• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises

    2022-08-31 09:56:08GangZhang張剛YuJieZeng曾玉潔andZhongJunJiang蔣忠均
    Chinese Physics B 2022年8期
    關(guān)鍵詞:張剛

    Gang Zhang(張剛) Yu-Jie Zeng(曾玉潔) and Zhong-Jun Jiang(蔣忠均)

    1School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications(CQUPT),Chongqing 400065,China

    2Cyberspace Administration of Guizhou Province,Guiyang 550000,China

    Keywords: bearing fault detection,weak signal detection,piecewise linear symmetric tri-stable system,output signal-noise-ratio,adaptive genetic algorithm

    1. Introduction

    With the rapid development of mechanical fault detection technology,weak signal detection has become an important means of extracting fault characteristic signals,[1,2]but in many practical applications, fault signals are completely submerged in strong background noise. The low signal-tonoise ratio (SNR) makes traditional fault detection methods ineffective. Therefore,the effective extraction of fault signals in strong background noise is of great significance for practical engineering applications.[3,4]Traditional signal detection methods include wavelet decomposition,[5]ensemble empirical mode decomposition,[6]singular value decomposition,[7]etc. These methods are used mainly to detect signals by removing or suppressing noise, but the signals themselves are also suppressed to a certain extent at the same time. In view of this, the stochastic resonance(SR) first proposed by Benziet al.,[8]in 1981 can convert noise energy into signal energy without damaging the signal. Therefore,the SR has become a typical noise-enhancing signal method,which has been widely used in weak signal detection so far.[9]

    In recent years, many scholars have conducted extensive researches of the classical bistable stochastic resonance system(CBSR)and achieved remarkable results,but the CBSR is only suitable for small parameters that satisfy the adiabatic approximation conditions.[10]In practical applications, the adiabatic approximation conditions cannot be satisfied because most of signals are large parameters and submerged in strong background noise. In order to achieve the better detection results and solve the practical problems in engineering applications, many scholars have conducted in-depth researches of SR systems. Lenget al.[11]proposed a second-sampling SR method, which compresses the collected signal and realizes SR through a nonlinear system. Wanget al.[12]proposed a detection method to reduce the correlation among system parameters through a special construction. The tri-stable model proposed by Zhanget al.[13]and Wanget al.[14]is applicable to the case of high noise in weak signal detection, and can better detect the early faults of rotating machinery under strong background noise conditions. Qiaoet al.[15]proposed an improved fractional-order SR model that can not only suppress the multiscale noise embedded in the signal,but also better characterize performance. An unsaturated piecewise system that solves the problem of system output saturation was proposed.[16–18]An SR system was applied to the bearing fault detection,and it was found that system parameters have great influence on system performance.[19–22]Hanet al.[23]derived the escape rate for particles by means of first passage time(MFPT).The system parameters are optimized by genetic algorithm in Refs.[24,25].

    Moreover, most of the noise detected by weak signals is ideal Gaussian white noise, which cannot represent the random noise generated by non-anthropogenic activities in nature,[26]and its waveform has significant impulsive and trailing characteristics. In order to accurately simulate noise in various fields, stochastic resonance induced by Levy noise has attracted the attention of scholars in recent years. Jiaoet al.[27]studied the stochastic resonance phenomenon of asymmetric monostable systems under different Levy stable noise environments. Guet al.[28]systematically analyzed the mean first-passage time of asymmetric bistable system under Levy noise.

    Although some research progress of weak signal detection as mentioned above has been made,further analysis shows that these systems only achieve single performance improvement by increasing the number of steady states or changing the structure of the potential function. Therefore, in order to solve the problem of output saturation and improve the output SNR of the system,a piecewise linear symmetric tri-stable random resonant system is proposed in this work. Firstly,under the premise of the adiabatic approximation theory, the SNR is deduced, and the influence of each parameter of the system on the SNR is analyzed,which is helpful in achieving the optimal detection effect. Then,in order to verify the practicality of the project,numerical simulation is introduced,and the simulation result is compared with that from the classical tristable stochastic resonance system(CTSR).In order to optimize the system parameters, an adaptive genetic algorithm is used to optimize the system parameters globally. Finally,the PLSTSR is applied to the bearing fault detection in Gaussian white noise and Levy noise,and the detection results are compared with the CTSR.

    The rest of this paper is organized as follows. In Section 2 the CTSR and the PLSTSR proposed in this paper are described, and their saturation characteristics are discussed.In Section 3,the Kramers escape rate,MFPT and SNR of the PLSTSR are deduced and the effects of parameters on them are analyzed. Also the unsaturation of PLSTSR is proven and the adaptive genetic algorithm is introduced. In Section 4,the ability of PLSTSR to detect low-frequency, high-frequency,and multi-frequency signals in Gaussian white noise environment are verified. In Section 5, the practicability of the PLSTSR detection technology is verified through two bearing experiments under Gaussian white noise. In Section 6 the bearing fault detection capability of PLSTSR under Levy noise is proved, and its engineering application value is verified.In Section 7 some conclusions are drawn from the present research.

    2. PLSTSR model

    The dynamic equation of the classic stochastic resonance system is shown below.

    Fig.1. Potential function of CTSR.

    It can be seen from Fig. 2, the system parameters exert large influences on the shape of the potential function. The changing ofm1,k1, andm2affect the change inU2,L2,U1respectively. Since the potential function of the PLSTSR is composed of 6 straight lines,the steepness of the barrier wall can be adjusted arbitrarily according to the system parameters.AsU(x)increases,xalso increases linearly,so the system does not saturate.

    Fig.2. Potential function of PLSTSR.

    A cosine signals(t)=0.2cos(2π×0.01t) is simulated under no noise, and the output signal waveform of the CTSR and the PLSTSR are shown in Fig.3 and Fig.4 respectively.

    It can be seen from Fig. 3 that when the value ofAincreases from 0.2 to 0.4,the amplitude of the output signal increases significantly, and whenA>0.4, with the increase ofA,the amplitude of the output signal does not increase significantly, and it is maintained at around 1.5, the system is saturated. Figure 4 shows that as the input signal amplitude increases, the output signal amplitude increases proportionally,thus avoiding output saturation. Comparing Fig.3 with Fig.4,under the same input signal amplitude, the output signal amplitude of Fig.4 is much larger than that of Fig.3,indicating that the PLSTSR has better signal amplification capabilities than the CTSR.

