a,c,and V/Z for YbCd2Sb2,respectively. The black dashed line is the fitting of third-order Birch–Murnaghan equation, which derives zero-pressure volume V0 =145.2 ?A3,bulk modulus B0=34.6 GPa,and the first-order derivative of the bulk modulus B′0=9.1.

    Above 12.3 GPa, the pristine trigonal phase still exists,but the peak intensity decreases and some small diffraction peaks appear around major splitting peaks, which is resembling of EuCd2As2,[41]suggesting the instability of crystal structure and the emergence of new phase. However,it is hard to determine the space group of the high-pressure phase due to the complex diffraction spectra. When the pressure is higher than 16.3 GPa, the original diffraction peaks gradually vanish and only two humps are detected at 22.7 GPa. This is reminiscent of the crystalline-to-amorphous phase transition in EuIn2As2at~17 GPa.[36]For YbCd2Sb2, the superconductivity persists into the amorphous phase. Considering the structure similarity of EuCd2Sb2, YbCd2Sb2, and EuIn2As2,such crystalline-to-amorphous phase transition should also occur in EuCd2Sb2. Since the amorphous phase has no lattice period thus absence of magnetic order, this may explain the sudden disappearance of AFM order around 14.9 GPa in EuCd2Sb2. On the other hand, considering the energy difference between divalent and trivalent Eu ionic state is not extremely large and the ion radius of Eu3+is smaller than Eu2+,Eu2+state could thus be easily destabilized and pushed towards Eu3+state with external energy like pressurization in some Eu-based compounds,[42]leading to the collapse of antiferromagnetism. Whereas we did not detected the thermal hysteresis on cooling and warming resistance curves (as a hallmark of valence transition),[43–45]more high-pressure xray photoemission spectroscopy(XPS),x-ray absorption nearedge spectroscopy (XANES), and XRD measurements that could directly monitor valence and structure transition are further needed.

    The superconducting dome found in YbCd2Sb2is quite interesting. Usually, such a superconducting dome is associated with the suppression of magnetic order[46]or chargedensity wave.[47]However, no magnetic order and chargedensity wave have been observed in YbCd2Sb2. In this sense,its superconducting dome may be due to a Lifshitz transition(related to electrical topological transition and Fermi surface reconstruction), as observed in WTe2.[28]More Hall coefficient measurement on single crystal and electronic band structure calculation under pressure are needed to further clarify this issue.

    4. Conclusion

    We have systematically measured the resistance of topological semimetalsXCd2Sb2(X= Eu and Yb) under high pressures.For EuCd2Sb2,it is found that pressure strongly enhances the AFM transition up to~15 GPa,then the magnetic order suddenly disappears. The increase ofTNis attributed to pressure-enhanced intralayer FM exchange coupling and a crystalline-to-amorphous phase transition may cause the disappearance of magnetic order. For paramagnetic YbCd2Sb2,a clear superconducting dome is observed in the temperature–pressure phase diagram, which may relate to some kind of Lifshitz transition. Our results demonstrate thatXCd2Sb2(X=Eu and Yb)is a novel platform for exploring the interplay among magnetism,topology and superconductivity.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No. 12174064) and the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01). Yanfeng Guo acknowledges the research fund from the State Key Laboratory of Surface Physics and Department of Physics, Fudan University (Grant No.KF202009).

