• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Real-time programmable coding metasurface antenna for multibeam switching and scanning

    2022-09-24 07:59:32JiaYuYu余佳宇QiuRongZheng鄭秋容BinZhang張斌
    Chinese Physics B 2022年9期
    關鍵詞:劉杰張斌

    Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(鄭秋容), Bin Zhang(張斌),

    Jie He(賀杰), Xiang-Ming Hu(胡湘明), and Jie Liu(劉杰)

    Information and Navigation College,Air Force Engineering University,Xi’an 710077,China

    Keywords: programmable coding metasurface,multibeam modulation,real-time control,antenna

    1. Introduction

    Metasurfaces, artificial electromagnetic (EM) metamaterials constructed in two dimensions, consist of subwavelength elements arranged periodically or nonperiodically over a surface.[1]Due to the unique and intriguing tailoring of EM wave properties, in recent decades, metasurfaces have been extensively and attractively investigated in the frequency domain,varying from acoustic to optical.[2-8]They provide new platforms and play efficient devices for achieving novelty behaviors,such as negative refraction,[4]invisibility cloaking,[6]and optical illusion,[8]that are scarcely possible to tune with natural materials. Moreover, compared to the conventional EM wave modulation method,metasurfaces enjoy low profile,mass and cost,which aids in the development of integrated and light-weight systems.

    Recently, coding metasurfaces characterized by binary numbers have evolved as a result of the pursuits in highfreedom metamaterial research. By modifying the topology structure of the unit cells, several relatively fixed coding modes are quantized from EM medium parameters. This approach offers a highly flexible mechanism and a simplified process for designing metasurface functionality.[9-13]In Ref. [12], X-shaped digital metasurfaces are used to convert the circularly polarized (CP) incident waves into bi-foci with direct spatial-power editing, adopting dual geometric phase coding. Furthermore, on the same metasurface platform, active reconfigurable metasurfaces embedded with tunable materials or active components can produce dynamic transitions of diverse EM responses.[14-20]Utilizing a field-programmable gate array (FPGA) control module, in Ref. [18], the author proposed a transmissive metasurface placing two positiveintrinsic-negative (PIN) diodes on the radiating layer, which can efficiently generate orbital angular momentum (OAM)vortex waves with multimode convergent switching. Instead of relying on cell shape modifications to acquire the desired performance,active metasurfaces can actualize versatile propagation features on uniform elements as needed,breaking the constraints of passive structures,whose EM responses are difficult to alter once the design is finalized.This dramatically expands the design freedom and system application of metasurfaces in the reflection half space and reflection-transmission full space. Consequently,such programmable active metasurfaces are paving the way for antennas,imaging,and new wireless interactive systems to be explored.

    With the advancement of wireless technology,multibeam antennas are now capable of concurrently covering multiple target areas and achieving multichannel transmission via spatial beam isolation, which promotes the frequency utilization and system communication capacity. Adopting an elaborate phase-shift network, phased array antennas can flexibly construct desired multiple beams by controlling the amplitude and phase of EM waves. However,these widely applied antennas with excellent radiation performance contain complex control circuits and bulky expensive equipment,which are rarely conducive to miniaturized design. Compared with large-scale phased array antennas, the emergence of metasurfaces provides a novel way for multibeam forming. In Ref.[21],when the metasurface patch antenna is separately fed from disparate ports,the narrow beams are shifted in different directions with a suppressed sidelobe. A broadband transmission-mode coding metasurface is also presented in Ref.[22],using frequency variation to steer twin beams in symmetrical directions with a scanning range of 30°-50.5°. Similarly, multiple beams can be guided by reflective and transmissive metasurface antennas by means of geometric partitioning, periodic sequence coding, and amplitude-phase modulation. Although no feed network is required, these passive designs of the unit cell limit the application to a restricted area because the beam direction is relatively fixed once the meta-atom configuration is defined.Driven by the increased demand, programmable metasurface antennas have garnered more attention in the dynamic beams editing. There are now limits in the upper half space of reflective metasurface antennas,[23-26]which can only be dynamically switched for a symmetric multibeam or an asymmetric dual beam,due to design flaws in active devices or differences in multibeam generating methods. Therefore,high-efficiency,low-cost,and flexible multibeam antenna design is still an unremitting pursuit in the wireless field of multichannel transmission and radar detection.

    Fig.1. Schematic diagram of the presented real-time programmable multibeam metasurface antenna.

    A programmable reflective array antenna based on active metasurface elements (AMSEs) is presented to achieve independent generation and real-time dynamic modulation of multiple beams. This single-feed antenna features radiation and phase-shift functions thanks to an array of 32×32 X-band 1-bit phase-reconfiguration metasurface elements and FPGA control modules. A schematic diagram is depicted in Fig. 1.Without massive algorithm optimization,by utilizing the aperture field superposition strategy, directive beams of different numbers and large coverage angle domains are agilely acquired in the upper half space of the metasurface. Owing to its large array size, simulations and experiments validate that the electronically reconfigurable antenna can execute multibeam scanning and state switching with good performance in directionality and simplicity. It has promising applications in multitarget radar, satellite navigation and other wireless multichannel systems.