    Fig.4. Output signal of PLSTSR.

    3. SNR of PLSTSR

    The output SNR is the method that is most commonly used to evaluate the performance of stochastic resonance system. Kramers escape rate and adiabatic approximation theory are used to derive the SNR of PLSTSR.Thep1(t),p2(t),andp3(t) are the residence probabilities of Brownian particles at the three stable points at timet. Ther12(t),r21(t),r23(t),andr32(t)are Kramers escape rates between stable points,respectively.TheT12,T21,T23,andT32represent the MFPTs of particles between two stable points respectively.[23]TheR12(t),R21(t),R23(t), andR32(t) are the probabilities of the particle transition between stable points at timet, respectively. According to Refs.[29,30],Taylor series expansion is performed on them under the condition of adiabatic approximation and the first term is taken as shown in Eqs.(6)and(7).

    The MFPT can describe the difficulty of particle transition between potential wells,which can affect the occurrence of SR.Equation(6)shows thatT12andT32are only related tom2,m3,k1,andk2;T21,andT23are only related tom1andk1,;the curves of MFPT under parametersm1,m2,m3,k1,andk2are shown in Figs.5 and 6

    Fig.5. Variations of MFPT(v1 →v2)with D: (a)lnT12 changes with m2,(b)lnT12 changes with m3,(c)lnT12 changes with k1,(d)lnT12 changes with k2.

    Fig.6. Variations of MFPT(v2 →v1)with D: (a)lnT21 changes with m1,(b)lnT21 changes with k1.

    It can be seen from Figs. 5 and 6 that with the increase of noise intensity,the MFPT first gradually decreases and then tends to be stable,which indicates that the noise intensity can promote the transition of particles between potential wells,thereby generating stochastic resonance. Figure 5 show that MFPT(v1→v2)increases with the increase ofm2andk2and decreases with the increase ofm3andk1,indicating that the appropriate reduction ofm2andk2or appropriate increase ofm3andk1can promote the potential of particles from both sides.In Fig.6 that with the increase ofm1andk1,MFPT(v1→v2)increases, indicating that the appropriate reduction ofm2andk2can promote the transition of particles from the middle potential well to the potential wells on both sides.[30]

    Equations(6)and(7)can be expressed by Eq.(8)and Eq.(9)respectively.

    Substituting Eqs.(10)and(11)into Eq.(9),the linear ordinary differential method is used to solve the three-way homogeneous differential equation as given below

    From Eq.(12),using the conditional probability theorem,the conditional probability shown in Eq.(14)can be obtained below.

    According to the properties of transition probability in a symmetric system,equation(16)can be obtained as

    The output power of the signal can be obtained by the Fourier transform of autocorrelation function Eq.(18)below

    3.1. Parameter selection

    According to Eq.(20),the parameters can exert great influence on the value of SNR and determine the performance of the system. So it is necessary to study the influence of system parameters on the system. Lets(t)=0.2cos(2π×0.01t),then the relationship between SNR,noise intensity and system parameters will be shown in Figs.7–12.

    In Fig.7,the PLSTSR has the characteristics of the classical stochastic resonance system. Given other parameters are fixed,with the increase of the noise intensity,the SNR shows a trend first increasing and then decreasing,where the appearing of the peak indicates that the stochastic resonance has occurred.

    Fig.7. The change of SNR in PLSTSR with D.

    Fig.8. SNR versus D and m1.

    Fig.9. SNR versus D and m2.

    Fig.10. SNR versus D and m3.

    It can be seen from Figs. 8–10, and 12 that withDand some parameters fixed,the SNR of the PLSTSR first increases and then decreases with any of the parametersm1,m2,m3,k2increasing, and its peak value also increases as parameterDincreases. Figure 11 shows that the SNR first increases and then decreases with the increase of parameterk1,which means that there is a traditional SR phenomenon. Unlike the changes of other parameters, the SNR increases with parameterk1increasing, but the position and size of the peak do not change as shown in Fig.9.

    Fig.11. SNR versus D and k1.

    Fig.12. SNR versus D and k2.

    3.2. Adaptive genetic algorithm(GA)

    The above conclusions are all analyzed and discussed with part of the parameters fixed, but the coordinates of system parameters can also affect the performance of the system.Therefore, it is necessary to optimize these parameters. For example,many optimization algorithms such as adaptive iterative algorithm are only suitable for optimizing a small number of parameters. If there are too many parameters, then problems of insufficient precision and too high a computational complexity appear. However,the PLSTSR has 5 parameters,which is not suitable for the adaptive iterative algorithm.The adaptive genetic algorithm that simulates the biological genetic process has the advantages of multi-parameter optimization and high parameter accuracy.[24,25]Therefore,in this work the adaptive genetic algorithm is adopted to optimize the parameters. The SNR is used as the fitness function and the crossover operators such as those described Eq.(21)are used to construct the exclusive operator inX′=X+?.

    The flowchart of GA is shown in Fig.11. Subsequent parameter optimization is based on a population size of 400, a genetic generation of 200, and a crossover probability of 0.4.The mutation probability of the PLSTSR is 0.1 and the mutation probability of the CTSR is 0.4.

    Fig.13. Flowchart of adaptive genetic algorithm.

    4. Numerical simulation

    4.1. Comparative analysis

    In order to further prove the performance of PLSTSR,the fourth-order Runge–Kutta algorithm is used to simulate the periodic signals(t) = 0.2cos(2π×0.01t) in the Gaussian white noise environment, and the SNR is used as a measure.[32]Its definition is shown as follows:

    The optimal parameters of the PLSTSR are obtained by using the adaptive genetic algorithm:m1=2,m2=3,m3=3.5,k1=1,andk2=2. The optimal parameters of the CTSR area1=1,b1=2,andc1=0.1. After the 10th degree polynomial fitting,the SNR curve is obtained as shown in Fig.14.In Fig.14,with the increase ofD,the SNR for each of the two systems shows a trend first increasing and then decreasing,indicating a typical stochastic resonance phenomenon, but the peak value of the PLSTSR is larger,no matter whether the ambient noise is strong or weak,the value of SNR is larger than that of the CTSR,which proves the superiority of the PLSTSR.

