王仁寶 王一婷 張惠芬 宋曉玲 萬(wàn)曉媛 謝國(guó)駟 史成銀
口服特異性卵黃抗體對(duì)凡納濱對(duì)蝦抗WSSV感染的免疫保護(hù)效果*
王仁寶1,2王一婷1,3張惠芬1,3宋曉玲1萬(wàn)曉媛1謝國(guó)駟1史成銀1①
(1. 中國(guó)水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所 農(nóng)業(yè)農(nóng)村部海水養(yǎng)殖病害防治重點(diǎn)實(shí)驗(yàn)室 青島海洋科學(xué)與技術(shù)試點(diǎn)國(guó)家實(shí)驗(yàn)室海洋漁業(yè)科學(xué)與食物產(chǎn)出過(guò)程功能實(shí)驗(yàn)室 青島市海水養(yǎng)殖流行病學(xué)與生物安保重點(diǎn)實(shí)驗(yàn)室 山東 青島 266071;2. 上海海洋大學(xué) 水產(chǎn)科學(xué)國(guó)家級(jí)實(shí)驗(yàn)教學(xué)示范中心 上海 201306;3. 大連海洋大學(xué)水產(chǎn)與生命學(xué)院 遼寧 大連 116023)
為探討特異性卵黃抗體對(duì)凡納濱對(duì)蝦()抗白斑綜合征病毒(white spot syndrome virus, WSSV)的免疫保護(hù)機(jī)制及效果,本研究以添加不同劑量WSSV卵黃抗體制劑(0、0.2%和0.5%)的飼料投喂凡納濱對(duì)蝦幼蝦,免疫28 d后使用WSSV進(jìn)行人工感染,測(cè)定感染對(duì)蝦的肝胰腺免疫酶活力和免疫基因表達(dá)水平,以及感染后14 d內(nèi)對(duì)蝦的存活率。結(jié)果顯示,WSSV感染3 d后,與未添加卵黃抗體制劑的對(duì)照組相比,0.2%免疫組對(duì)蝦肝胰腺的超氧化物歧化酶(SOD)和酚氧化酶(PO)活力顯著升高,酸性磷酸酶(ACP)和堿性磷酸酶(AKP)活力顯著降低,熱休克蛋白70基因(70)表達(dá)水平顯著升高,凝集素基因()和β-1,3-葡聚糖結(jié)合蛋白–脂蛋白基因()表達(dá)水平顯著降低;0.5%免疫組對(duì)蝦肝胰腺的SOD活力顯著升高,ACP和AKP活力顯著降低,70基因表達(dá)水平顯著升高,基因表達(dá)水平顯著降低。人工感染實(shí)驗(yàn)結(jié)果顯示,WSSV感染14 d后,0.2%和0.5%免疫組對(duì)蝦的存活率分別為48.89%和87.78%,均顯著高于對(duì)照組(存活率為0),且0.5%免疫組對(duì)蝦存活率顯著高于0.2%免疫組。特異性卵黃抗體制劑能在一定程度上改變發(fā)病的進(jìn)程,延遲對(duì)蝦的發(fā)病和死亡時(shí)間,提高同期存活率。研究表明,口服特異性卵黃抗體制劑可以調(diào)節(jié)對(duì)蝦肝胰腺免疫酶活力和免疫基因表達(dá)水平,顯著提高凡納濱對(duì)蝦抗WSSV感染的能力。本研究為卵黃抗體抗WSSV感染機(jī)制的研究提供了參考,也為在生產(chǎn)上使用卵黃抗體防控WSSV感染提供了科學(xué)依據(jù)。
卵黃抗體;凡納濱對(duì)蝦;白斑綜合征病毒;免疫酶活力;免疫基因表達(dá);抗病力
白斑綜合征是由白斑綜合征病毒(white spot syndrome virus, WSSV)引起的水生動(dòng)物重大傳染病,是我國(guó)一類(lèi)動(dòng)物疫病。該病自20世紀(jì)90年代初暴發(fā)后,給我國(guó)蓬勃發(fā)展的中國(guó)明對(duì)蝦()養(yǎng)殖造成了毀滅性打擊,并迅速擴(kuò)散至亞洲、美洲和地中海周邊等主要的對(duì)蝦養(yǎng)殖國(guó)家和地區(qū),成為全球性的養(yǎng)殖對(duì)蝦流行病。WSSV的宿主范圍極廣,可感染幾乎所有的水生十足目(Decapoda)甲殼類(lèi)(OIE, 2016)。1997年起,世界動(dòng)物衛(wèi)生組織(OIE)將白斑綜合征列入疫病名錄,在國(guó)際貿(mào)易中需進(jìn)行重點(diǎn)檢疫和防控。