    2. Design and discussion

    2.1. Design of the AMSE

    A structural diagram of the AMSE is exhibited in Fig. 2(a), which consists of a classic three-layer metal structure adopting the resonance tuning method. On the top, a copper rectangular patch embedded with a PIN diode,is connected through two metallic via holes to the ground (GND)plate and a DC bias circuit network to switch the resonant state.Serving to fully reflect incident waves,the metal GND is situated in the middle slotted with a single hole,while the DC circuit carrying the bias voltage is printed on the bottom layer.Additionally, Taconic TLX-8(εr=2.55 and tanδ=0.0019)and FR4(εr=4.4 and tanδ=0.025)act as the drilled dielectric substrates between the three metallic layers,whose thicknesses are 1.58 mm and 0.5 mm, respectively. The other parameters of the AMSE structure arep=16 mm,lx=6.3 mm,ly=9.6 mm. In the microwave working band,the equivalent circuit of the selected PIN diode(Skyworks SMP1320)in the on state consists ofRON=0.5 Ω andLON=0.7 nH,and that in the off state consists ofLOFF=0.5 nH andCOFF=0.24 pF,both in series and with low insertion loss.

    Fig. 2. (a) Perspective view and geometric structure, (b) simulated amplitude and phase results for AMSE.

    The simulated on/off state amplitudes and phases of reflected waves for the proposed AMSE are displayed in Fig.2(b).Simulated by CST Studio Suite,the reflection losses are less than 0.9 dB and the phase difference is 180°±20°in 9.3 GHz-9.5 GHz, which are acceptable for the 1-bit phasereconfiguration requirement. Therefore, equipped with both radiation and phase-switching capabilities, the AMSE can facilely implement the binary states “0” and “1” through its reversed modes.

    2.2. Theoretical method

    In the schematic diagram of reflective planar array antenna illustrated in Fig.3(a),the spherical EM wave originating from the horn feed needs to form an equal-phase wavefront on the array plane, and the required phase compensation for each elementEmn(m,n)is

    wherek0=2π/λ0denotes the wavenumber in free space.Rfmnis the distance between the feed source phase center and each particle in the reflectarray surface, andFis the focal length.To produce multiple independent-directivity pencil beams in the far field, by exploiting the superposition of the aperture fields correlated with each beam, the distribution after phase summation should satisfy the following relationship:

    whereul=(sinθlcosφl,sinθlsinφl)refers to the unit projection vector of thel-th beam aimed at(θl,φl)on thexoyplane.Next,the addition theorem is introduced for conversion into a plane wave and to yield a multibeam,[25]in which the phase distribution on the surface can be expressed as

    Δφ,a constant,is the reference phase of the metasurface center.Consequently,once the phase coding sequence is acquired,for this metasurface antenna,the far-field multibeam radiation pattern is approximately obtained in accordance with the classical reflectarray antenna theory.[27]

    Here,θandφdenote the elevation and azimuth angles in the spherical coordinate system. The amplitude excited on each element is represented byAe(m,n), and the radiation pattern is expressed as cosqeθ,which is based on an approximate cosine mode.

    Fig. 3. Generation of a four-beam aimed at elevation and azimuth angles of (25°, 30°), (30°, 135°), (22°, 220°), and (30°, 300°). (a) Reflective planar array antenna schematics. (b)Simulated normalized 2D radiation pattern in the u-v coordinate system. (c)Quantized phase distribution. (d)Compensated phase distribution. (e)Phase distribution after aperture field superposition. (f)Phase distribution after addition.

    Assuming the predesigned four-beam is located at elevation and azimuth angles of (25°, 30°), (30°, 135°), (22°,220°), and (30°, 300°), figures 3(c)-3(f) show the phase distributions in each processing step, and the normalized twodimensional(2D)radiation pattern in theu-vcoordinate system (u=sinθcosφ, v=sinθsinφ) is depicted in Fig. 3(b),calculated on the basis of the aforementioned equations.

    2.3. Simulation and analysis

    To validate the radiation performance, a full-wave calculation is executed using CST Studio Suite with open (add space) boundary conditions, and the far-field monitor is set at 9.37 GHz. A lumped element is selected to emulate the on/off state of the diode on the element surface,i.e., 0 or 1 encoding in Eq. (4). The metasurface section of the reflectarray antenna comprises 32×32 AMSEs,occupying an area of 512 mm×512 mm. With a radiation gain of 10.7 dB and a 3-dB bandwidth of 52°, an X-band linearly polarized horn antenna is mounted 410 mm(F/D=0.8)above the plane as a focal source, making a compromise between the spillover efficiency and the illumination efficiency.[17]By altering the precalculated coding sequence,various scatter patterns will be induced in the upper half space of the two-dimensional sur-

    Fig. 4. Simulated radiation patterns of a five-beam and a four-beam: (a)five-beam settling at elevation angle θ =20°, (b) four-beam in φ =135°plane.

    The multibeam generation at identical elevation angle and different azimuths is displayed in Fig. 4(a), where the fivebeam settles at an elevation angleθ=20°with even allocation of the azimuths within 360°. From the simulated result, five distinguished main lobes formed with uniform radiation energy. The gain is approximately 21.51 dB and the half-power bandwidth(HPBW)is dispersed around 3.7°for these beams,while the sidelobe level (SLL) is less than-11 dB in each azimuth, suggesting good beamforming capability. In addition,Table 1 gives the average gain of the five equally spaced beams at different fixed elevation angles, which deteriorates with an increscent field angle,as expected. In turn,for beams of the same azimuth and diverse elevation angles, similar results can be obtained. When the directions are preset to(38°,135°),(20°,135°),(15°,315°),and(38°,315°),as in the onedimensional(1D)pattern shown in Fig.4(b),four recognizable pencil-shaped beams are observed. The two laterally symmetric beams pointing at 37.9°and 38.0°have slightly less power than the two asymmetric beams pointing at 20.9°and 15.0°in the middle. The HPBWs of this four-beam vary from 3.7°to 4.0°, which keeps the beam direction deviation within the tolerable range. The simulation indicates that this metasurface reflectarray antenna has the ability to manipulate spherical EM wave illumination into independent-direction multiple beams in both the elevation and azimuth dimensions.

