崔 亞
(西安職業(yè)技術學院 基礎課教學部,陜西 西安 710077)
隨著大氣污染越來越嚴重,需利用國控點和自建點對“兩塵四氣”的濃度進行實時監(jiān)測??紤]到國控點數(shù)據(jù)較為準確,但國控點的布控較少,數(shù)據(jù)發(fā)布時間滯后較長且花費較大,而自建點花費小,能實時網(wǎng)格化監(jiān)控,但數(shù)據(jù)不準確。本研究對國控點數(shù)據(jù)和自建點數(shù)據(jù)進行探索性數(shù)據(jù)分析;對兩個監(jiān)測點數(shù)據(jù)造成差異的因素進行分析;根據(jù)國控點數(shù)據(jù)建立相關的數(shù)學模型,并對自建點數(shù)據(jù)進行校準。
(1) 假設國控點的數(shù)據(jù)為標準值,不受天氣等因素干擾。(2) 假設自建點對溫度、濕度、風速、氣壓、降水的檢測值相對標準。(3) 假設自建點的數(shù)據(jù)沒有異常值。
為了對自建點數(shù)據(jù)與國控點數(shù)據(jù)進行探索性數(shù)據(jù)分析,本研究將自建點數(shù)據(jù)與國控點數(shù)據(jù)進行了預處理,用MATLAB 軟件編程得到了數(shù)據(jù)行數(shù)一樣的兩個表,分別為自建點數(shù)據(jù)表和國控點數(shù)據(jù)表。
利用SPSS 軟件分別對了國控點數(shù)據(jù)、自建點數(shù)據(jù)進行描述統(tǒng)計量[2]見圖1 和圖2,其中統(tǒng)計數(shù)據(jù)有效值為3 954,每項的最高點和最低點對應數(shù)據(jù)的最大值和最小值;標記*為數(shù)據(jù)的均值;箱型的上邊和下邊對應均值±標準差/2 的值。
圖1 國控點數(shù)據(jù)統(tǒng)計量
圖2 自控點數(shù)據(jù)統(tǒng)計量
表1 雙因素線性回歸模型與全因素線性回歸模型統(tǒng)計結果匯總
根據(jù)SPSS 的描述性數(shù)據(jù)統(tǒng)計,在統(tǒng)計數(shù)據(jù)有效值為3954 且國控點數(shù)據(jù)與自建點數(shù)據(jù)均同時測得的情況下對“兩塵四氣”分別對比分析,得到如下結論:自建點的PM2.5,PM10,CO,NO2的方差均大于國控點的PM2.5,PM10,CO,NO2的方差,自建點的SO2,O3的方差均小于國控點的PM2.5,PM10,NO2的方差。由此可知自建點除SO2和O3的離散程度小于國控點,其余的離散程度均大于國控點[3],因此自建點的SO2和O3具有一定的可靠性。
分別對自測點數(shù)據(jù)(Z)與國控點(G)數(shù)據(jù)進行配對樣本T 檢測。根據(jù)SPSS 軟件配對樣本T 檢測得:自建點PM2.5 與國控點PM2.5 的數(shù)據(jù)量為3 954,兩者之間的相關系數(shù)為0.871,相關系數(shù)的估計標準差為0;自建點PM10 與國控點PM10 的數(shù)據(jù)量為3 954,兩者之間的相關系數(shù)為0.628,相關系數(shù)的估計標準差為0;自建點CO 與國控點CO 數(shù)據(jù)量為3 954,兩者之間的相關系數(shù)為0.325,相關系數(shù)的估計標準差為0;自建點NO2與國控點NO2數(shù)據(jù)量為3 954,兩者之間的相關系數(shù)為0.381,相關系數(shù)的估計標準差為0;自建點SO2與國控點SO2的數(shù)據(jù)量為3 954,兩者之間的相關系數(shù)為0.041,相關系數(shù)的估計標準差為0.01;自建點O3與國控點O3的數(shù)據(jù)量為3 954,兩者之間的相關系數(shù)為0.4,相關系數(shù)的估計標準差為0。
我們發(fā)現(xiàn),自測點PM2.5 和PM10 與國控點PM2.5和PM10 強相關(相關系數(shù)大于0.5),除SO2所有數(shù)據(jù)都不是正態(tài)分布,是存在顯著性差異的[5]。
通過以上數(shù)據(jù)分析,發(fā)現(xiàn)自建點數(shù)據(jù)與國控點數(shù)據(jù)存在著一定的差異性,接下來對造成差異性的因素進行回歸性分析[7]。
由表2 可知:模型PM2.5、PM10 和SO2的R 值大,說明擬合優(yōu)度大,用雙因素線性回歸模型擬合更好。模型CO、NO2、O3的R 值大,說明擬合優(yōu)度大[8],用全因素線性回歸模型擬合更好。
表2 多元性線性回歸模型系數(shù)匯總表
我們分別以國控點的 PM2.5、PM10、CO、NO2、SO2、O3作為因變量,以自建點的全部變量作為自變量,通過以上分析,我們建立如下的多元線性回歸模型:
式中y 為因變量,xi為自變量,ai為系數(shù),b 為常數(shù)。
選用了國控數(shù)據(jù)與自建數(shù)據(jù)中2/3 數(shù)據(jù),利用SPSS 得出多元線性回歸模型[10]。