    猜你喜歡
    楚楚
    租房變搶劫
    楚 楚
    長江叢刊(2018年22期)2018-11-14 22:44:32
    一個女孩的心靈成長史
    金楚楚??樓素宏??駱俊杰??《石繪》
    掌上明珠
    刺猬
    鏡子
    第109次求婚
    穿腸毒
    色(小說)
    翠苑(2009年6期)2009-03-29 03:43:08
    欧美少妇被猛烈插入视频| 黄网站色视频无遮挡免费观看| 18禁观看日本| 久久天堂一区二区三区四区| 亚洲精品中文字幕一二三四区 | 国产一区二区 视频在线| 欧美 亚洲 国产 日韩一| 999精品在线视频| 日韩精品免费视频一区二区三区| 久久人妻福利社区极品人妻图片| 欧美日韩福利视频一区二区| 9色porny在线观看| 久久国产精品影院| 搡老岳熟女国产| 视频区欧美日本亚洲| 如日韩欧美国产精品一区二区三区| 女警被强在线播放| 亚洲国产av新网站| a级毛片在线看网站| 国产亚洲精品久久久久5区| 亚洲人成77777在线视频| 国产成人精品久久二区二区91| 男女下面插进去视频免费观看| 亚洲熟女精品中文字幕| 精品一区在线观看国产| 欧美日韩av久久| 亚洲欧美色中文字幕在线| 国产精品一区二区在线观看99| 久久久国产成人免费| 成人18禁高潮啪啪吃奶动态图| 777久久人妻少妇嫩草av网站| 无遮挡黄片免费观看| 91成年电影在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产高清videossex| 丝袜脚勾引网站| 天天影视国产精品| 91av网站免费观看| 性少妇av在线| 丝袜美足系列| 亚洲专区中文字幕在线| 成年人免费黄色播放视频| 国产精品成人在线| 中国国产av一级| 一级黄色大片毛片| 80岁老熟妇乱子伦牲交| a级毛片在线看网站| 国产激情久久老熟女| av不卡在线播放| 亚洲成人免费av在线播放| 午夜福利在线免费观看网站| 18禁黄网站禁片午夜丰满| 国产亚洲一区二区精品| 一区二区日韩欧美中文字幕| 亚洲一码二码三码区别大吗| av又黄又爽大尺度在线免费看| 一本综合久久免费| 国产亚洲精品第一综合不卡| 黄色视频,在线免费观看| 亚洲国产av新网站| av在线播放精品| 欧美日韩黄片免| 99国产精品免费福利视频| 桃红色精品国产亚洲av| 国产日韩一区二区三区精品不卡| 秋霞在线观看毛片| a级片在线免费高清观看视频| 亚洲精品日韩在线中文字幕| 国产亚洲午夜精品一区二区久久| a 毛片基地| 日韩电影二区| 啪啪无遮挡十八禁网站| 欧美中文综合在线视频| 黄色视频在线播放观看不卡| 欧美黑人精品巨大| 亚洲精华国产精华精| 午夜成年电影在线免费观看| 欧美精品亚洲一区二区| 日韩欧美一区视频在线观看| 一级,二级,三级黄色视频| 国产精品 欧美亚洲| 国产精品一区二区精品视频观看| 人妻 亚洲 视频| 一级,二级,三级黄色视频| 国产高清videossex| 天堂俺去俺来也www色官网| 久久亚洲国产成人精品v| 十八禁人妻一区二区| 91大片在线观看| 狂野欧美激情性bbbbbb| 国产欧美日韩一区二区三 | 一本大道久久a久久精品| 午夜福利视频在线观看免费| 中文字幕人妻丝袜制服| 首页视频小说图片口味搜索| 国产精品熟女久久久久浪| 日本欧美视频一区| 欧美精品一区二区大全| 欧美另类一区| 亚洲欧美日韩另类电影网站| 亚洲第一青青草原| 波多野结衣一区麻豆| 午夜免费鲁丝| 亚洲全国av大片| 老司机影院毛片| 夜夜夜夜夜久久久久| 国产在视频线精品| h视频一区二区三区| 亚洲国产欧美一区二区综合| 