近年來(lái),免疫增強(qiáng)劑、中草藥、益生菌和水產(chǎn)疫苗等一系列環(huán)境友好型的制劑或藥物被應(yīng)用于防治白斑綜合征(周進(jìn)等, 2003; Citarasu, 2009; 孫博超等, 2019)。卵黃抗體(immunoglobulin of yolk, IgY)是鳥(niǎo)類(lèi)主要的免疫球蛋白,經(jīng)抗原刺激的母雞會(huì)產(chǎn)生特異性的IgY,并在卵黃中大量累積。IgY能與抗原特異性結(jié)合,通過(guò)中和作用保護(hù)機(jī)體(Warr, 1995; Xu, 2011)。IgY化學(xué)性質(zhì)穩(wěn)定,生產(chǎn)成本低、收集和純化過(guò)程操作方便,且符合動(dòng)物福利,作為傳統(tǒng)疫苗的替代品已被越來(lái)越多地應(yīng)用于水產(chǎn)養(yǎng)殖疾病防控中。袁雪梅等(2020)研究發(fā)現(xiàn),特異性卵黃抗體對(duì)大口黑鱸()彈狀病毒具有明顯的中和作用。Qin等(2018)研究發(fā)現(xiàn),特異性卵黃抗體可促進(jìn)團(tuán)頭魴()抗嗜水氣單胞菌()的感染。Gao等(2016)研究發(fā)現(xiàn),特異性卵黃抗體可提高凡納濱對(duì)蝦()抗哈氏弧菌()和副溶血弧菌()感染的能力。在使用特異性卵黃抗體防控白斑綜合征方面,Lu等(2009)研究發(fā)現(xiàn),其制備的WSSV卵黃抗體投喂克氏原螯蝦(),可顯著降低WSSV攻毒后蝦的死亡率。Fu等(2010)研制了WSSV卵黃抗體,分析了其生理生化特性,投喂中國(guó)明對(duì)蝦后可顯著提高WSSV攻毒對(duì)蝦的存活率。韋嵩等(2009)研究發(fā)現(xiàn),口服特異性卵黃抗體可提高凡納濱對(duì)蝦免疫酶活力,并增強(qiáng)對(duì)蝦抗WSSV感染的能力。但目前的研究多以特異性卵黃抗體的制備、生理生化特性分析和應(yīng)用效果評(píng)價(jià)為主,較少涉及卵黃抗體對(duì)對(duì)蝦非特異性免疫功能的影響,尚未見(jiàn)有口服卵黃抗體對(duì)WSSV感染后對(duì)蝦免疫酶活力及免疫基因表達(dá)水平影響的研究。
本研究將不同劑量的WSSV卵黃抗體添加到飼料中投喂凡納濱對(duì)蝦幼蝦,28 d后用WSSV人工感染免疫對(duì)蝦,測(cè)定對(duì)蝦肝胰腺的免疫酶活力及免疫基因表達(dá)水平,以及感染后14 d內(nèi)對(duì)蝦的存活率,探討特異性卵黃抗體對(duì)WSSV感染對(duì)蝦的免疫力和免疫保護(hù)效果,以期為生產(chǎn)上使用特異性卵黃抗體防控WSSV提供依據(jù),也為卵黃抗體抗對(duì)蝦病毒機(jī)制的研究提供參考。
實(shí)驗(yàn)用凡納濱對(duì)蝦購(gòu)自山東日照某水產(chǎn)養(yǎng)殖公司,體色光亮,活力旺盛,食欲良好,無(wú)明顯病癥,平均體重為(1.26±0.10) g。實(shí)驗(yàn)對(duì)蝦養(yǎng)殖在含150 L過(guò)濾海水的圓柱形塑料桶中,鹽度為30。實(shí)驗(yàn)前,參照Durand等(2002)的方法,使用實(shí)時(shí)熒光定量PCR (qPCR)檢測(cè)WSSV,確認(rèn)為陰性。
實(shí)驗(yàn)期間投喂自制飼料。基礎(chǔ)飼料配方:魚(yú)粉35%、豆粕28%、面粉26.1%、谷朊粉2%、魚(yú)油2%、蝦粉2%、磷脂1.5%、Ca(H2PO4)21.5%、膽堿1%、維生素混合物0.3%、礦物質(zhì)混合物0.5%、維生素C 0.1%。維生素混合物和礦物質(zhì)混合物的組成見(jiàn)張婷婷等(2017)。在基礎(chǔ)飼料配方中分別添加0.2%和0.5% WSSV卵黃抗體制劑,配制成0.2%和0.5%免疫組飼料?;A(chǔ)飼料和2種免疫組飼料均用小型飼料機(jī)制成直徑為3~4 mm、長(zhǎng)度為3~5 mm的顆粒飼料,置于55℃鼓風(fēng)干燥箱中6 h,烘干后分裝,4℃保存。WSSV卵黃抗體制劑由韓國(guó)AD BIOTECH有限公司惠贈(zèng)。
WSSV人工感染實(shí)驗(yàn)所用毒種為患白斑綜合征的病蝦,由依托于中國(guó)水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所的世界動(dòng)物衛(wèi)生組織(OIE)白斑綜合征參考實(shí)驗(yàn)室提供,經(jīng)PCR檢測(cè)呈WSSV強(qiáng)陽(yáng)性。取病蝦頭胸部去除肝胰腺后,剪碎、混合作為感染實(shí)驗(yàn)用對(duì)蝦病料,分成小份,–80℃保存?zhèn)溆谩?/p>