    Fig.14. Comparison of SNR between PLSTSR and CTSR.

    4.2. Weak signal detection

    In order to further verify the performance of PLSTSR in signal detection,single-frequency signals(low-frequency signal and high-frequency signal)and multi-frequency signals are input into PLSTSR respectively, and the time-domain waveform and spectrum of the output signal are observed and compared with those in the case of CTSR.

    4.2.1. Single-frequency signal detection

    4.2.1.1. Low-frequency signal detection

    The low-frequency signals(t)=0.2cos(2π×0.01t)and the Gaussian white noise ofD= 0.8 are used. The optimal parameters of the CTSR are given below:a1=0.4819,b1= 1.0028, andc1= 0.4003. The optimal parameters of the PLSTSR arem1= 0.0085,m2= 0.0489,m3= 0.1605,k1=0.2539,andk2=0.3316. Figures 15 and 16 are the time domains and spectrum waveforms of the input and output signals,respectively.

    Fig.15. Time domain waveforms of input and output signals: (a)low-frequency cosine input signal,(b)low-frequency cosine input signal with noise,(c)CTSR output signal,(d)PLSTSR output signal.

    Fig. 16. Powers spectrum of input signal and output signals: (a) low-frequency cosine input signal, (b) low-frequency cosine input signal with noise, (c)CTSR output signal,(d)PLSTSR output signal.

    4.2.1.2. High-frequency signal detection

    The high-frequency signals(t)=0.2cos(2π×11.5t) and the Gaussian white noise ofD=0.8 are used. The optimal parameters of CTSR area1=1.3007,b1=0.5162, andc1=0.0418. The optimal parameters of PLSTSR arem1=0.0651,m2=0.6589,m3=0.4605,k1=0.2653,andk2=0.4816. Figures 17 and 18 are the time domains and spectrum waveforms of the input and output signals,respectively.

    Fig.17. Time domain waveforms of input and output signals. (a)High-frequency cosine input signal,(b)high-frequency cosine input signal with noise,(c)CTSR output signal,(d)PLSTSR output signal.

    Fig.18.Power spectra of input signal and output signals:(a)high-frequency cosine input signal,(b)high-frequency cosine input signal with noise,(c)CTSR output signal,(d)PLSTSR output signal.

    4.2.2. Multi-frequency signal detection

    The multi-frequency signals(t)=0.1cos(2π×0.01t)+0.2cos(2π×0.03t)+0.3cos(2π×0.05t)and the Gaussian white noise ofD=0.8 are used. The optimal parameters of CTSR area1=0.2819,b1=0.7632, andc1=0.5118. The optimal parameters of PLSTSR arem1=0.0158,m2=0.0169,m3=0.3558,k1=0.2169,andk2=0.4308. Figures 19 and 20 are the time domains and spectrum waveforms of the input and output signals,respectively.

    Fig.19. Time domain waveforms of input and output signals: (a)multi-frequency input signal,(b)multi-frequency input signal with noise,(c)CTSR output signal,(d)PLSTSR output signal.

    Fig. 20. Power spectra of input signal and output signals: (a) multi-frequency input signal, (b) multi-frequency input signal with noise, (c) CTSR output signal,(d)PLSTSR output signal.

    4.2.3. Summary

    As can be seen from Figs.15–20,the PLSTSR can detect low-frequency,high-frequency,and multi-frequency signals well,indicating wide range of applications. Compared with the CTSR,the PLSTSR has very high output signal amplitude and signalto-noise ratio as shown in Tables 1 and 2.

    Table 1. Comparison of performance between different systems in weak signal detection.

    Table 2. Comparison of SNR between different systems in weak signal detection.

    5. Bearing fault detection under Gaussian white noise

    5.1. Bearing the fault detection for 6205-2RS JEM SKF model

    To prove the great potential of the PLSTSR proposed in this paper in practical engineering applications,the CTSR and PLSTSR are used to detect the bearing fault data of Case Western Reserve University(CWRU).The bearing model is 6205-2RS JEM SKF, and the experimental workbench is shown in Fig. 21. The main parameters are shown in Table 3.[33,34]Since the adiabatic approximation theory needs to satisfy the condition of small parameters,the stochastic resonance is generated by the method of second-sampling. The sampling frequency isfs=12000 Hz, the number of sampling points isN=10000, and the secondary sampling frequency isfsr=5 Hz. In order to improve the fault detection performance of the system,an adaptive genetic algorithm is used to obtain the optimal parameters. By comparing the consistency between the characteristic frequency and the detection frequency,it can be judged whether a fault occurs. The calculation of the characteristic frequency is shown in Eq.(23).

    wherefr=29.9 Hz is the rotational frequency of the bearing. By substituting the data in Table 3 into Eq. (23), the fault frequencies of the inner and outer rings of the bearing can be calculated to befBPFI=162.2 Hz andfBPFO=107.3 Hz,respectively. Secondly, the sampling frequency is set to befs=12000 Hz, the sampling pointN=10000 and the secondary sampling frequencyfsr=5 Hz to preprocess the fault signal so as to meet the adiabatic approximation condition.

    Fig.21. 6205-2RS JEM SKF deep groove ball bearing test device.

    5.1.1. Inner ring fault detection

    Figures 22(a)and 23(a)show the time–frequency diagram of the 6205-2RS JEM SKF inner ring bearing fault signal. Figures 22(b)and 23(b)are time–frequency diagrams of the fault signal after adding Gaussian white noise. Figures 22(c)and 22(d)and figures 23(c)and 23(d)show the time–frequency diagrams of the output signals of the CTSR and PLSTSR respectively. The optimal parameters of the CTSR area1=2.4876,b1=1.1249, andc1=0.003. The optimal parameters of the PLSTSR arem1=0.4312,m2=1.4347,m3=1.0996,k1=0.0342,andk2=0.0838.

    Fig. 22. Time domain waveforms of input and output signals: (a) inner ring fault input signal, (b) inner ring fault signal with noise (D=0.2), (c) CTSR output signal,(d)PLSTSR output signal.

    Fig.23. Power spectra of input signal and output signals: (a)inner ring fault input signal,(b)inner ring fault signal with noise,(c)CTSR output signal,(d)PLSTSR output signal.