    Table 1. Average gain of the five-beam at different fixed elevations.

    On the basis of fixed elevation and azimuth angles,to further illustrate the versatility of beam generation, the study is extended to the configuration and dynamic manipulation of beams with arbitrary pointing directions and various numbers.As demonstrated in Figs.5(a)and 5(b),this reconfigurable antenna is capable of producing asymmetric two-beam and threebeam with excellent radiation performance. The simulated beam directions of(11°,225°)and(33°,315°)and of(5°,0°),(20°,180°)and(30°,315°)well match the predesigned angles.More beams than these cases can also be received despite the reduction in scattering power. While the simulated six-beam pointing at(22°,0°),(10°,90°),(10°,270°),(15°,180°),(21°,135°),and(21°,225°)has unambiguous directivity,the overall performance is poorer in terms of variable main lobe magnitude or high SLL, as illustrated in Fig. 5(c). The formation of the seven-beam in Fig. 5(d), whose simulated deflections are (0°, 0°), (11°, 90°), (11°, 270°), (20°, 90°), (20°, 270°),(31°,0°),and(31°,180°),reflects a similar situation. Following that, four-beam with the same preset angles are depicted in Figs.5(e)and 5(f)using 16×16 and 32×32 reflectarrays,respectively. The former beam splits into five beams and fails to create directional pencil beams, in contrast to the distinct scattering state of the latter four-beam,illustrating that the array size has a considerable influence on the aperture field superposition. Furthermore,the coding sequence was calculated using an optimization method with precomputed angles of(0°,0°), (10°, 320°), (15°, 45°), (20°, 150°), and (25°, 240°). In comparison to the unoptimized three-dimensional(3D)pattern(Fig. 5(g)), the optimized 3D pattern (Fig. 5(h) has a smaller SLL and a modest difference in main lobe gain.

    Fig.5. Simulated 3D radiation patterns: (a)two-beam pointing at(11°,225°)and(33°,315°);(b)three-beam pointing at(5°,0°),(20°,180°),and(30°,315°);(c)six-beam pointing at(22°,0°),(10°,90°),(10°,270°),(15°,180°),(21°,135°),and(21°,225°);(d)seven-beam pointing at(0°,0°),(11°,90°),(11°,270°),(20°,90°),(20°,270°),(31°,0°),and(31°,180°). Four-beam pointing at(22,45°),(22°,135°),(16°,225°)and(16°,315°)realized with(e)a 16×16 reflectarrays and(f)a 32×32 reflectarrays. Five-beam pointing at(0°,0°),(10°,320°),(15°,45°),(20°,150°)and(25°,240°)simulated by(g)unoptimized sequence and(h)optimized sequence.

    From the preceding illustrative examples, large angular pointing and a limited number of multiple beams can be achieved by the programmable coding metasurface antenna.When the number of beams is less than 6,the required beams have comparable gains, and the radiation waveforms are independent and uniform. Meanwhile, since the deviations are all less than 1°, the pointing is acceptable compared to the HPBWs. Nevertheless, as the number of beams grows, the difference in the SLL and the main lobe amplitude shrinks due to the coupling effect between the units.In fact,the multibeam radiation performance is significantly related to the surface dimensions. On the one hand, the more units there are on the surfaces, the lower the SLL generated and the more uniform the gain and waveform of the desired beams. On the other hand, the 1-bit quantization, although facilitating the subsequent control of the physical circuit,causes phase discontinuities that have inevitable effects on the scattering properties of the antenna. Hence, in the numerical theory calculation process, the optimization algorithm is applied to procure the ideal phase distribution, which can promote the radiation energy uniformity of the preset beams in different angular domains and enhance the adaptability of the phase-only metasurface antenna to some extent.

    3. Experiment and comparison

    3.1. Experiments and results

    As an experimental verification, utilizing printed circuit board (PCB) technology, the array antenna prototype shown in Figs. 6(a) and 6(b) is machined and fabricated. It contains a metasurface reflector, a horn feed, and a polymethyl methacrylate support structure. To achieve flexible expansibility in the future, the reflective portion is assembled by four compact metasurface subarrays with a total area of 4×256 mm×256 mm.The metasurfaces cover a two-layer dielectric substrate inlaid with printed circuits, diodes, and FPGA control modules through miniaturized design. As shown in Fig. 6(c), the control modules are made up of 4×4 ALTERA Cyclones connected in parallel to receive and process the coded information from the computer, as well as control the bias circuit voltage to steer the on/off state of the PIN diodes on the 32×32 AMSEs in real time, resulting in the phase state changing once in only every 2μs.

    Fig. 6. Metasurface antenna and experiment: (a) manufactured prototype,photographs of(b)AMSEs and(c)FPGA control modules,(d)test environment.