1.2.1 WSSV卵黃抗體免疫實(shí)驗(yàn) 免疫實(shí)驗(yàn)開(kāi)始前,將實(shí)驗(yàn)對(duì)蝦暫養(yǎng)1周。待對(duì)蝦穩(wěn)定后,選取480尾大小均一、活力良好的對(duì)蝦,隨機(jī)分為3個(gè)組(2個(gè)免疫組,1個(gè)對(duì)照組),每組160尾蝦。免疫組分別投喂0.2%和0.5%免疫組飼料,對(duì)照組投喂基礎(chǔ)飼料,持續(xù)投喂28 d。實(shí)驗(yàn)期間,連續(xù)充氣,水溫控制在(28±2)℃。每天投喂3次,日投喂量約為對(duì)蝦體重的5%。24 h換水1次,換水量為養(yǎng)殖水體的1/3。
1.2.2 WSSV人工感染實(shí)驗(yàn) 免疫實(shí)驗(yàn)28 d后,對(duì)0.2%免疫組、0.5%免疫組和對(duì)照組的對(duì)蝦進(jìn)行WSSV人工感染實(shí)驗(yàn)。每組各取120尾對(duì)蝦,分別隨機(jī)分入4個(gè)桶中,每桶30尾對(duì)蝦。通過(guò)WSSV人工感染預(yù)實(shí)驗(yàn)確定本批對(duì)蝦病料有效感染劑量為0.07 g/尾。人工感染前12 h停食,次日上午投喂–80℃保存的對(duì)蝦病料。每天記錄對(duì)蝦的死亡情況,及時(shí)撈出死蝦,使用qPCR方法檢測(cè)瀕死對(duì)蝦體內(nèi)的WSSV (Durand, 2002)。14 d后結(jié)束人工感染實(shí)驗(yàn),統(tǒng)計(jì)各組對(duì)蝦的存活率,計(jì)算WSSV卵黃抗體對(duì)凡納濱對(duì)蝦的相對(duì)免疫保護(hù)率(relative percentage of survival, RPS)。感染實(shí)驗(yàn)期間,養(yǎng)殖管理同1.2.1,各實(shí)驗(yàn)組繼續(xù)投喂相應(yīng)的免疫飼料或基礎(chǔ)飼料。
1.2.3 肝胰腺樣品的采集 人工感染3 d后,每個(gè)實(shí)驗(yàn)組各取3尾對(duì)蝦,取肝胰腺組織分成2份,置于液氮中速凍,然后,轉(zhuǎn)移至–80℃冰箱中保存,分別用于測(cè)定免疫酶活力和免疫基因表達(dá)水平。
1.2.4 肝胰腺免疫酶活力測(cè)定 準(zhǔn)確稱(chēng)取各實(shí)驗(yàn)組肝胰腺組織,加入等質(zhì)量的預(yù)冷0.85% NaCl溶液,混合后用組織研磨器6000~8000 r/min勻漿。然后加入9倍質(zhì)量的預(yù)冷0.85% NaCl溶液,混勻后,4℃ 2700 r/min離心5 min,取上清液進(jìn)行檢測(cè)。
采用南京建成生物工程研究所的試劑盒,分別測(cè)定樣品的酸性磷酸酶(ACP)、堿性磷酸酶(AKP)、超氧化物歧化酶(SOD)活力及總蛋白濃度,具體操作按試劑盒說(shuō)明書(shū)進(jìn)行。酚氧化酶(PO)活力測(cè)定參考雷質(zhì)文等(2001)的方法進(jìn)行,操作步驟:在酶標(biāo)板中加入200 μL的0.1 mol/L pH 6.0的磷酸鉀鹽緩沖液、10 μL的0.01 mol/L的L-多巴(L-dopa)及10 μL肝胰腺上清液,于室溫下混勻,在490 nm波長(zhǎng)下每間隔2 min讀取吸光值。在本實(shí)驗(yàn)條件下,每分鐘每克蛋白吸光值增加0.001定義為1個(gè)活力單位(U/g prot)。
1.2.5 肝胰腺免疫基因表達(dá)水平測(cè)定 使用逆轉(zhuǎn)錄實(shí)時(shí)熒光定量PCR (RT-qPCR)方法測(cè)定肝胰腺免疫基因表達(dá)水平。凡納濱對(duì)蝦免疫基因的檢測(cè)引物信息見(jiàn)表1。用QIAGEN RNeasy Mini Kit提取對(duì)蝦肝胰腺樣品總RNA,用Nanodrop 2000c (Thermo, 美國(guó))測(cè)定RNA的質(zhì)量及濃度。采用一步法反轉(zhuǎn)錄試劑盒(全式金),按試劑盒說(shuō)明書(shū)合成cDNA,保存于–20℃?zhèn)溆谩?/p>
表1 凡納濱對(duì)蝦免疫基因表達(dá)水平檢測(cè)用引物
Tab.1 Primers for detection of immune gene expression level in L. vannamei
使用TaKaRa公司的TB Green Premix ExⅡ熒光定量試劑盒,以內(nèi)參基因()為參比,測(cè)定樣品的熱休克蛋白70基因(70)、凝集素基因()和β-1,3-葡聚糖結(jié)合蛋白-脂蛋白基因()的表達(dá)水平,具體操作方法參照試劑盒說(shuō)明書(shū)。