依據(jù)以上模型系數(shù)匯總表,可以分別得出PM2.5、PM10、CO、NO2、SO2、O3的線性回歸模型[10],匯總如下:PM2.5 模型:PM2.5 = 0.729x1 + 0.022x2 + 3.946x3+ 0.106x4 + 0.010x5 + 0.041x6 + 0.720x7 - 0.090x8 -0.043x9 + 0.233x10 - 0.260x11 + 98.224 ;PM10 模型:PM10 = 0.807x1 + 0.050x2 + 43.970x3 + 0.303x4 +0.057x5 + 0.059x6 - 3.094x7 - 0.269x8 - 0.101x9 +0.103x10 - 0.966x11 + 326.699 ;CO 模 型:CO =0.014x1 - 0.004x2 + 0.700x3 + 0.001x4 - 0.174x7 -0.005x8 + 0.011x10 + 0.001x11 + 5.127 ;NO2模型:NO2= 0.552x1 - 0.228x2 - 24.337x3 + 0.475x4 +0.079x5 - 0.110x6 - 14.319x7 - 0.093x8 - 0.045x9 -0.957x10 - 0.462x11 + 164.083 ;SO2模 型:SO2=0.076x1 - 0.056x2 + 65.467x3 - 0.154x4 - 0.107x5 +0.226x6 - 1.894x7 + 0.028x8 + 0.030x9 + 0.456x10 +0.012x11 - 44.861 ;O3模型:O3= 0.260x1 - 0.134x2 -59.467x3 - 0.330x4 + 0.129x5 + 0.185x6 + 17.902x7 +0.226x8 + 0.010x9 + 1.897x10 - 0.285x11 - 159.526。
為了驗證上述模型的準確性,選取國控點數(shù)據(jù)與自建點數(shù)據(jù)的后1/3 數(shù)據(jù)作為樣本來檢驗[11-12],得出檢驗結果。下面通過一些例子介紹一下檢驗數(shù)據(jù)的校準結果。
(1) 以2019 年3 月24 日20 時為例,校準前數(shù)據(jù)PM2.5:88,PM10:121,CO:1.16,NO2:45,SO2:19,O3:108,校準后數(shù)據(jù)PM2.5:87,PM10:121,CO:1.3,NO2:52,SO2:23,O3:77;(2) 以2019 年3 月24 日22 時為例,校準前數(shù)據(jù)PM2.5:81,PM10:123,CO:1.19,NO2:53,SO2:19,O3:88,校準后數(shù)據(jù)PM2.5:89,PM10:121,CO:1.4,NO2:53,SO2:19,O3:75;(3) 以2019 年3 月25 日2 時為例,校準前數(shù)據(jù)PM2.5:86,PM10:116,CO:1.22,NO:30,SO2:24,O3:87,校準后數(shù)據(jù)PM2.5:90,PM10:113,CO:1.3,NO2:38,SO2:14,O3:84;(4) 以2019 年3 月25 日3 時為例,校準前數(shù)據(jù)PM2.5:88,PM10:110,CO:1.27,NO2:23,SO2:21,O3:91,校準后數(shù)據(jù)PM2.5:88,PM10:109,CO:1.4,NO2:40,SO2:15,O3:77。
通過SPSS 將檢驗數(shù)據(jù)結果與國控點的數(shù)據(jù)進行相關性分析[13]得出:每個數(shù)據(jù)的Pearson 均大于0.5,說明該模型算的結果誤差很小[14],該多元線性回歸模型具有一定可靠性。
通過上述模型的驗證,得出所建模型的可靠性和準確性,故將自建點中的數(shù)據(jù)分別帶到我們建立的模型中,用EXCEL 軟件計算出自建點校準后的數(shù)據(jù)[15]。下面以部分計算數(shù)據(jù)結果為例進行介紹。
(1) 以2018 年11 月14 日10:02 時為例,自建點 原 數(shù) 據(jù)PM2.5:50,PM10:98,CO:0.8,NO2:62,SO2:15,O3:46,校準后數(shù)據(jù)PM2.5:43,PM10:83,CO:0.6,NO2:65,SO2:35,O3:33;(2) 以2018 年11 月14 日10:10 時為例,自建點原數(shù)據(jù)PM2.5:49,PM10:94,CO:0.7,NO2:59,SO2:15,O3:50,校準后數(shù)據(jù)PM2.5:42,PM10:75,CO:0.4,NO2:53,SO2:20,O3:58;(3) 以2018 年11 月14 日10:24 時為例,自建點原數(shù)據(jù)PM2.5:48,PM10:93,CO:0.7,NO2:57,SO2:15,O3:54,校 準 后 數(shù) 據(jù)PM2.5:42,PM10:74,CO:0.4,NO2:47,SO2:18,O3:66;(4) 以2018 年11 月14 日10:42 時為例,自建點原數(shù)據(jù)PM2.5:42,PM10:85,CO:0.7,NO2:55,SO2:15,O3:57,校準后數(shù)據(jù)PM2.5:38,PM10:76,CO:0.6,NO2:57,SO2:28,O3:56。
該模型較準確的對國控點數(shù)據(jù)與自建點數(shù)據(jù)所產(chǎn)生的差異進行了分析和校準;模型相對簡單,便于計算;該模型還可直接用于以后時間自建點對空氣質量采集數(shù)據(jù)的研究。