    It can be seen from Figs. 22(c) and 22(d) that the amplitude of the time domain waveform of the output signal of PLSTSR is significantly larger than that of the CTSR,and the periodicity is stronger. Figures 23(c)and 23(d)show the peak of PLSTSR and CTSR atf=162 Hz(relative error is 0.12%),which are 8.748 and 32.21 respectively, so the PLSTSR is 23.462 higher than that of CTSR. The SNRs of the two systems are?13.0787 dB and?10.8274 dB respectively,and the PLSTSR is 2.2513 dB higher than the CTSR,which proves the advantage of the PLSTSR in fault signal detection.

    5.1.2. Outer ring fault detection

    Figures 24(a) and 25(a) show the time–frequency diagram of the 6205-2RS JEM SKF outer ring bearing fault signal. Figures 24(b) and 25(b) show the time–frequency diagrams of the fault signal after adding Gaussian white noise.Figures 24(c) and 24(d) and Figs. 25(c) and 25(d) show the time–frequency diagram of the output signals of the CTSR and PLSTSR respectively. The optimal parameters of the CTSR area1=0.1507,b1=0.5291,andc1=0.3201. The optimal parameters of the PLSTSR arem1= 1.9598,m2= 1.3831,m3=5.6892,k1=3.5269,andk2=4.0129.

    It can be seen from Fig. 24 that the time domain waveform of the PLSTSR output signal has stronger periodicity and larger output amplitude. It can be seen from Figs. 25(c)and 25(d) that the spectral peaks of the output signals of the two systems are both atf= 108 Hz (relative error is 0.65%), but the spectral peak of the CTSR output signal is only 2.419,while the spectral peak of the PLSTSR output signal is 1269.The SNR of PLSTSR and CTSR are?14.2030 dB and?5.5644 dB,respectively,and the PLSTSR is 7.6389 dB higher than the CTSR.

    Fig. 24. Time domain waveforms of input and output signals: (a) outer ring fault input signal, (b) outer ring fault signal with noise (D=0.8), (c) CTSR output signal,(d)PLSTSR output signal.

    Fig.25. Power spectra of input signal and output signals: (a)outer ring fault input signal,(b)outer ring fault signal with noise(D=0.8),(c)CTSR output signal,(d)PLSTSR output signal.

    5.2. Bearing fault detection under LDK UER204 model

    Currently, the experimental data which are widely used by many scholars of SR are the CWRU bearing fault data public set. Therefore, in order to verify the applicability of the PLSTSR in different scenarios, the national public data LDK UER204-type bearing is selected for the experiment. The experimental device is shown in Fig.26. The bearing structural parameters[35]are shown in Table 4. The sampling frequency is set to befs=25600 Hz,sampling pointN=20000,and the theoretical value of outer ring fault frequency is calculated to bef=107.91 Hz. Since the signal does not meet the adiabatic approximation condition either, the secondary sampling frequency is set to befsr=5 Hz.

    Fig.26. LDK UER204 bearing test device.

    Table 4. Main data of LDK UER204 bearing.

    5.2.1. Outer ring fault detection

    Figures 27(a)and 28(a)show the time–frequency diagram of the LDK UER204 bearing fault signal. Figures 27(b) and 28(b) show the time–frequency diagrams of the fault signal after adding noise. Figure 27(c) and 27(d) and figures 28(c)and 28(d) show the time–frequency diagrams of the output signals of the CTSR and PLSTSR, respectively. The optimal parameters of the CTSR area1=0.1007,b1=2.6162,andc1=0.0418. The optimal parameters of the PLSTSR arem1=1.1512,m2=1.0547,m3=1.3156,k1=0.4354, andk2=0.5677.

    Fig. 27. Time domain waveforms of input and output signals: (a) outer ring fault input signal, (b) outer ring fault signal with noise (D=0.2), (c) CTSR output signal,(d)PLSTSR output signal.

    Fig. 28. Power spectra of input signal and output signals: (a) outer ring fault input signal, (b) CTSR output signal, (c) PLSR output signal, (d) PLSTSR output signal.

    From Figs. 28(a) and 28(b), it can be seen that the fault frequency cannot be identified by directly using Fourier transform to obtain the power spectrum of the original fault signal nor the noise-added fault signal. In Figs.28(c)and 28(d),the spectral peaks of both systems are atf=107.5 Hz(relative error is 0.38%)with peaks of 0.3402 and 5.75 respectively. The SNR of the two systems are?23.1750 dB and?20.2316 dB,respectively. The PLSTSR is improved by 2.9434 dB relative to CTSR.Obviously,the PLSTSR has a larger peak and SNR,less noise interference which makes it easier to detect the fault signal.

    6. Bearing fault detection under Levy noise

    Since Gaussian white noise is an ideal noise and cannot effectively simulate the actual noise in engineering practice,non-Gaussian Levy noise is introduced in order to be more similar to the random noise in the actual engineering environment.

    6.1. Levy noise

    The characteristic function expression of Levy noise[36]is shown as follows:

    where is the characteristic parameter,which determines the smearing characteristics and impulse characteristics of its distribution.The smearing characteristics of the noise turns stronger as increases,and the impulse characteristics becomes weaker as increases.The is a symmetry parameter, which determines the symmetry of the distribution. is the scale parameter, and represents the position parameter,which determines the center position of the distribution.

    The random variables of Levy noise are generated by the Chambers–Mallows–Stuck(CMS)method.

    where the random variablesVandWare independent of each other,V ∈(?π/2,π/2) obeys a uniform distribution,Wfollows an exponential distribution with a mean of 1, andCα,β= arctan(βtan(πα/2))/α,Dα,β,σ=σ[cos(arctan(βtan(πα/2)))]?1/α.

    6.2. Bearing fault detection under LDK UER204 model

    In order to verify the ability of PLSTSR to detect th bearing fault under Levy noise, the same LDK UER204 type of bearing as that in the previous section is selected. The sampling frequency is set to befs=25600 Hz, sampling pointN=20000, and the theoretical value of outer ring fault frequency is calculated to befout=107.91 Hz. Since the signal does not meet the adiabatic approximation condition either,the secondary sampling frequency is set to befsr=5 Hz.