PCR反應(yīng)總體積為25 μL,包括2×TB Green Premix ExⅡ12.5 μL,cDNA模板1 μL,上下游引物各1 μL (10 μmol/L),DEPC處理水9.5 μL。PCR反應(yīng)程序:95℃,30 s;95℃ 5 s,60℃ 1 min,40個(gè)循環(huán)。
1.2.6 數(shù)據(jù)處理與分析 對(duì)肝胰腺免疫基因表達(dá)水平的RT-qPCR實(shí)驗(yàn)結(jié)果,采用2?ΔΔCt法進(jìn)行相對(duì)定量分析。采用SPSS 25.0軟件對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行單因素方差分析(one-way ANOVA),以Duncan′s多重比較進(jìn)行不同處理間的顯著性分析,0.05為差異顯著。
用WSSV卵黃抗體免疫28 d后,采用投喂的方式,使用含WSSV的對(duì)蝦病料對(duì)各實(shí)驗(yàn)組凡納濱對(duì)蝦進(jìn)行人工感染。感染3 d后,各組凡納濱對(duì)蝦肝胰腺免疫酶活力測(cè)定結(jié)果顯示,0.2%和0.5%免疫組SOD活力均顯著高于對(duì)照組(<0.05),0.2%和0.5%免疫組差異不顯著(圖1A)。0.2%免疫組PO活力顯著高于0.5%免疫組和對(duì)照組(<0.05),0.5%免疫組與對(duì)照組差異不顯著(圖1B)。0.2%免疫組和0.5%免疫組ACP和AKP活力均顯著低于對(duì)照組(<0.05),0.2%免疫組和0.5%免疫組差異不顯著(圖1C、圖1D)。
圖1 WSSV卵黃抗體制劑對(duì)人工感染后凡納濱對(duì)蝦肝胰腺免疫酶活力的影響
同一免疫酶不同字母代表差異顯著(<0.05)。
Different letters in the same immune enzyme mean significant difference (<0.05).
經(jīng)WSSV卵黃抗體免疫28 d,再用含WSSV的對(duì)蝦病料人工感染3 d后,各組凡納濱對(duì)蝦肝胰腺免疫基因表達(dá)水平測(cè)定結(jié)果顯示,0.2%和0.5%免疫組70表達(dá)水平均顯著高于對(duì)照組(<0.05),且0.5%免疫組顯著高于0.2%免疫組(<0.05)(圖2A)。0.5%免疫組和對(duì)照組表達(dá)水平均顯著高于0.2%免疫組(<0.05)(圖2B)。0.2%和0.5%免疫組表達(dá)水平均顯著低于對(duì)照組(<0.05),且0.5%免疫組顯著低于0.2%免疫組(圖2C)(<0.05)。
圖2 WSSV卵黃抗體制劑對(duì)人工感染后凡納濱對(duì)蝦肝胰腺免疫基因表達(dá)水平的影響
同一基因不同字母代表差異顯著(<0.05)。
Different letters in the same immune gene mean significant difference (<0.05).
用含WSSV卵黃抗體制劑的飼料投喂28 d后,使用含WSSV的對(duì)蝦病料對(duì)各實(shí)驗(yàn)組凡納濱對(duì)蝦進(jìn)行人工感染。感染后第2天,對(duì)照組對(duì)蝦即開(kāi)始大量死亡,死亡率為15.73%;而0.2%免疫組對(duì)蝦僅有極少量死亡,死亡率為2.22%,0.5%免疫組對(duì)蝦無(wú)死亡。感染后的第7天,對(duì)照組對(duì)蝦全部死亡,此時(shí),0.2%和0.5%免疫組對(duì)蝦的累積死亡率分別為32.22%和3.33%,均顯著低于對(duì)照組(<0.05)。感染后的前10 d,0.2%和0.5%免疫組對(duì)蝦的存活率差異不顯著,但均顯著高于對(duì)照組(<0.05)。感染后第11—14天,0.2%免疫組對(duì)蝦仍持續(xù)死亡,而0.5%免疫組對(duì)蝦幾乎不再死亡,此時(shí),0.5%免疫組存活率顯著高于0.2%免疫組(<0.05)(圖3)。
圖3 WSSV投喂感染后各組凡納濱對(duì)蝦的存活率
WSSV投喂感染前及感染期間,0.2%和0.5%免疫組分別投喂添加有0.2%和0.5% WSSV卵黃抗體制劑的飼料,對(duì)照組投喂基礎(chǔ)飼料。
Before and during WSSV infection, the 0.2% and 0.5% IgY agent groups were fed diet containing 0.2% and 0.5% WSSV IgY agent, respectively. The control group was fed basic diet.