    Therefore, the radiation and phase-shift are both integrated into the reflection plane,meaning that the scanning and state switching of the EM wave beams can be dynamically turned in real time by programming. The experiment is implemented in a standard microwave anechoic chamber shown in Fig.6(d),where the antenna prototype is placed on a turntable and a custom-made X-band horn used as the feed source is set in front of the surface geometric center with a focal length ofF=410 mm. Simultaneously,as a detector,a broadband horn antenna is used to test the far-field radiation of the reflectarray antenna. The horns are linked to the two ports of a vector network analyzer(Anritsu MS4644A),and the observation frequency point is selected at 9.37 GHz.

    On the one hand,the multibeam scanning function of the metasurface antenna is inspected. Three orthogonal beams,including a symmetric double-beam on theφ=0°plane(xozplane)and a single-beam on theφ=90°plane(yozplane),are scanned with equal gradients in the elevation direction,where the normalized patterns at 10°intervals are selectively shown in Figs. 7(a)-7(c). The simulation and test radiation results are basically in agreement,and the main lobe pointing at each elevation angle remains consistent with the calculation,which proves the accurate dynamic modulation of multibeam scanning in different orientations. Meanwhile, a decreased gain and an increased 3-dB bandwidth would be observed when the orthogonal beams are stepwise separated. The low gain at the 10°azimuth is caused by the blocking effect. On the other hand, the multibeam switching of the programmable antenna is tested. Considering the experimental conditions,the multibeam is chosen to be generated in three observation planes ofφ= 0°,φ= 45°, andφ= 135°, and the far-field patterns are shown in Figs. 7(d)-7(i). In conjunction with copolarization and cross-polarization,the measured results show that the main lobes of the beams are roughly in line with the simulation results,demonstrating the feasibility of multibeam generating and switching multiple beams of different numbers and directivity. Due to factors such as manufacturing tolerances and measurement alignment,together with edge diffraction and specular reflection, there is a certain degree of measurement discrepancies in the experiment results.

    Fig.7. Simulated and experimental results: (a)simulated 3D radiation pattern for three-beam scanning at θ =30°. Simulated and measured normalized gain for three-beam scanning in the φ =0° (b)plane and φ =90° plane(c). (d)Simulated 3D radiation pattern of a four-beam pointing at(29°,45°),(19°,135°),(29°,225°),and(19°,315°). Simulated and measured normalized gain of the four-beam in the φ =45° (e)plane and φ =135° plane(f). (g)Simulated 3D radiation pattern of a five-beam pointing at(10°,0°),(20°,180°),(30°,180°),(19°,135°),and(29°,315°). Simulated and measured normalized gain of the five-beam in the φ =0° (h)plane and φ =135° plane(i).

    For the aperture efficiency of the multibeam antenna,with reference to Ref.[23],the modification is expressed as

    whereLdenotes the number of generated main beams andArepresents the aperture area. Taking into account the tested gains of the beams, the calculated aperture efficiencies of the generated five-beam and four-beam are 28.6%and 23.7%,respectively. The main loss mainly comes from the spillover effect and element loss.

    Despite the slight effect of the DC circuit on the phase distribution, in general, the overall radiation performance of the large-size metasurface antenna is positive, and the feasibility of the electronic-controlled multibeam generation is fully verified by experiments. The superiority of the proposed reconfigurable antenna is that only programmable processing of the FPGA is needed,and both radiation and phase-control can be completed by the antenna surface itself,which is conducive to the development of metasurface integration and low-cost array antennas.

    3.2. Performance comparison

    Table 2 shows the performance comparison based on metasurface antennas that can generate multiple beams regardless of the feeding surface or radiation surface. Among them, the authors in Ref.[22]achieved a frequency-scanning of symmetric dual beams by varying the input frequency,while scanning of three symmetric fan-beam is realized by switching over multiple feed points in Ref. [28]. Employing only a single feed source, four asymmetric circularly polarized beams are generated by a Berry phase transmission array in Ref. [29], which has excellent aperture efficiency. In addition, the electronically controlled antenna based on a single chip microcomputer can switch the beam state by transforming the coding sequence.[24]The proposed programmable reflectarray antenna has the advantages of a large number of beams,a high aperture efficiency and beam scanning/switching behavior through real-time variable modulation.

    Table 2. Comparison with other multibeam metasurface antennas.

    4. Conclusion

    In this paper,we proposed a programmable coding metasurface antenna that achieves agile-independent modulation of a dynamic multibeam with a single feed. Assisted by the strategies of aperture field superposition and phase discretization, the required coding sequence for an arbitrary pointing multibeam can be instantly obtained by a computer. Under the real-time control of FPGAs,32×32 1-bit phase reconfigurable active metasurface elements form the surface to provide radiation and phase-shift functions. As experimental verification, large angular scanning of orthogonal three-beam and state switching of four- and five-beam demonstrate accurate directionality and favorable HPBW, with an acceptable SLL.Notably,the metasurface antenna enabled by tunable elements has effectiveness and feasibility of EM wave manipulation in real time,and this novel design scheme has promising potential for application in multitarget radar, satellite navigation,and reconfigurable intelligent metasurfaces.