    Figures 29(a) and 30(a) show the time–frequency diagrams of the LDK UER204 bearing fault signal, and figures 29(b) and 30(b) display the time–frequency diagrams of the fault signal after adding Levy noise. None of the characteristic frequencies of the fault signals can be identified. Figures 29(c) and 29(d) and figures 30(c) and 30(d) show the time–frequency diagrams of the output signals of the CTSR and PLSTSR, respectively. The optimal parameters of the CTSR area1=0.7112,b1=1.562,andc1=0.2311.The optimal parameters of the PLSTSR arem1=4.4652,m2=5.0647,m3=9.0956,k1=1.3354,andk2=1.6697.

    Fig.29. Time domain waveforms of input and output signals. (a)Outer ring fault input signal, (b)outer ring fault signal with noise(D=0.2), (c)CTSR output signal,(d)PLSTSR output signal.

    Fig.30. Power spectra of input signal and output signals: (a)outer ring fault input signal,(b)outer ring fault signal with noise,(c)CTSR output signal,(d)PLSTSR output signal.

    Comparing spectra among Figs. 30(a)–30(d), only the spectral peak of PLSTSR output signal is located atf=107.5 Hz (relative error is 0.38%), the CTSR cannot detect fault frequency well in Levy noise environment. Although the noise utilization rate of PLSTSR is not ideal, the fault frequency can still be detected. The SNR at fault frequency is?19.8919 dB,and the relative input SNR is also improved by 25.684 dB,which proves the engineering application value of PLSTSR.

    7. Conclusions and perspectives

    In this work,the PLSTSR is proposed and applied to the detecting of low-frequency, high-frequency, multi-frequency signal,and bearing fault under Gaussian white noise and Levy noise. The PLSTSR is introduced, its saturation is verified,and the Kramers escape rate and MFPT are derived. Then,using the SNR as a measure,the influence of system parameters on the SNR is analyzed.Some conclusions are drawn from the present research as follows.

    (i)PLSTSR overcomes the saturation of CTSR,improves the system output SNR,and amplifies the signal amplitude.

    (ii) The adaptive genetic algorithm optimizes the system parameters collaboratively,so that the results can achieve global optimization.

    (iii) The PLSTSR can detect low-frequency, highfrequency and multi-frequency signals well, and its SNR and output amplitude are better than those of the CTSR.

    (iv) The PLSTSR is applied to the bearing fault detection of two scenarios under the Gaussian white noise, which eliminates the chance that the proposed system is only suitable for a certain bearing. The experimental results show that the PLSTSR has better large output amplitude and SNR.It is proved that the system has good theoretical significance and practical value. The details are shown in Table 5.

    (v) The PLSTSR and CTSR are applied to detecting of bearing fault under the Levy noise, which proves that the PLSTSR can also detect fault signals in a noise environment closer to engineering scenario,while the CTSR cannot detect fault signals. The specific test results are listed in Table 5.

    Table 5. Comparison of performances among different systems in bearing fault detection.

    The system proposed in this paper is a one-dimensional system. Subsequent research will apply the potential function of PLSTSR to a two-dimensional system or an underdamped system,and judge its superiority in performance.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 61771085), the Research Project of Chongqing Educational Commission,China(Grant Nos. KJ1600407 and KJQN201900601), and the Natural Science Foundation of Chongqing, China (Grant No.cstc2021jcyj-msxmX0836).