人工感染實(shí)驗(yàn)結(jié)束時(shí)(攻毒后第14天),0.2%和0.5%免疫組對(duì)蝦的存活率分別為48.89%和87.78%,均顯著高于對(duì)照組(存活率為0)(<0.05),且0.5%免疫組顯著高于0.2%免疫組(<0.05)。添加0.2%和0.5% WSSV卵黃抗體制劑對(duì)凡納濱對(duì)蝦的相對(duì)免疫保護(hù)率分別為48.89%和87.78%。死亡對(duì)蝦的WSSV qPCR檢測(cè)結(jié)果均呈強(qiáng)陽(yáng)性。顯然,WSSV卵黃抗體制劑能夠在一定程度上改變疾病的歷程,延遲對(duì)蝦的發(fā)病和死亡時(shí)間,提高同期存活率,顯著提高凡納濱對(duì)蝦抗WSSV感染的能力。
對(duì)蝦的免疫系統(tǒng)以非特異性為主,主要包括細(xì)胞免疫和體液免疫。細(xì)胞免疫包括血細(xì)胞的吞噬、包囊化及結(jié)節(jié)的形成,而體液免疫則包括酚氧化酶原激活系統(tǒng)、凝集素的凝集作用、溶血素的產(chǎn)生和一系列抗菌肽和抗病毒多肽的形成(Bachere, 2004; Vazquez, 2009)。ACP、AKP、SOD、PO是對(duì)蝦體內(nèi)重要體液免疫因子,其在抵抗WSSV的過(guò)程中具有重要作用(韋嵩等, 2009; Kumaran,2018)。陳輝輝等(2017)先用復(fù)方中草藥投喂凡納濱對(duì)蝦,再用WSSV攻毒,0—96 h內(nèi)對(duì)蝦的AKP和ACP活力呈先上升后下降的趨勢(shì)。本研究結(jié)果顯示,使用WSSV攻毒3 d后,0.2%和0.5%免疫組對(duì)蝦的ACP和AKP活力均顯著低于對(duì)照組,與上述研究結(jié)果相一致。推測(cè)該現(xiàn)象可能與WSSV感染后對(duì)蝦為抵御病毒入侵而進(jìn)行免疫調(diào)節(jié)有關(guān)。韋嵩等(2009)研究口服WSSV卵黃抗體后、使用WSSV攻毒前凡納濱對(duì)蝦血清的免疫酶活力,結(jié)果表明,WSSV卵黃抗體可提高凡納濱對(duì)蝦血清的PO和SOD活力,增強(qiáng)對(duì)蝦抗WSSV的能力。但上述研究缺少WSSV攻毒后凡納濱對(duì)蝦免疫酶活力的數(shù)據(jù),也未測(cè)定對(duì)蝦免疫相關(guān)基因表達(dá)水平的變化。本研究測(cè)定了WSSV攻毒后免疫凡納濱對(duì)蝦的免疫力數(shù)據(jù),為深入分析特異性卵黃抗體對(duì)凡納濱對(duì)蝦抗WSSV感染的免疫保護(hù)機(jī)制提供了參考。Rajesh Kumar等(2008)使用DNA疫苗免疫斑節(jié)對(duì)蝦(),免疫組對(duì)蝦的PO和SOD活力顯著升高,攻毒后,免疫組對(duì)蝦存活率顯著高于對(duì)照組,推測(cè)這些免疫因子可能參與抵抗WSSV。本研究也發(fā)現(xiàn),0.2%和0.5%免疫組的SOD活力均顯著高于對(duì)照組,0.2%免疫組PO活力顯著高于0.5%免疫組和對(duì)照組。這表明WSSV卵黃抗體有效激活了凡納濱對(duì)蝦的抗氧化防御系統(tǒng),提高了機(jī)體吞噬和清除病原體的能力,從而增強(qiáng)了對(duì)蝦的抗病毒能力。
熱休克蛋白70在甲殼類(lèi)動(dòng)物天然免疫和應(yīng)對(duì)病原體感染中發(fā)揮著重要作用(Pockley, 2008),70表達(dá)水平與應(yīng)激耐受能力呈正相關(guān)(張紅波等, 2009)。王春迪等(2016)研究表明,在水體中添加蠟樣芽孢桿菌() PC46可提高凡納濱對(duì)蝦抗WSSV感染能力,益生菌處理組的70表達(dá)量在WSSV感染后呈顯著上調(diào)趨勢(shì)。與上述研究類(lèi)似,本研究中,0.2%和0.5%免疫組70表達(dá)水平均顯著高于對(duì)照組,表明WSSV卵黃抗體能提高對(duì)蝦抗WSSV的能力。凝集素在對(duì)蝦抵御細(xì)菌和病毒感染方面發(fā)揮著重要作用,可作為對(duì)蝦抗病毒和細(xì)菌感染的潛在生物標(biāo)志物(Liu, 2007)。Ma等(2007)研究發(fā)現(xiàn),凡納濱幼蝦感染W(wǎng)SSV后,肝胰腺中的表達(dá)水平相比于對(duì)照組在最初的2 h下降,4 h后升到更高的水平。本研究中,0.5%免疫組表達(dá)水平高于對(duì)照組,但差異不顯著;0.2%免疫組表達(dá)水平顯著低于對(duì)照組。推測(cè)WSSV卵黃抗體可以調(diào)節(jié)的表達(dá)水平,其具體調(diào)節(jié)機(jī)制還需進(jìn)一步研究。β-1,3-葡聚糖結(jié)合蛋白-脂蛋白在激活酚氧化酶原系統(tǒng)和凝結(jié)過(guò)程中起著重要作用,是甲殼動(dòng)物對(duì)抗病毒感染的一個(gè)重要免疫因子。本研究結(jié)果顯示,WSSV攻毒后,0.2%和0.5%免疫組基因的相對(duì)表達(dá)水平均顯著低于對(duì)照組,與ACP和AKP活力具有相似的變化趨勢(shì)。推測(cè)蝦體感染病毒后,這些免疫因子在抗原識(shí)別和免疫系統(tǒng)激活階段發(fā)揮作用,因過(guò)度消耗而下降,但仍需進(jìn)一步研究口服WSSV卵黃抗體后對(duì)蝦免疫因子的動(dòng)態(tài)變化予以證實(shí)。
研究表明,口服0.05%~1% WSSV卵黃抗體均可顯著提高蝦類(lèi)抗WSSV感染的能力(Lu, 2009; Fu, 2010; 韋嵩等, 2009)。本研究結(jié)果顯示,添加0.2%和0.5% WSSV卵黃抗體制劑對(duì)凡納濱對(duì)蝦均有顯著的保護(hù)作用,其相對(duì)免疫保護(hù)率分別為48.89%和87.78%,0.5%添加量的保護(hù)效果更好。此外,本研究發(fā)現(xiàn),使用WSSV卵黃抗體免疫凡納濱對(duì)蝦,還能在一定程度上改變白斑綜合征的發(fā)病進(jìn)程,延遲免疫對(duì)蝦的發(fā)病和死亡時(shí)間,提高同期存活率,這與韋嵩等(2009)的研究結(jié)果相類(lèi)似。推測(cè)卵黃抗體具有雙重抗病機(jī)制,一方面可以與病原特異性結(jié)合,起到中和特定病原的作用(Gadde, 2015);另一方面可以刺激非特異性免疫系統(tǒng),增強(qiáng)機(jī)體的抗病能力(Zhen, 2008)。由此可見(jiàn),特異性卵黃抗體可有效地用于動(dòng)物的被動(dòng)免疫,在疾病控制方面具有極大的潛力。
綜上所述,本研究報(bào)道了口服特異性卵黃抗體對(duì)WSSV感染后的對(duì)蝦肝胰腺中的4種免疫酶活力和3種免疫基因表達(dá)水平的影響,表明在飼料中添加WSSV卵黃抗體制劑,可增強(qiáng)凡納濱對(duì)蝦的非特異性免疫機(jī)能和抗WSSV感染的能力,顯著提高感染對(duì)蝦的存活率。研究結(jié)果為卵黃抗體抗WSSV感染機(jī)制的研究提供了參考,也為在生產(chǎn)上使用卵黃抗體防控WSSV感染提供了科學(xué)依據(jù)。特異性卵黃抗體作為一種環(huán)境友好的新型免疫制劑能激活和調(diào)節(jié)凡納濱對(duì)蝦免疫系統(tǒng),在防控對(duì)蝦白斑綜合征方面具有極大的潛在價(jià)值。