    猜你喜歡
    劉杰張斌
    Effects of irradiation on superconducting properties of small-grained MgB2 thin films
    夕陽家園
    金秋(2022年10期)2022-11-25 16:28:12
    Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines
    Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology
    一路有你都是歌
    當代音樂(2021年2期)2021-03-18 09:39:08
    《花之戀》
    The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers?
    Monolithic all- fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber?
    天水同映長安塔
    金秋(2018年12期)2018-09-17 09:33:08
    李梅梅、劉杰作品
    18禁裸乳无遮挡免费网站照片| 亚洲av免费在线观看| 国产精品日韩av在线免费观看| 日韩精品青青久久久久久| 高清午夜精品一区二区三区 | 亚洲国产欧美在线一区| 性色avwww在线观看| 国产91av在线免费观看| 国产一区二区在线av高清观看| 18禁在线播放成人免费| 日本av手机在线免费观看| 国产亚洲91精品色在线| 一区二区三区高清视频在线| 尾随美女入室| 色尼玛亚洲综合影院| 免费黄网站久久成人精品| 国产日韩欧美在线精品| 亚洲欧美日韩高清专用| 日本一二三区视频观看| 99热这里只有是精品在线观看| 亚洲av免费高清在线观看| 欧美精品国产亚洲| 国内揄拍国产精品人妻在线| 少妇熟女aⅴ在线视频| 人妻制服诱惑在线中文字幕| 黄色日韩在线| 熟妇人妻久久中文字幕3abv| 美女国产视频在线观看| 99久国产av精品| 99热全是精品| 一级黄片播放器| 少妇熟女欧美另类| 国产中年淑女户外野战色| 一本久久精品| 99国产精品一区二区蜜桃av| 免费大片18禁| 国国产精品蜜臀av免费| 九色成人免费人妻av| 九九热线精品视视频播放| 一级毛片久久久久久久久女| 欧美一区二区亚洲| 青青草视频在线视频观看| 99久久精品热视频| 日日啪夜夜撸| av天堂中文字幕网| 国产精品乱码一区二三区的特点| 精品人妻熟女av久视频| 在线观看午夜福利视频| 欧美一区二区亚洲| 亚洲精品色激情综合| 久久精品国产自在天天线| 又粗又爽又猛毛片免费看| 免费av不卡在线播放| 91精品一卡2卡3卡4卡| 在线播放无遮挡| 亚洲欧美清纯卡通| 六月丁香七月| 亚洲婷婷狠狠爱综合网| 国产精品爽爽va在线观看网站| 亚洲欧美日韩无卡精品| 国产午夜福利久久久久久| 亚洲欧美日韩东京热| av专区在线播放| 中文字幕免费在线视频6| 51国产日韩欧美| 亚洲av熟女| 久久国产乱子免费精品| 身体一侧抽搐| 少妇熟女aⅴ在线视频| 欧美潮喷喷水| 亚洲av不卡在线观看| 国模一区二区三区四区视频| 国产视频首页在线观看| 日日撸夜夜添| 国内揄拍国产精品人妻在线| av国产免费在线观看| 男人舔女人下体高潮全视频| 男人舔女人下体高潮全视频| www日本黄色视频网| 国产精品福利在线免费观看| 3wmmmm亚洲av在线观看| 国内少妇人妻偷人精品xxx网站| 在线播放国产精品三级| 成人性生交大片免费视频hd| videossex国产| 一本久久精品| 能在线免费看毛片的网站| 国产一区二区三区在线臀色熟女| 99久久精品热视频| 日韩一本色道免费dvd| 亚洲色图av天堂| 夫妻性生交免费视频一级片| 国产色婷婷99| 一级黄片播放器| 午夜免费激情av| 国产精品国产三级国产av玫瑰| 啦啦啦韩国在线观看视频| 久久久久久久亚洲中文字幕| 精品人妻一区二区三区麻豆| 女的被弄到高潮叫床怎么办| 国产成人精品婷婷| 99久久精品热视频| 日韩精品有码人妻一区| 国产极品精品免费视频能看的| 中文在线观看免费www的网站| 精品久久久久久久久av| 长腿黑丝高跟| 美女xxoo啪啪120秒动态图| 嫩草影院精品99| 日日干狠狠操夜夜爽| 一本一本综合久久| 久久久国产成人免费| 少妇裸体淫交视频免费看高清| 女同久久另类99精品国产91| 亚洲在久久综合| 免费一级毛片在线播放高清视频| 一进一出抽搐动态| 免费在线观看成人毛片| 麻豆国产97在线/欧美| 国产午夜精品论理片| 国产精品蜜桃在线观看 | 在线天堂最新版资源| 久久久久免费精品人妻一区二区| 