    猜你喜歡
    張剛
    Visualizing and witnessing first-order coherence,Bell nonlocality and purity by using a quantum steering ellipsoid in the non-inertial frame
    Steering quantum nonlocalities of quantum dot system suffering from decoherence
    2022年高考模擬試題(三)
    層林盡染
    HeTDSE:A GPU based program to solve the full-dimensional time-dependent Schr¨odinger equation for two-electron helium subjected to strong laser fields*
    最萌“海拔差”:我要給你一個(gè)“補(bǔ)齊的幸?!?/a>
    最萌“海拔差”:我要給你一個(gè)“補(bǔ)齊的幸?!?/a>
    Implementation Scheme of Two-Photon Post-Quantum Correlations?
    數(shù)列最值問題的求解策略
    活用課本習(xí)題
    eeuss影院久久| 国产av麻豆久久久久久久| aaaaa片日本免费| www.www免费av| 听说在线观看完整版免费高清| 国产免费av片在线观看野外av| 男人舔奶头视频| 国产精品乱码一区二三区的特点| 欧美乱码精品一区二区三区| 亚洲在线自拍视频| 国产v大片淫在线免费观看| 可以在线观看的亚洲视频| 日韩av在线大香蕉| 偷拍熟女少妇极品色| 久久久久久大精品| 亚洲av成人av| 欧美激情在线99| 国产av不卡久久| av欧美777| 欧美在线黄色| 日韩欧美精品v在线| 97碰自拍视频| 日本免费一区二区三区高清不卡| 国语自产精品视频在线第100页| 国产亚洲精品一区二区www| 淫妇啪啪啪对白视频| 在线播放国产精品三级| 99久久综合精品五月天人人| 亚洲欧美激情综合另类| 午夜激情欧美在线| 久久久久九九精品影院| 亚洲精品久久国产高清桃花| 最近最新免费中文字幕在线| 最近视频中文字幕2019在线8| 国产精品,欧美在线| 国产精品一及| www.色视频.com| 国产高清激情床上av| 最新中文字幕久久久久| 美女高潮的动态| 欧美bdsm另类| 午夜福利18| 日本免费一区二区三区高清不卡| 91字幕亚洲| 亚洲专区中文字幕在线| 身体一侧抽搐| 欧美区成人在线视频| 成人高潮视频无遮挡免费网站| 中文资源天堂在线| 久久精品国产综合久久久| 好看av亚洲va欧美ⅴa在| 久久久久久久久中文| 窝窝影院91人妻| 淫妇啪啪啪对白视频| 男女那种视频在线观看| 男女那种视频在线观看| 久久国产精品人妻蜜桃| svipshipincom国产片| 国产v大片淫在线免费观看| bbb黄色大片| 欧美日韩福利视频一区二区| 一本久久中文字幕| 色精品久久人妻99蜜桃| 久久亚洲真实| 免费搜索国产男女视频| 欧美激情在线99| 中亚洲国语对白在线视频| 69人妻影院| 亚洲av第一区精品v没综合| 国产精品女同一区二区软件 | 国产高清有码在线观看视频| 日韩欧美免费精品| 九九热线精品视视频播放| 亚洲,欧美精品.| 老汉色av国产亚洲站长工具| 免费电影在线观看免费观看| 国产一区在线观看成人免费| av中文乱码字幕在线| 国产视频一区二区在线看| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美在线乱码| 好看av亚洲va欧美ⅴa在| 少妇的逼水好多| 两个人看的免费小视频| 久久久精品大字幕| 真实男女啪啪啪动态图| 国产久久久一区二区三区| 久久人妻av系列| 色尼玛亚洲综合影院| 亚洲第一电影网av| 丰满人妻熟妇乱又伦精品不卡| 一卡2卡三卡四卡精品乱码亚洲| 欧美中文综合在线视频| 日本三级黄在线观看| www.熟女人妻精品国产| 日日夜夜操网爽| 成人欧美大片| 久久久久久久久中文| 岛国在线观看网站| 在线天堂最新版资源| 白带黄色成豆腐渣| 精品一区二区三区视频在线观看免费| 欧美不卡视频在线免费观看| 久久国产精品影院| 动漫黄色视频在线观看| 婷婷精品国产亚洲av在线| av欧美777| 国产精品久久久久久精品电影| 国产精品免费一区二区三区在线| 亚洲精品色激情综合| 欧美绝顶高潮抽搐喷水| 天堂av国产一区二区熟女人妻| 真人做人爱边吃奶动态| 久久精品亚洲精品国产色婷小说| 亚洲一区二区三区不卡视频| 白带黄色成豆腐渣| 九九在线视频观看精品| 熟女电影av网| 又粗又爽又猛毛片免费看| 麻豆久久精品国产亚洲av| 精品一区二区三区人妻视频| 人人妻,人人澡人人爽秒播| 亚洲国产精品sss在线观看| 欧美bdsm另类| 香蕉av资源在线| 男女床上黄色一级片免费看| 免费高清视频大片| 久久精品综合一区二区三区| 中文字幕人妻丝袜一区二区| 久久中文看片网| 有码 亚洲区| 性色av乱码一区二区三区2| 男女视频在线观看网站免费| 最后的刺客免费高清国语| 美女cb高潮喷水在线观看| bbb黄色大片| 国产v大片淫在线免费观看| 中出人妻视频一区二区| 日韩欧美在线二视频| 中文字幕久久专区| 色综合婷婷激情| 757午夜福利合集在线观看| 一级黄色大片毛片| 国产免费一级a男人的天堂| 亚洲 国产 在线| 美女免费视频网站| 啦啦啦免费观看视频1| 18禁国产床啪视频网站| 亚洲av成人av| 极品教师在线免费播放| 欧美日韩乱码在线| а√天堂www在线а√下载| 亚洲黑人精品在线| 国产成人影院久久av| 精品欧美国产一区二区三| 久久久久性生活片| 欧洲精品卡2卡3卡4卡5卡区| 国产高清三级在线| 精品久久久久久久人妻蜜臀av| 国产精品亚洲美女久久久| 国产亚洲精品久久久久久毛片| 免费看a级黄色片| 岛国视频午夜一区免费看| 老鸭窝网址在线观看| 精品欧美国产一区二区三| 熟女少妇亚洲综合色aaa.