致謝:本研究使用的自制對(duì)蝦飼料由中國(guó)水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所梁萌青老師協(xié)助制作,人工感染用對(duì)蝦病料由中國(guó)水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所楊冰老師提供,在此一并致謝。
BACHERE E, GUEGUEN Y, GONZALEZ M,. Insights into the anti-microbial defense of marine invertebrates: The penaeid shrimps and the oyster. Immunological Reviews, 2004, 198(1): 149–168
CHEN H H, TU C L, TANG Y,Effects of compound Chinese herbs on immune activities ofafter infected with white spot syndrome virus. Journal of Xiamen University (Natural Science), 2017, 56(5): 686–692 [陳輝輝, 涂晨凌, 唐楊, 等. 復(fù)方中草藥對(duì)白斑綜合征病毒感染下凡納濱對(duì)蝦免疫活性的影響. 廈門(mén)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017, 56(5): 686–692]
CITARASU T. Herbal biomedicines: A new opportunity for aquaculture industry. Aquaculture International, 2009, 18(3): 403–414
DURAND S V, LIGHTNER D V. Quantitative real time PCR for the measurement of white spot syndrome virus in shrimp. Journal of Fish Diseases, 2002, 25(7): 381–389
FU L L, WANG Y B, LI J R,Protection of(Osbeck, 1765) against the white spot syndrome virus using specific chicken egg yolk immunoglobulins by oral delivery. Aquaculture Research, 2010, 41(12): 1806– 1816
GADDE U, RATHINAM T, LILLEHOJ H SPassive immunization with hyperimmune egg-yolk IgY as prophylaxis and therapy for poultry diseases - A review. Animal Health Research Reviews, 2015, 16(2): 163–176
GAO X J, ZHANG X J, LIN L,Passive immune-protection ofagainstandinfections with anti-egg yolk (IgY)- encapsulated feed. International Journal of Molecular Sciences, 2016, 17(5): 723
KUMARAN T, THIRUMALAIKUMAR E, LELIN C,. Physicochemical properties of antiegg yolk antibody (IgY) and its immunological influence in Indian white shrimp. Fish and Shellfish Immunology, 2018, 74: 349–362
LEI Z W, HUANG J, YANG B,. Immune factors in haemolymph supernatant ofinfected by WSSV. Journal of Fishery Sciences of China, 2001, 8(4): 46–51 [雷質(zhì)文, 黃倢, 楊冰, 等. 感染白斑綜合癥病毒(WSSV)對(duì)蝦相關(guān)免疫因子的研究. 中國(guó)水產(chǎn)科學(xué), 2001, 8(4): 46–51]
LIU Y C, LI F H, DONG B,. Molecular cloning, characterization and expression analysis of a putative C-type lectin () gene in Chinese shrimp. Molecular Immunology, 2007, 44(4): 598–607
LU Y, LIU J, JIN L,. Passive immunization of crayfish () with chicken egg yolk immunoglobulin (IgY) against white spot syndrome virus (WSSV). Applied Biochemistry and Biotechnology, 2009, 159(3): 750
MA T H T, TIU S H K, HE J G,. Molecular cloning of a C-type lectin (LvLT) from the shrimp: Early gene down-regulation after WSSV infection. Fish and Shellfish Immunology, 2007, 23(2): 430–437
OIE. Manual of diagnostic tests for aquatic animals, 7th Edition. Paris: OIE, 2016, 186–199
QIN Z D, BABU V S, LI N Q,Protective effects of chicken egg yolk immunoglobulins (IgY) against experimentalinfection in blunt snout bream (). Fish and Shellfish Immunology, 2018, 78: 26–34
POCKLEY A G, MUTHANA M, CALDERWOOD S K. The dual immunoregulatory roles of stress proteins. Trends in Biochemical Sciences, 2008, 33(2): 71–79
RAJESH KUMAR S, ISHAQ AHAMED V P, SARATHI M,Immunological responses ofto DNA vaccine and its efficacy to protect shrimp against white spot syndrome virus (WSSV). Fish and Shellfish Immunology, 2008, 24(4): 467–478