国产人伦9x9x在线观看| 另类精品久久| 久久久水蜜桃国产精品网| 久久精品久久久久久噜噜老黄| 在线观看免费高清a一片| 老熟女久久久| 中文字幕人妻丝袜制服| 亚洲精品国产一区二区精华液| 亚洲欧美日韩另类电影网站| 精品人妻熟女毛片av久久网站| 18禁黄网站禁片午夜丰满| 欧美日韩国产mv在线观看视频| 午夜福利视频在线观看免费| 国产福利在线免费观看视频| 夫妻午夜视频| 国产亚洲av高清不卡| 亚洲成人国产一区在线观看| 后天国语完整版免费观看| 看免费av毛片| 国产精品影院久久| 成在线人永久免费视频| 亚洲精品乱久久久久久| 黄色视频在线播放观看不卡| 日本精品一区二区三区蜜桃| 操出白浆在线播放| 人妻人人澡人人爽人人| 精品视频人人做人人爽| 欧美日韩成人在线一区二区| 亚洲精品久久午夜乱码| 亚洲伊人色综图| 性色av乱码一区二区三区2| 美女扒开内裤让男人捅视频| 午夜两性在线视频| 亚洲国产日韩一区二区| 亚洲av男天堂| 国产精品久久久久久精品电影小说| 国产精品久久久人人做人人爽| 桃红色精品国产亚洲av| 中文字幕高清在线视频| 在线观看一区二区三区激情| 久久天躁狠狠躁夜夜2o2o| 亚洲情色 制服丝袜| 三上悠亚av全集在线观看| 精品国产一区二区三区久久久樱花| 可以免费在线观看a视频的电影网站| 国产精品1区2区在线观看. | 69av精品久久久久久 | 丝袜人妻中文字幕| 久久久久久亚洲精品国产蜜桃av| 久久精品国产综合久久久| 亚洲少妇的诱惑av| 另类亚洲欧美激情| 久久99一区二区三区| 久久影院123| 三上悠亚av全集在线观看| 91av网站免费观看| 制服人妻中文乱码| 成年av动漫网址| 亚洲av日韩在线播放| 男女高潮啪啪啪动态图| 国产日韩欧美视频二区| 欧美精品高潮呻吟av久久| 国产精品 国内视频| 中文字幕色久视频| 国产在视频线精品| 国产91精品成人一区二区三区 | 真人做人爱边吃奶动态| 免费黄频网站在线观看国产| 免费看十八禁软件| 国产成人免费无遮挡视频| 丝袜喷水一区| 日韩大码丰满熟妇| 99国产精品99久久久久| 在线观看免费视频网站a站| 成人黄色视频免费在线看| 在线观看舔阴道视频| 午夜免费观看性视频| 欧美成狂野欧美在线观看| 男女下面插进去视频免费观看| 两性夫妻黄色片| 亚洲欧美一区二区三区久久| 欧美午夜高清在线| 欧美日韩福利视频一区二区| 久久精品亚洲熟妇少妇任你| 黄片小视频在线播放| 久久这里只有精品19| 老司机亚洲免费影院| 欧美黑人欧美精品刺激| 爱豆传媒免费全集在线观看| 亚洲欧美日韩另类电影网站| 亚洲人成77777在线视频| 国产精品 欧美亚洲| 少妇粗大呻吟视频| 国产伦人伦偷精品视频| 中文字幕最新亚洲高清| 国产在线一区二区三区精| 欧美xxⅹ黑人| 人人妻人人添人人爽欧美一区卜| 99久久人妻综合| 99国产精品一区二区蜜桃av | 久久香蕉激情| 欧美激情久久久久久爽电影 | 亚洲精品日韩在线中文字幕| 精品国产国语对白av| 精品视频人人做人人爽| 一进一出抽搐动态| 侵犯人妻中文字幕一二三四区| 五月开心婷婷网| 国产亚洲欧美精品永久| 国产欧美日韩一区二区三区在线| 69av精品久久久久久 | 黑人巨大精品欧美一区二区蜜桃| 亚洲精品自拍成人| 国产免费一区二区三区四区乱码| kizo精华| 久久久久视频综合| 婷婷成人精品国产| 交换朋友夫妻互换小说| 国产成人免费无遮挡视频| 日韩欧美一区视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲专区国产一区二区| 国产成人精品在线电影| 国产日韩一区二区三区精品不卡| 国产在线观看jvid| 