| 国产精品一区二区免费欧美| 中文资源天堂在线| 欧美日韩瑟瑟在线播放| 女同久久另类99精品国产91| 大型黄色视频在线免费观看| 中文字幕人成人乱码亚洲影| 国产高清视频在线观看网站| 极品教师在线免费播放| 欧美黑人巨大hd| 日韩亚洲欧美综合| 一级黄片播放器| 国产av一区在线观看免费| 丁香六月欧美| www日本在线高清视频| 久久国产精品影院| 1000部很黄的大片| 日本与韩国留学比较| 精品国产三级普通话版| 美女高潮喷水抽搐中文字幕| 偷拍熟女少妇极品色| 一区二区三区免费毛片| 好男人在线观看高清免费视频| 欧美色欧美亚洲另类二区| 特大巨黑吊av在线直播| 老司机午夜福利在线观看视频| 国产精品永久免费网站| 美女被艹到高潮喷水动态| 少妇熟女aⅴ在线视频| 国产一区二区三区视频了| 亚洲精品一区av在线观看| 九九久久精品国产亚洲av麻豆| 国产一区二区激情短视频| 91在线精品国自产拍蜜月 | 少妇高潮的动态图| 99视频精品全部免费 在线| 免费看a级黄色片| 日本精品一区二区三区蜜桃| 午夜亚洲福利在线播放| 国产成人影院久久av| 欧美一级毛片孕妇| 精品久久久久久久人妻蜜臀av| 在线十欧美十亚洲十日本专区| 我的老师免费观看完整版| 午夜福利18| 国产91精品成人一区二区三区| 制服丝袜大香蕉在线| 欧美成人一区二区免费高清观看| 18禁黄网站禁片午夜丰满| 色尼玛亚洲综合影院| 9191精品国产免费久久| 国产精品98久久久久久宅男小说| 国内少妇人妻偷人精品xxx网站| 成人国产综合亚洲| 在线a可以看的网站| 午夜免费成人在线视频| 宅男免费午夜| 天天添夜夜摸| 欧美日韩一级在线毛片| 少妇的丰满在线观看| 国产激情偷乱视频一区二区| 九九在线视频观看精品| 1000部很黄的大片| 色综合亚洲欧美另类图片| 精品免费久久久久久久清纯| 黄色片一级片一级黄色片| 国产在视频线在精品| 少妇熟女aⅴ在线视频| 村上凉子中文字幕在线| 九色成人免费人妻av| 亚洲黑人精品在线| 在线免费观看不下载黄p国产 | 欧美+亚洲+日韩+国产| 国产伦精品一区二区三区视频9 | 精品午夜福利视频在线观看一区| 久久久久久久久中文| 在线天堂最新版资源| 亚洲国产精品sss在线观看| 哪里可以看免费的av片| 国模一区二区三区四区视频| 91麻豆av在线| 91九色精品人成在线观看| 精品一区二区三区视频在线观看免费| 久久精品国产自在天天线| 亚洲av电影在线进入| 日本一二三区视频观看| 老司机午夜十八禁免费视频| xxx96com| 日本熟妇午夜| 神马国产精品三级电影在线观看| 亚洲国产欧洲综合997久久,| 亚洲黑人精品在线| 99久久精品国产亚洲精品| 一级毛片女人18水好多| 精品不卡国产一区二区三区| 五月伊人婷婷丁香| a级毛片a级免费在线| a在线观看视频网站| 亚洲av不卡在线观看| 成人永久免费在线观看视频| 国内少妇人妻偷人精品xxx网站| 99热只有精品国产| 一本久久中文字幕| 亚洲国产中文字幕在线视频| 国内精品一区二区在线观看| 成人国产一区最新在线观看| 国产成年人精品一区二区| 精品一区二区三区视频在线 | 国产一区在线观看成人免费| 淫秽高清视频在线观看| 中国美女看黄片| 蜜桃久久精品国产亚洲av| 成人永久免费在线观看视频| 国产精品影院久久| 国产精品日韩av在线免费观看| 黄片大片在线免费观看| 国产成人啪精品午夜网站| 老司机在亚洲福利影院| 国产成人系列免费观看| 亚洲国产欧美人成| 99精品久久久久人妻精品| 国产激情欧美一区二区| 久久精品91蜜桃| 精品国产美女av久久久久小说| 欧美成人性av电影在线观看| 三级毛片av免费| 脱女人内裤的视频| 黄色日韩在线| 一a级毛片在线观看| 亚洲欧美日韩卡通动漫| 亚洲不卡免费看| 国产乱人伦免费视频| 热99在线观看视频| 亚洲精华国产精华精| av黄色大香蕉| 国产精品亚洲一级av第二区| 欧美午夜高清在线| 男女视频在线观看网站免费| 久久草成人影院| 成人高潮视频无遮挡免费网站| 91av网一区二区| 国内毛片毛片毛片毛片毛片| www国产在线视频色| 天堂影院成人在线观看| 无限看片的www在线观看| 黄色成人免费大全| 成人国产一区最新在线观看| 波多野结衣高清作品| 欧美色视频一区免费| 日本一本二区三区精品| 亚洲精品在线美女| 少妇的逼好多水| 可以在线观看的亚洲视频| 真人做人爱边吃奶动态| 一区二区三区高清视频在线| 麻豆国产97在线/欧美| 日韩有码中文字幕| 麻豆一二三区av精品| 男人舔奶头视频| 超碰av人人做人人爽久久 | 日本一本二区三区精品| 国产亚洲精品久久久久久毛片| av欧美777| 女人十人毛片免费观看3o分钟| 欧美中文日本在线观看视频| 欧美乱色亚洲激情| 村上凉子中文字幕在线| 琪琪午夜伦伦电影理论片6080| 一级作爱视频免费观看| 成人欧美大片| 精品人妻偷拍中文字幕| 欧美性猛交黑人性爽| 女警被强在线播放| a级一级毛片免费在线观看| 亚洲成人免费电影在线观看| 国产乱人伦免费视频| 欧美日本亚洲视频在线播放| 一二三四社区在线视频社区8| 日韩欧美精品免费久久 | 国产精品亚洲av一区麻豆| 国产精品乱码一区二三区的特点| 国产一区二区在线观看日韩 | 亚洲一区高清亚洲精品| 少妇高潮的动态图| 在线观看一区二区三区| 日韩欧美精品免费久久 | 内地一区二区视频在线| 少妇高潮的动态图| 国产成人系列免费观看| 午夜福利免费观看在线| 一级a爱片免费观看的视频| 99热这里只有是精品50| 一区二区三区免费毛片| 十八禁网站免费在线| 国产一区二区在线观看日韩 | 日韩高清综合在线| 亚洲国产中文字幕在线视频| 国产一级毛片七仙女欲春2| 欧美性猛交黑人性爽| 国产69精品久久久久777片| 国产乱人伦免费视频| 深夜精品福利| 国内精品久久久久久久电影| 久久精品国产亚洲av涩爱 | 欧美绝顶高潮抽搐喷水| 日韩 欧美 亚洲 中文字幕| 男插女下体视频免费在线播放| 成人欧美大片| 日韩人妻高清精品专区| 国内毛片毛片毛片毛片毛片| 蜜桃久久精品国产亚洲av| 国产午夜福利久久久久久| 黄色视频,在线免费观看| 成人亚洲精品av一区二区| 亚洲 欧美 日韩 在线 免费| 噜噜噜噜噜久久久久久91| 非洲黑人性xxxx精品又粗又长| 99久久99久久久精品蜜桃| 久久国产乱子伦精品免费另类| 亚洲黑人精品在线| 欧美一级a爱片免费观看看| av中文乱码字幕在线| 色播亚洲综合网| 中文字幕久久专区| 国产av在哪里看| 99久久无色码亚洲精品果冻| 亚洲人成网站高清观看| 麻豆久久精品国产亚洲av| av在线天堂中文字幕| 亚洲av不卡在线观看| 99久久九九国产精品国产免费| 男女做爰动态图高潮gif福利片| 国模一区二区三区四区视频| 