国产综合懂色| 欧美成人免费av一区二区三区| 男人和女人高潮做爰伦理| 18禁裸乳无遮挡免费网站照片| 91久久精品国产一区二区三区| 久久久久久久午夜电影| 免费观看a级毛片全部| 成人毛片a级毛片在线播放| 国产毛片a区久久久久| 国产成人一区二区在线| 在线国产一区二区在线| 欧美高清成人免费视频www| 日韩,欧美,国产一区二区三区 | 啦啦啦韩国在线观看视频| 亚洲人成网站在线播放欧美日韩| 国产极品天堂在线| www日本黄色视频网| 亚洲熟妇中文字幕五十中出| 久久精品综合一区二区三区| 97在线视频观看| 99国产精品一区二区蜜桃av| 麻豆国产av国片精品| 综合色丁香网| 免费搜索国产男女视频| 亚洲四区av| 给我免费播放毛片高清在线观看| 久久久国产成人免费| 久久九九热精品免费| 亚洲最大成人手机在线| 精品99又大又爽又粗少妇毛片| 内地一区二区视频在线| 久久这里有精品视频免费| 国产精品一区二区三区四区免费观看| 亚洲中文字幕日韩| av天堂在线播放| 97超视频在线观看视频| 免费搜索国产男女视频| 国产v大片淫在线免费观看| 久久久久久久亚洲中文字幕| 夜夜看夜夜爽夜夜摸| 亚洲精品成人久久久久久| 99久久中文字幕三级久久日本| 亚洲七黄色美女视频| 久久精品久久久久久久性| 国产伦精品一区二区三区四那| 日本成人三级电影网站| 日韩精品有码人妻一区| 天美传媒精品一区二区| 国产黄色视频一区二区在线观看 | 狂野欧美激情性xxxx在线观看| 少妇猛男粗大的猛烈进出视频 | 国产成人aa在线观看| 如何舔出高潮| 日本黄色片子视频| 国产成人精品一,二区 | av免费在线看不卡| 欧美精品一区二区大全| 久久这里只有精品中国| 欧美一区二区国产精品久久精品| 免费看美女性在线毛片视频| 国产亚洲精品久久久com| 精品99又大又爽又粗少妇毛片| 国产 一区 欧美 日韩| 岛国毛片在线播放| 2021天堂中文幕一二区在线观| 成年女人看的毛片在线观看| 成人特级黄色片久久久久久久| 精品熟女少妇av免费看| 久久人人精品亚洲av| 国产私拍福利视频在线观看| 色吧在线观看| 91在线精品国自产拍蜜月| 免费搜索国产男女视频| 国产片特级美女逼逼视频| 午夜精品国产一区二区电影 | 性插视频无遮挡在线免费观看| 国产精品一区www在线观看| 啦啦啦观看免费观看视频高清| 亚洲国产精品合色在线| 九草在线视频观看| 在线观看免费视频日本深夜| 看十八女毛片水多多多| 变态另类成人亚洲欧美熟女| 精品熟女少妇av免费看| 国内少妇人妻偷人精品xxx网站| 日日啪夜夜撸| 亚洲国产欧美在线一区| 亚洲av熟女| 亚洲欧美清纯卡通| 丝袜喷水一区| 亚洲无线观看免费| 麻豆av噜噜一区二区三区| 欧美高清成人免费视频www| 寂寞人妻少妇视频99o| 少妇丰满av| 国产黄色小视频在线观看| 高清毛片免费观看视频网站| 精品人妻熟女av久视频| 免费黄网站久久成人精品| 国产午夜精品论理片| 国内少妇人妻偷人精品xxx网站| 日韩欧美精品v在线| 91麻豆精品激情在线观看国产| 激情 狠狠 欧美| 欧美xxxx黑人xx丫x性爽| 国产视频内射| 高清毛片免费看| 欧美激情国产日韩精品一区| 日韩人妻高清精品专区| 亚洲国产欧洲综合997久久,| 色播亚洲综合网| 国产日本99.免费观看| 啦啦啦韩国在线观看视频| 小说图片视频综合网站| 国产一区二区在线观看日韩| 精品久久国产蜜桃| 日日摸夜夜添夜夜爱| 韩国av在线不卡| 观看免费一级毛片| 国产精品乱码一区二三区的特点| 日本成人三级电影网站| 久久精品国产清高在天天线| 国产精品女同一区二区软件| 亚洲精品国产av成人精品| 国产视频内射| 国产成人a区在线观看| 国产伦在线观看视频一区| 亚洲精品自拍成人| 五月玫瑰六月丁香| 亚洲欧美清纯卡通| 特大巨黑吊av在线直播| 免费av观看视频| 1000部很黄的大片| 色综合亚洲欧美另类图片| 日韩成人av中文字幕在线观看| 色播亚洲综合网| 国产精品一区www在线观看| 99热精品在线国产| 不卡一级毛片| 日韩中字成人| 五月玫瑰六月丁香| 男人和女人高潮做爰伦理| 亚洲第一电影网av| 成人亚洲欧美一区二区av| 国产三级在线视频| 麻豆国产97在线/欧美| 亚洲aⅴ乱码一区二区在线播放| 春色校园在线视频观看| 中出人妻视频一区二区| 别揉我奶头 嗯啊视频| 人人妻人人看人人澡| 国产爱豆传媒在线观看| 亚洲国产欧美人成| 亚洲国产精品成人久久小说 | 人妻制服诱惑在线中文字幕| 久久久久久九九精品二区国产| 国产淫片久久久久久久久| 欧美zozozo另类| 久久人人爽人人片av| 国内精品久久久久精免费| 在线观看66精品国产| 男人舔女人下体高潮全视频| 狂野欧美激情性xxxx在线观看| 