久久久国产成人免费| 9热在线视频观看99| 亚洲国产日韩一区二区| 黑人猛操日本美女一级片| 国产在线一区二区三区精| 最近最新免费中文字幕在线| 王馨瑶露胸无遮挡在线观看| 人妻一区二区av| 一本色道久久久久久精品综合| 丰满饥渴人妻一区二区三| 日韩欧美免费精品| 精品国产乱子伦一区二区三区 | 黄色怎么调成土黄色| 午夜福利视频在线观看免费| 最黄视频免费看| 一级a爱视频在线免费观看| 成人亚洲精品一区在线观看| 国产高清国产精品国产三级| 国产亚洲精品第一综合不卡| 69精品国产乱码久久久| 精品福利观看| 国产男女超爽视频在线观看| 精品第一国产精品| 男女无遮挡免费网站观看| 热99re8久久精品国产| 日韩一区二区三区影片| 国产福利在线免费观看视频| 热re99久久国产66热| 精品乱码久久久久久99久播| 欧美一级毛片孕妇| 亚洲专区中文字幕在线| 成人手机av| 99国产精品一区二区三区| 捣出白浆h1v1| 欧美另类一区| 免费少妇av软件| 国产成人av教育| 久久久精品区二区三区| 一级片免费观看大全| 一本综合久久免费| 性高湖久久久久久久久免费观看| 黑人欧美特级aaaaaa片| 午夜福利乱码中文字幕| 成人国语在线视频| 午夜视频精品福利| 国产黄色免费在线视频| 一边摸一边抽搐一进一出视频| 天天添夜夜摸| 啦啦啦视频在线资源免费观看| 91麻豆精品激情在线观看国产 | 人妻一区二区av| 2018国产大陆天天弄谢| 十八禁高潮呻吟视频| 如日韩欧美国产精品一区二区三区| 欧美日韩精品网址| 日本a在线网址| 色播在线永久视频| 亚洲精品美女久久av网站| 夫妻午夜视频| 免费少妇av软件| 精品一区二区三区四区五区乱码| 久久久久久免费高清国产稀缺| 满18在线观看网站| 亚洲欧美清纯卡通| 久久精品人人爽人人爽视色| 91老司机精品| 日韩欧美一区二区三区在线观看 | 欧美黑人欧美精品刺激| 中文字幕人妻熟女乱码| 欧美少妇被猛烈插入视频| av国产精品久久久久影院| 国产亚洲av片在线观看秒播厂| 国产一区二区三区在线臀色熟女 | 午夜久久久在线观看| 丰满饥渴人妻一区二区三| 91成年电影在线观看| 美女扒开内裤让男人捅视频| 性色av一级| 成在线人永久免费视频| 国产成人啪精品午夜网站| 久久久久久免费高清国产稀缺| 大陆偷拍与自拍| 欧美国产精品一级二级三级| 免费在线观看影片大全网站| 丝袜美腿诱惑在线| 正在播放国产对白刺激| 少妇粗大呻吟视频| 亚洲激情五月婷婷啪啪| 欧美日韩av久久| 久久精品国产亚洲av高清一级| 在线观看舔阴道视频| 性高湖久久久久久久久免费观看| 亚洲色图综合在线观看| 高清视频免费观看一区二区| 国产高清videossex| 亚洲天堂av无毛| 国产精品一二三区在线看| 永久免费av网站大全| 老司机深夜福利视频在线观看 | 9热在线视频观看99| 男女之事视频高清在线观看| 亚洲欧美一区二区三区久久| 亚洲av电影在线进入| 久久 成人 亚洲| 欧美日本中文国产一区发布| xxxhd国产人妻xxx| 国产精品国产av在线观看| 人妻久久中文字幕网| 97在线人人人人妻| 色婷婷av一区二区三区视频| 日本五十路高清| 精品国产乱码久久久久久小说| 亚洲精品中文字幕在线视频| 国产av又大| 久久久久久免费高清国产稀缺| 免费高清在线观看视频在线观看| 一边摸一边做爽爽视频免费| 久久天躁狠狠躁夜夜2o2o| 丝袜脚勾引网站| 纵有疾风起免费观看全集完整版| 超碰成人久久| 久久99一区二区三区| 超碰成人久久| 在线看a的网站| 色婷婷久久久亚洲欧美| 99国产精品一区二区蜜桃av | 亚洲欧美一区二区三区久久| 亚洲性夜色夜夜综合| 