淫妇啪啪啪对白视频| 国产精品影院久久| 亚洲av第一区精品v没综合| 精品久久久久久成人av| 欧美区成人在线视频| 国产一区二区激情短视频| 国产成人欧美在线观看| 在线观看66精品国产| 国产黄a三级三级三级人| 日本撒尿小便嘘嘘汇集6| 在线十欧美十亚洲十日本专区| 欧美午夜高清在线| 成人性生交大片免费视频hd| 国产探花极品一区二区| 亚洲av美国av| 国产97色在线日韩免费| 久久香蕉精品热| 亚洲av日韩精品久久久久久密| 成年女人毛片免费观看观看9| 小说图片视频综合网站| 国产精品爽爽va在线观看网站| 成年女人毛片免费观看观看9| 手机成人av网站| 成年女人永久免费观看视频| 亚洲第一欧美日韩一区二区三区| 在线观看免费视频日本深夜| 久久精品综合一区二区三区| 国产aⅴ精品一区二区三区波| 午夜免费成人在线视频| 欧美成人a在线观看| 波多野结衣巨乳人妻| 3wmmmm亚洲av在线观看| 桃红色精品国产亚洲av| 国产亚洲精品av在线| 日韩欧美一区二区三区在线观看| 精品一区二区三区视频在线 | 美女高潮喷水抽搐中文字幕| 日本撒尿小便嘘嘘汇集6| 一个人看视频在线观看www免费 | 欧美国产日韩亚洲一区| 一进一出抽搐gif免费好疼| 天天添夜夜摸| 男女那种视频在线观看| 五月伊人婷婷丁香| 日韩有码中文字幕| 天天一区二区日本电影三级| 哪里可以看免费的av片| 亚洲人成网站在线播| 麻豆久久精品国产亚洲av| 免费大片18禁| 看免费av毛片| avwww免费| 18禁黄网站禁片午夜丰满| 日韩精品中文字幕看吧| 变态另类丝袜制服| 内地一区二区视频在线| 在线十欧美十亚洲十日本专区| 欧美乱色亚洲激情| 国产三级在线视频| 免费观看的影片在线观看| 亚洲午夜理论影院| 免费av毛片视频| 婷婷精品国产亚洲av| 婷婷精品国产亚洲av在线| a级毛片a级免费在线| 国产视频内射| 成年版毛片免费区| 亚洲精品色激情综合| 欧美黑人欧美精品刺激| 好男人在线观看高清免费视频| 亚洲最大成人中文| 精品国产三级普通话版| 亚洲人成电影免费在线| 成人欧美大片| 女人高潮潮喷娇喘18禁视频| 黄色视频,在线免费观看| 日韩欧美国产在线观看| 欧美日韩黄片免| 亚洲熟妇中文字幕五十中出| 欧美日韩福利视频一区二区| 黄色日韩在线| 高清日韩中文字幕在线| 久久久色成人| 最新美女视频免费是黄的| 12—13女人毛片做爰片一| 久久久久久久久久黄片| 久久精品国产99精品国产亚洲性色| 99热精品在线国产| 波多野结衣高清无吗| 久久精品国产亚洲av香蕉五月| 在线看三级毛片| 国产亚洲精品久久久久久毛片| 日本免费a在线| 欧美成人免费av一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲内射少妇av| 别揉我奶头~嗯~啊~动态视频| 国产精品1区2区在线观看.| 岛国视频午夜一区免费看| 两人在一起打扑克的视频| 亚洲av二区三区四区| 18禁国产床啪视频网站| 无人区码免费观看不卡| 午夜视频国产福利| 国产精品香港三级国产av潘金莲| 亚洲精品久久国产高清桃花| 久久精品国产综合久久久| 国产高清视频在线观看网站| 在线观看免费午夜福利视频| 九九在线视频观看精品| 久久精品国产清高在天天线| 免费看日本二区| 欧美三级亚洲精品| 91久久精品国产一区二区成人 | 1024手机看黄色片| 99热这里只有是精品50| 午夜福利18| 嫁个100分男人电影在线观看| 又黄又粗又硬又大视频| 久久精品国产亚洲av香蕉五月| 91久久精品国产一区二区成人 | 欧美日韩瑟瑟在线播放| 热99在线观看视频| 欧美中文日本在线观看视频| 黄色成人免费大全| 99精品欧美一区二区三区四区| 欧美国产日韩亚洲一区| 国产免费一级a男人的天堂| 欧美成人一区二区免费高清观看| 免费一级毛片在线播放高清视频| 99热只有精品国产| 亚洲欧美精品综合久久99| av中文乱码字幕在线| 丝袜美腿在线中文| 亚洲人成网站高清观看| 亚洲 国产 在线| 天美传媒精品一区二区| 国产精品久久电影中文字幕| a级一级毛片免费在线观看| 国产精品久久久久久精品电影| 久9热在线精品视频| 免费人成在线观看视频色| 久久精品国产自在天天线| 亚洲欧美日韩高清专用| 国产精品1区2区在线观看.| 免费高清视频大片| 法律面前人人平等表现在哪些方面| 搡老熟女国产l中国老女人| 久久久久久大精品| 精品日产1卡2卡| 国内精品美女久久久久久| 九九热线精品视视频播放| 国产激情欧美一区二区| 亚洲精品亚洲一区二区| 欧美成人a在线观看| 天堂av国产一区二区熟女人妻| 97碰自拍视频| 午夜福利在线观看吧| 欧美日韩精品网址| 亚洲精品美女久久久久99蜜臀| 无人区码免费观看不卡| 国语自产精品视频在线第100页| 欧美日韩乱码在线| 亚洲久久久久久中文字幕| 国产精品99久久99久久久不卡| 国产成年人精品一区二区| 日韩av在线大香蕉| 免费av观看视频| 国产精品av视频在线免费观看| 亚洲欧美日韩高清专用| 亚洲av五月六月丁香网| 99久久精品热视频| 成人av在线播放网站| 99久久九九国产精品国产免费| 亚洲精品国产精品久久久不卡| 夜夜躁狠狠躁天天躁| 欧美又色又爽又黄视频| 亚洲欧美日韩卡通动漫| 99热这里只有是精品50| 国产精品98久久久久久宅男小说| 国产伦人伦偷精品视频| 成人欧美大片| 色综合站精品国产| 熟女人妻精品中文字幕| 精品一区二区三区人妻视频| 听说在线观看完整版免费高清| 欧美乱码精品一区二区三区| 日韩欧美一区二区三区在线观看| 亚洲国产精品久久男人天堂| 国产真实伦视频高清在线观看 | 国产成人av激情在线播放| 久久精品国产自在天天线| 99久国产av精品| 99国产极品粉嫩在线观看| 精品无人区乱码1区二区| 一个人看的www免费观看视频| 国产精品爽爽va在线观看网站| 久久伊人香网站| 国产精品久久久人人做人人爽| 黄色片一级片一级黄色片| 国语自产精品视频在线第100页| 欧美zozozo另类| 国产亚洲精品一区二区www| 国产精品,欧美在线| 亚洲精品456在线播放app | 亚洲真实伦在线观看| av片东京热男人的天堂| 国产三级在线视频| x7x7x7水蜜桃| 99视频精品全部免费 在线| 舔av片在线| 亚洲最大成人中文| 淫秽高清视频在线观看| 中文字幕人妻熟人妻熟丝袜美 | 丰满人妻一区二区三区视频av | 亚洲成av人片在线播放无| 国产精品,欧美在线|