SUN B C, YANG Y K, LI Y H,. Effects of single or mixedon WSSV infection and immune-related gene expression in. Progress in Fishery Sciences, 2019, 40(3): 113–121 [孫博超, 楊運(yùn)楷, 李玉宏, 等. 飼料中添加復(fù)合芽孢桿菌對(duì)凡納濱對(duì)蝦抗病毒感染能力及抗病基因表達(dá)的影響. 漁業(yè)科學(xué)進(jìn)展, 2019, 40(3): 113–121]
VAZQUEZ L, ALPUCHE J, MALDONADO G,Immunity mechanisms in crustaceans. Innate Immunity, 2009, 15(3): 179–188
WANG C D, SONG X L, ZHANG X J,Effects of addingPC465 to rearing water on disease resistance of. Journal of Fishery Sciences of China, 2016, 23(1): 146–155 [王春迪, 宋曉玲, 張曉靜, 等. 養(yǎng)殖水體中添加蠟樣芽孢桿菌PC465對(duì)凡納濱對(duì)蝦抗病力的影響. 中國(guó)水產(chǎn)科學(xué), 2016, 23(1): 146–155]
WARR G W, MAGOR K E, HIGGINS D A. IgY: Clues to the origins of modern antibodies. Immunology Today, 1995, 16(8): 392–398
WEI S, SONG X L, LI H B,Effects of Ig-guard (shrimp) on immunity-related enzyme activities and WSSV resistance of. Journal of Fisheries of China, 2009, 33(1): 112–118 [韋嵩, 宋曉玲, 李海兵, 等. 白斑綜合征病毒卵黃抗體對(duì)凡納濱對(duì)蝦免疫相關(guān)酶活力和抗病毒能力的影響. 水產(chǎn)學(xué)報(bào), 2009, 33(1): 112–118]
XU Y P, LI X Y, JIN L J,Application of chicken egg yolk immunoglobulins in the control of terrestrial and aquatic animal diseases: A review. Biotechnology Advances, 2011, 29(6): 860–868
YUAN X M, Lü S J, SHI W D,Isolation and egg-yolk antibody preparation ofrhabdovirus. Progress in Fishery Sciences, 2020, 41(3): 151–157 [袁雪梅, 呂孫建, 施偉達(dá), 等. 大口黑鱸彈狀病毒的分離培養(yǎng)及其卵黃抗體的制備. 漁業(yè)科學(xué)進(jìn)展, 2020, 41(3): 151–157]
ZHANG H B, WAN Y T, WANG L Z,. The protection and regulation of70 in cellular stress response. China Practical Medicine, 2009, 14(4): 228–229 [張紅波, 萬(wàn)亞濤, 王蓮哲, 等.在細(xì)胞應(yīng)激反應(yīng)中HSP70的保護(hù)與調(diào)節(jié)作用. 中國(guó)實(shí)用醫(yī)藥, 2009, 14(4): 228–229]
ZHANG T T, CHEN X R, LIANG M Q,. Effects of different protein hydrolysates on growth performance and non-specific immunity of Japanese seabass (). Progress in Fishery Sciences, 2017, 38(3): 96–105 [張婷婷, 陳效儒, 梁萌青, 等. 不同蛋白水解物對(duì)花鱸()生長(zhǎng)性能及非特異性免疫的影響. 漁業(yè)科學(xué)進(jìn)展, 2017, 38(3): 96–105]
ZHEN Y H, JIN L J, GUO J,. Characterization of specific egg yolk immunoglobulin (IgY) against mastitis-causing. Veterinary Microbiology, 2008, 130(1/2): 126–133
ZHOU J, HUANG J, SONG X L. Applications of immunostimulants in aquaculture. Marine Fisheries Research, 2003, 24(4): 70–79 [周進(jìn), 黃倢, 宋曉玲. 免疫增強(qiáng)劑在水產(chǎn)養(yǎng)殖中的應(yīng)用. 海洋水產(chǎn)研究, 2003, 24(4): 70–79]
Protective Effects of Oral Specific Egg Yolk Immunoglobulins (IgY) against White Spot Syndrome Virus (WSSV) Infection in Pacific White Shrimp ()
WANG Renbao1,2, WANG Yiting1,3, ZHANG Huifen1,3, SONG Xiaoling1, WAN Xiaoyuan1, XIE Guosi1, SHI Chengyin1①
(1. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, Shandong 266071, China; 2. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; 3. College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China)
The aim of this study was to explore the immunoprotective mechanism and protective effects of oral specific egg yolk immunoglobulin (IgY) against white spot syndrome virus (WSSV) infection in Pacific white shrimp (). Different doses of WSSV IgY agent (0, 0.2%, and 0.5%) were added to shrimp feeds and administered to juvenilefor 28 days. The survival rate of juveniles was measured within 14 days of artificial infection with WSSV. The activity of immune enzymes and the relative expression levels of