99久久99久久久精品蜜桃| 色94色欧美一区二区| 少妇猛男粗大的猛烈进出视频| 岛国毛片在线播放| 一级毛片精品| 国产精品九九99| 精品少妇久久久久久888优播| 中文字幕人妻丝袜一区二区| 淫妇啪啪啪对白视频 | 欧美中文综合在线视频| 考比视频在线观看| 男女高潮啪啪啪动态图| 1024香蕉在线观看| 亚洲国产精品一区三区| 欧美黄色片欧美黄色片| 亚洲精品久久午夜乱码| 美女高潮到喷水免费观看| 国产99久久九九免费精品| 在线天堂中文资源库| 国精品久久久久久国模美| 国产一区二区激情短视频 | 永久免费av网站大全| a级毛片黄视频| 美女大奶头黄色视频| 日韩 亚洲 欧美在线| 亚洲一区二区三区欧美精品| 亚洲欧美日韩另类电影网站| 久久精品亚洲av国产电影网| 黄色 视频免费看| 国产欧美日韩一区二区精品| 欧美日韩黄片免| 久久久国产成人免费| 在线亚洲精品国产二区图片欧美| 亚洲人成电影免费在线| 好男人电影高清在线观看| 国产欧美日韩综合在线一区二区| 亚洲伊人色综图| e午夜精品久久久久久久| 精品人妻1区二区| 99久久精品国产亚洲精品| av天堂在线播放| 色婷婷av一区二区三区视频| 国产精品久久久av美女十八| 国产亚洲欧美精品永久| 热99久久久久精品小说推荐| 国产成人av激情在线播放| 午夜免费观看性视频| 日韩大片免费观看网站| 久久青草综合色| 亚洲人成电影观看| 丝袜美足系列| 国产亚洲av片在线观看秒播厂| 亚洲人成电影观看| 国产精品99久久99久久久不卡| 久久人妻熟女aⅴ| 啦啦啦视频在线资源免费观看| 日韩电影二区| 国产一区二区在线观看av| 12—13女人毛片做爰片一| 18在线观看网站| 两性午夜刺激爽爽歪歪视频在线观看 | 精品久久久久久电影网| 国产亚洲av高清不卡| 国产福利在线免费观看视频| 王馨瑶露胸无遮挡在线观看| 99国产精品免费福利视频| 男女高潮啪啪啪动态图| 国产在线观看jvid| 久久久精品国产亚洲av高清涩受| 日韩一区二区三区影片| 欧美在线一区亚洲| 午夜福利影视在线免费观看| videosex国产| av国产精品久久久久影院| 国产免费现黄频在线看| 女人爽到高潮嗷嗷叫在线视频| 免费女性裸体啪啪无遮挡网站| 老熟妇乱子伦视频在线观看 | 老司机影院成人| 中亚洲国语对白在线视频| 亚洲精品在线美女| 国产一区二区在线观看av| 在线观看人妻少妇| 亚洲精品国产一区二区精华液| 亚洲视频免费观看视频| 国产成人免费无遮挡视频| 国内毛片毛片毛片毛片毛片| 久久久久国产精品人妻一区二区| 欧美人与性动交α欧美精品济南到| 99久久人妻综合| 欧美一级毛片孕妇| 久久av网站| 男男h啪啪无遮挡| 香蕉丝袜av| 亚洲国产精品成人久久小说| 国产一区二区三区av在线| 老熟女久久久| 免费久久久久久久精品成人欧美视频| 久久亚洲国产成人精品v| 国产1区2区3区精品| 久久中文字幕一级| 久久国产精品影院| bbb黄色大片| 免费少妇av软件| 国产高清国产精品国产三级| 视频区欧美日本亚洲| 在线十欧美十亚洲十日本专区| 久久久久国内视频| 成人国产一区最新在线观看| 欧美日韩亚洲国产一区二区在线观看 | 免费在线观看日本一区| 欧美激情高清一区二区三区| 99热全是精品| 久久精品久久久久久噜噜老黄| 亚洲国产毛片av蜜桃av| 青春草亚洲视频在线观看| 久久精品人人爽人人爽视色| 丝袜脚勾引网站| 欧美日韩视频精品一区| 波多野结衣av一区二区av| 午夜成年电影在线免费观看| 亚洲精品粉嫩美女一区| 亚洲欧美清纯卡通| 十八禁人妻一区二区| www.