亚洲高清免费不卡视频| 晚上一个人看的免费电影| 国产在线男女| 国产老妇女一区| 菩萨蛮人人尽说江南好唐韦庄 | 欧美三级亚洲精品| 看非洲黑人一级黄片| 色综合亚洲欧美另类图片| 又粗又硬又长又爽又黄的视频 | 精品日产1卡2卡| 免费观看精品视频网站| 婷婷亚洲欧美| 国产乱人视频| 深夜精品福利| 欧美在线一区亚洲| 欧美极品一区二区三区四区| 欧美+日韩+精品| 国产女主播在线喷水免费视频网站 | 午夜精品一区二区三区免费看| 九草在线视频观看| 99久久久亚洲精品蜜臀av| 国产 一区精品| 最近中文字幕高清免费大全6| 熟女人妻精品中文字幕| 久久久久久久久久久丰满| 一个人看的www免费观看视频| 91aial.com中文字幕在线观看| 久久精品影院6| 岛国在线免费视频观看| 亚洲欧美日韩高清专用| 国产精品麻豆人妻色哟哟久久 | 91久久精品电影网| 久久精品夜夜夜夜夜久久蜜豆| 日本五十路高清| 中国国产av一级| 中出人妻视频一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 精品一区二区免费观看| 免费大片18禁| 亚洲精品456在线播放app| 不卡视频在线观看欧美| 久久精品人妻少妇| 综合色av麻豆| 国产视频内射| 国产精品人妻久久久久久| 蜜臀久久99精品久久宅男| 久久久久久伊人网av| 午夜福利视频1000在线观看| 老女人水多毛片| 日本黄大片高清| 国国产精品蜜臀av免费| 可以在线观看的亚洲视频| 成人一区二区视频在线观看| 在线观看av片永久免费下载| 综合色av麻豆| 特大巨黑吊av在线直播| 久久精品国产亚洲av涩爱 | 有码 亚洲区| 国产人妻一区二区三区在| 国产 一区 欧美 日韩| 日本-黄色视频高清免费观看| 国内少妇人妻偷人精品xxx网站| 国产一区亚洲一区在线观看| 中国美女看黄片| 亚洲第一电影网av| 人人妻人人澡人人爽人人夜夜 | 中文精品一卡2卡3卡4更新| 亚洲高清免费不卡视频| 国产在线精品亚洲第一网站| 亚洲一区二区三区色噜噜| 长腿黑丝高跟| 国产成人aa在线观看| 18+在线观看网站| 日韩av不卡免费在线播放| 亚洲无线在线观看| 国产视频内射| 少妇高潮的动态图| 日韩制服骚丝袜av| 男人的好看免费观看在线视频| 中出人妻视频一区二区| 黄色一级大片看看| 丰满的人妻完整版| 在现免费观看毛片| 亚洲在线自拍视频| 男女啪啪激烈高潮av片| 欧美性猛交╳xxx乱大交人| 成人二区视频| 欧美激情国产日韩精品一区| 久久精品久久久久久噜噜老黄 | 亚洲av男天堂| 国产片特级美女逼逼视频| 国产成人午夜福利电影在线观看| 久久热精品热| 一个人免费在线观看电影| 欧美成人免费av一区二区三区| 人人妻人人看人人澡| 日韩欧美精品v在线| av视频在线观看入口| 内地一区二区视频在线| 中文亚洲av片在线观看爽| 床上黄色一级片| 麻豆av噜噜一区二区三区| 久久久久久久久久久免费av| 亚洲自偷自拍三级| 成年免费大片在线观看| 一区二区三区高清视频在线| 国模一区二区三区四区视频| 美女被艹到高潮喷水动态| av又黄又爽大尺度在线免费看 | 免费看美女性在线毛片视频| 内地一区二区视频在线| 亚洲成人久久性| 偷拍熟女少妇极品色| 亚洲图色成人| 三级国产精品欧美在线观看| 国产视频首页在线观看| 欧美成人精品欧美一级黄| 看十八女毛片水多多多| 亚洲一级一片aⅴ在线观看| 欧美xxxx性猛交bbbb| 熟妇人妻久久中文字幕3abv| 菩萨蛮人人尽说江南好唐韦庄 | 国产免费一级a男人的天堂| 一边亲一边摸免费视频| 国产日本99.免费观看| 成人高潮视频无遮挡免费网站| 哪个播放器可以免费观看大片| 国产成人a∨麻豆精品| 丝袜喷水一区| 男人舔奶头视频| av在线播放精品| 国产av一区在线观看免费| 12—13女人毛片做爰片一| 91在线精品国自产拍蜜月| 国产日韩欧美在线精品| 久久精品国产自在天天线| 久久久久网色| 成人高潮视频无遮挡免费网站| 久久久久久伊人网av| 国产麻豆成人av免费视频| 日本熟妇午夜| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 永久网站在线| 哪里可以看免费的av片| 夜夜夜夜夜久久久久| 一个人看的www免费观看视频| 丰满人妻一区二区三区视频av| 国产人妻一区二区三区在| 久久久久国产网址| 一边亲一边摸免费视频| 老司机福利观看| 悠悠久久av| 69av精品久久久久久| 一级毛片aaaaaa免费看小| 日韩欧美精品v在线| 久久久国产成人免费| 国产精品一区二区在线观看99 | 天美传媒精品一区二区| 亚洲不卡免费看| 午夜福利高清视频| 精品免费久久久久久久清纯| 