immune genes in shrimp hepatopancreas were measured after 3 days of WSSV infection. The results showed that compared with the control group without IgY, the 0.2% IgY agent group showed significantly higher enzyme activity by superoxide dismutase (SOD) and phenoloxidase (PO), and significantly lower enzyme activity by acid phosphatase (ACP) and alkaline phosphatase (AKP). The relative expression level of heat shock protein 70 gene (70) also significantly increased, while the relative expression levels oflectin gene () and β-1,3-glucan binding protein-lipoprotein gene () significantly decreased in the 0.2% IgY agent group. SOD activity significantly increased while PO activity did not change significantly, while ACP and AKP activities decreased in the 0.5% IgY agent group. The relative expression level of70 also significantly increased, and the relative expression level ofdid not significantly change, while the relative expression level ofsignificantly decreased in the 0.5% IgY agent group. The artificial infection results showed that after 14 days of WSSV infection, the survival rates of shrimp in the 0.2% and 0.5% IgY agent groups, and the control group were 48.89%, 87.78%, and 0, respectively. The survival rate of shrimp in the 0.2% and 0.5% IgY agent groups was significantly higher than that in the control group, and the survival rate of shrimp in the 0.5% IgY agent group was also significantly higher than that in the 0.2 % IgY agent group. Specific IgY agents can change the course of a disease, delay disease onset and death of immune shrimp, and significantly improve the survival rate of shrimp over a certain period. The results showed that oral specific IgY agents could affect the activity of immune enzymes and the expression level of immune genes in the hepatopancreas of, significantly improving their ability to resist WSSV infection. This study provides a basis for the application of IgY agents in the prevention and control of WSSV infection, and also provides a reference for research on the anti-WSSV infection mechanism of IgY agents.
Immunoglobulin of yolk (IgY);; White spot syndrome virus (WSSV); Immune enzyme activity; Immune gene expression; Disease resistance
SHI Chengyin, E-mail: shicy@ysfri.ac.cn
10.19663/j.issn2095-9869.20210420002
S945.4
A
2095-9869(2022)04-0226-08
*農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)國(guó)際合作交流項(xiàng)目、國(guó)家自然科學(xué)基金(31802342)和中國(guó)水產(chǎn)科學(xué)研究院基本科研業(yè)務(wù)費(fèi) (2020TD39)共同資助[This work was supported by Projects of International Exchange and Cooperation in Agriculture, Ministry of Agriculture and Rural Affairs, National Natural Science Foundation of China (31802342), and Central Public-Interest Scientific Institution Basal Research Fund, CAFS (2020TD39)]. 王仁寶,E-mail: wangrenbaovip@163.com
史成銀,研究員,E-mail: shicy@ysfri.ac.cn
2021-04-20,
2021-06-07
http://www.yykxjz.cn/
王仁寶, 王一婷, 張惠芬, 宋曉玲, 萬(wàn)曉媛, 謝國(guó)駟, 史成銀. 口服特異性卵黃抗體對(duì)凡納濱對(duì)蝦抗WSSV感染的免疫保護(hù)效果. 漁業(yè)科學(xué)進(jìn)展, 2022, 43(4): 226–233
WANG R B, WANG Y T, ZHANG H F, SONG X L, WAN X Y, XIE G S, SHI C Y. Protective effects of oral specific egg yolk immunoglobulins (IgY) against white spot syndrome virus (WSSV) infection in Pacific white shrimp (). Progress in Fishery Sciences, 2022, 43(4): 226–233
(編輯 馬璀艷)