自偷自拍.com| 法律面前人人平等表现在哪些方面 | 一级,二级,三级黄色视频| 亚洲国产精品一区三区| 老司机在亚洲福利影院| 丝袜美腿诱惑在线| 国产1区2区3区精品| 免费在线观看完整版高清| 色视频在线一区二区三区| 深夜精品福利| 熟女少妇亚洲综合色aaa.| 国产成人系列免费观看| 热99re8久久精品国产| 伊人久久大香线蕉亚洲五| 老司机福利观看| 亚洲国产精品999| 亚洲欧美一区二区三区久久| 国产黄色免费在线视频| 乱人伦中国视频| 国产男女内射视频| 岛国在线观看网站| 久久女婷五月综合色啪小说| 高潮久久久久久久久久久不卡| 久久久水蜜桃国产精品网| 亚洲欧美一区二区三区久久| 久久国产精品大桥未久av| 午夜91福利影院| 俄罗斯特黄特色一大片| 亚洲精品av麻豆狂野| 欧美日本中文国产一区发布| 制服人妻中文乱码| 91麻豆精品激情在线观看国产 | 一区福利在线观看| 久久99热这里只频精品6学生| 精品国产一区二区三区久久久樱花| 亚洲专区国产一区二区| 亚洲国产av新网站| 亚洲视频免费观看视频| 亚洲欧美一区二区三区久久| 汤姆久久久久久久影院中文字幕| 男女午夜视频在线观看| 黑人欧美特级aaaaaa片| 国产亚洲精品久久久久5区| 激情视频va一区二区三区| 日韩制服骚丝袜av| 1024香蕉在线观看| 美国免费a级毛片| 亚洲av国产av综合av卡| 精品人妻一区二区三区麻豆| 国产日韩一区二区三区精品不卡| 叶爱在线成人免费视频播放| 性色av一级| 狂野欧美激情性xxxx| 99re6热这里在线精品视频| 99国产精品一区二区三区| 国产av又大| 美女午夜性视频免费| 一区二区三区四区激情视频| 高清黄色对白视频在线免费看| 热re99久久精品国产66热6| 狂野欧美激情性xxxx| 99国产精品免费福利视频| 热99国产精品久久久久久7| 国产色视频综合| 亚洲第一av免费看| 啦啦啦在线免费观看视频4| 交换朋友夫妻互换小说| 久久人人97超碰香蕉20202| 欧美另类一区| 俄罗斯特黄特色一大片| 妹子高潮喷水视频| 大片电影免费在线观看免费| 成人免费观看视频高清| 精品少妇一区二区三区视频日本电影| 夜夜夜夜夜久久久久| 高清视频免费观看一区二区| 在线 av 中文字幕| 人人妻人人澡人人看| 久热这里只有精品99| 午夜91福利影院| 青草久久国产| 日韩 欧美 亚洲 中文字幕| 国产1区2区3区精品| 亚洲精品日韩在线中文字幕| 无遮挡黄片免费观看| 精品国产乱子伦一区二区三区 | 悠悠久久av| 国产成人啪精品午夜网站| 精品久久久久久久毛片微露脸 | 69av精品久久久久久 | 丝袜美腿诱惑在线| 蜜桃国产av成人99| 欧美中文综合在线视频| 成在线人永久免费视频| 不卡一级毛片| 午夜激情久久久久久久| 国产成人精品在线电影| 动漫黄色视频在线观看| 日韩中文字幕视频在线看片| 久久久久精品人妻al黑| 九色亚洲精品在线播放| 亚洲免费av在线视频| 国产在线视频一区二区| 国产精品免费视频内射| 在线av久久热| 岛国毛片在线播放| 国产视频一区二区在线看| 久久久久国产一级毛片高清牌| 大香蕉久久网| 亚洲熟女毛片儿| 人妻久久中文字幕网| 一个人免费在线观看的高清视频 | 天天操日日干夜夜撸| 人人妻,人人澡人人爽秒播| 制服人妻中文乱码| 最近最新中文字幕大全免费视频| 日韩欧美国产一区二区入口| 国产精品一区二区免费欧美 | 久久久久久久大尺度免费视频| 高清在线国产一区| 成年美女黄网站色视频大全免费| 狠狠精品人妻久久久久久综合| 久久午夜综合久久蜜桃| 在线看a的网站| 亚洲伊人色综图| 日本av手机在线免费观看| 久久久久久久久久久久大奶| 久久久国产欧美日韩av| 免费一级毛片在线播放高清视频 |