国产精品麻豆人妻色哟哟久久 | 九九爱精品视频在线观看| 国产成人精品久久久久久| 成年女人永久免费观看视频| 国产免费男女视频| 啦啦啦韩国在线观看视频| 亚洲成人精品中文字幕电影| 日日摸夜夜添夜夜爱| 联通29元200g的流量卡| 五月伊人婷婷丁香| 国产美女午夜福利| 亚洲av二区三区四区| 99在线人妻在线中文字幕| 成人亚洲精品av一区二区| 日本黄大片高清| 91在线精品国自产拍蜜月| 国产色婷婷99| 国产伦精品一区二区三区视频9| 99九九线精品视频在线观看视频| 久久人人爽人人片av| 亚洲性久久影院| 深夜精品福利| 中文字幕制服av| 波野结衣二区三区在线| 激情 狠狠 欧美| 国产成人精品一,二区 | 少妇猛男粗大的猛烈进出视频 | 精品久久久噜噜| 精品人妻偷拍中文字幕| 国产精品久久久久久av不卡| 亚洲图色成人| 在线观看66精品国产| 亚洲欧洲日产国产| 九九爱精品视频在线观看| 2022亚洲国产成人精品| 禁无遮挡网站| 伦理电影大哥的女人| 国产精品精品国产色婷婷| 国产 一区 欧美 日韩| 亚洲精品日韩av片在线观看| 日韩欧美精品免费久久| 美女被艹到高潮喷水动态| 久久国产乱子免费精品| 麻豆国产av国片精品| 亚洲,欧美,日韩| 久久久精品94久久精品| 精品久久久久久久久久免费视频| 日韩一本色道免费dvd| 一区二区三区免费毛片| 在线播放无遮挡| 欧美精品国产亚洲| 欧洲精品卡2卡3卡4卡5卡区| 国产极品精品免费视频能看的| 国产黄a三级三级三级人| 欧美另类亚洲清纯唯美| 日日啪夜夜撸| 国产精品久久久久久精品电影小说 | 1000部很黄的大片| 18禁在线播放成人免费| 精品久久久久久久久久免费视频| 国产极品天堂在线| 99在线视频只有这里精品首页| 日本熟妇午夜| 成人特级av手机在线观看| 观看免费一级毛片| 亚洲欧美精品专区久久| 精品人妻熟女av久视频| 免费av不卡在线播放| 亚洲精品色激情综合| 韩国av在线不卡| 国产免费一级a男人的天堂| 久久久久九九精品影院| 欧美人与善性xxx| 男女边吃奶边做爰视频| 国产乱人偷精品视频| 亚洲精品成人久久久久久| 国产中年淑女户外野战色| 国产精品.久久久| 欧美日韩乱码在线| 成人午夜精彩视频在线观看| 只有这里有精品99| 一本一本综合久久| 网址你懂的国产日韩在线| 亚洲无线在线观看| 成人欧美大片| 黑人高潮一二区| 国产又黄又爽又无遮挡在线| 少妇丰满av| 99久国产av精品| 日日啪夜夜撸| 美女 人体艺术 gogo| 高清午夜精品一区二区三区 | videossex国产| 最近最新中文字幕大全电影3| av福利片在线观看| 国产精品国产三级国产av玫瑰| 亚洲av不卡在线观看| 久久国产乱子免费精品| 性欧美人与动物交配| 日韩精品青青久久久久久| 18禁裸乳无遮挡免费网站照片| 尾随美女入室| 国产视频首页在线观看| 国产激情偷乱视频一区二区| 日韩制服骚丝袜av| 精品99又大又爽又粗少妇毛片| 此物有八面人人有两片| 亚洲最大成人手机在线| av福利片在线观看| 色播亚洲综合网| 国产精品乱码一区二三区的特点| 久久精品国产清高在天天线| 狂野欧美白嫩少妇大欣赏| 亚洲中文字幕一区二区三区有码在线看| 久久6这里有精品| 两性午夜刺激爽爽歪歪视频在线观看| 波多野结衣高清无吗| 日韩 亚洲 欧美在线| 亚洲国产高清在线一区二区三| 噜噜噜噜噜久久久久久91| 国产午夜精品一二区理论片| 久久久久久久久大av| 亚洲av不卡在线观看| 久久精品久久久久久噜噜老黄 | 免费电影在线观看免费观看| 最近的中文字幕免费完整| 不卡一级毛片| 好男人在线观看高清免费视频| 久久鲁丝午夜福利片| 欧美一区二区亚洲| 欧美日韩一区二区视频在线观看视频在线 | 18禁在线播放成人免费| 人人妻人人看人人澡| 九色成人免费人妻av| 欧美变态另类bdsm刘玥| 我要看日韩黄色一级片| 免费av观看视频| 国产一区二区三区在线臀色熟女| 欧美色欧美亚洲另类二区| 身体一侧抽搐| 六月丁香七月| 国产毛片a区久久久久| 亚洲欧美日韩卡通动漫| 国内精品一区二区在线观看| 欧美性感艳星| 中国美白少妇内射xxxbb| 国产成人福利小说| 久久人妻av系列| 长腿黑丝高跟| 在线国产一区二区在线| 成人漫画全彩无遮挡| 不卡视频在线观看欧美| 卡戴珊不雅视频在线播放| 国产黄片美女视频| 99riav亚洲国产免费| 黄色日韩在线| 午夜老司机福利剧场| 在线观看66精品国产| 久久国内精品自在自线图片| 亚洲电影在线观看av| 1024手机看黄色片| 日本黄色视频三级网站网址| 亚洲精品国产av成人精品| 黄色日韩在线| 国产亚洲av嫩草精品影院| 国内精品美女久久久久久| 人妻少妇偷人精品九色| 波多野结衣高清无吗|