• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2

    2022-10-26 09:47:10ZhenWang王振HengcanZhao趙恒燦MengLyu呂孟JunsenXiang項俊森QingxinDong董慶新GenfuChen陳根富ShuaiZhang張帥andPeijieSun孫培杰
    Chinese Physics B 2022年10期
    關(guān)鍵詞:王振張帥

    Zhen Wang(王振) Hengcan Zhao(趙恒燦) Meng Lyu(呂孟) Junsen Xiang(項俊森)Qingxin Dong(董慶新) Genfu Chen(陳根富) Shuai Zhang(張帥) and Peijie Sun(孫培杰)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Science,University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: Dirac semimetal,low-energy phonon,thermal conductivity,lattice instability

    1. Introduction

    In addition to their electrical and optical properties that have been subjected to intensive investigation, topological semimetals also show intriguing lattice dynamics and thermal properties that remain largely unexplored. Most of these properties concern the interplay between topological electronic bands and low-energy phonons, as highlighted in the following cases: chiral magnetic effect can alter optical phonons via intrinsic plasmon modes in an external magnetic field;[1]topological singularity in electronic bands is able to induce chiral Kohn anomaly in the phonon dispersions;[2]topological phononic and electronic bands in a class of triplepoint metals are expected to offer a strategy for enhanced thermoelectricity,[3]etc.

    The titled compound Cd3As2is a prototypical Dirac semimetal.[4]It has, on one hand, very high electron mobility derived from symmetry protected Dirac nodes and,on the other hand, surprisingly low lattice thermal conductivity that is indicative of strong phonon scatterings (Refs. [5–8]). The latter phenomenon becomes interesting because of the topological Dirac bands that appear to be highly relevant to lattice dynamics. Thus far, low thermal conductivity has been intensively investigated in thermoelectric materials, most of which host weak chemical bonds that are crucial for reducing phonon velocity and increasing scattering.[9]For Cd3As2,a group of soft optical phonons showing Kohn anomaly associated with the Dirac nodes have been identified byab initiocalculations.[10]These soft optical modes were ascribed to be the leading reason of the low thermal conductivity by increasing the scattering rate of heat-carrying acoustic phonons.In fact, significant softening of low-energy phonons is generically expected in semimetals near topological phase transition, where Kohn anomalies due to intranode or internode electron–phonon scattering may occur near the Brillouinzone center.[11]Accordingly,Raman scattering of Cd3As2has shown significant deviations of selected optical-phonon frequencies from the expectation based on lattice anharmonicity belowT ≈100 K (Ref. [12]). This has been ascribed to the strong fluctuations of lattice degrees of freedom interacting with Dirac electrons.

    From a crystallographic point of view,Cd3As2at ambient conditions crystalizing in the tetragonally distorted antifluorite structure (space groupI41/acd) that hosts topological Dirac bands is located close to a lattice instability. Upon heating to only about 220°C, it transforms to a Zn3As2-type structure with space group(P42/nbc),with at least two more structural phase transitions taking place at higher temperatures,[13,14]Alternatively, application of pressure causes a couple of structural phase transitions as well,starting from the one at a relatively low pressure of~2.3 GPa.[14–16]Given the complex lattice instability as introduced above, an in-depth investigation on this compound by a comprehensive set of thermodynamic probes appears to be essential in characterizing the lattice dynamics and, more importantly, its potential interaction with Dirac electrons.

    2. Experimental methods

    Single crystals of Cd3As2were prepared by self-transport technique;see Ref.[5]for the details of structural characterization and crystal orientation. The specific heat was measured by thermal relaxation method in a commercial physical properties measurement system (PPMS, Quantum Design), and the thermal conductivity by conventional steady-state method with two thermometers and one heater.[5]The measurements of thermal expansion were performed by using a miniaturized capacitance dilatometer and an Andeen-Hagerling 2500A capacitance bridge.[17]We have also measured the transverse and longitudinal ultrasound velocitiesυTandυLof a large polycrystalline sample(2.67×1.97×0.96 mm3). Here,the sound velocities were measured by a phase comparison technique,[18]where the frequency of the input acoustic wave was continuously adjusted during the temperature scan in order to maintain a constant phase of a given output echo. The elastic moduli were calculated from the ultrasound velocities asCi=dυ2i(i=L or T),withdbeing the sample density.

    3. Results and discussion

    The thermal conductivityκ(T) measured within the asgrown(112)plane of a single crystal is shown in Fig.1. Thermal measurements in the(100)plane have revealed very similar data,[8]indicating weak anisotropy of the thermal conductivity in Cd3As2. The electronic contributionκe(T)calculated based on the Wiedemann–Franz law and the measured electrical resistivity (Fig. 1 inset) are also shown. In estimating the electronic part, we assume that the Sommerfeld value of the Lorenz number applies to this material in the temperature window of interest. We note, however, that to what extent the Wiedemann–Franz law holds in Dirac materials remains an issue of debate. For example,the Sommerfeld value of the Lorenz number may change significantly when a magnetic field is applied[19]or the Fermi level crosses the Dirac point;[20]the two situations that do not apply to the current work and Cd3As2. In spite of a moderate sample dependence of theκ(T)profiles reported in the literature,[7,8,21]they are qualitatively similar with two marked features: a nearly temperature-independent, small value ofκ(T) atT >100 K and a markedκ(T)maximum atT≈10 K.The lattice thermal conductivity (κL≈κ-κe) atT >100 K falls into the range of the uncertainties(±0.6 W/mK at room temperature)in our measurements,whereas the averageκLreported in Ref.[8]is only 0.7 W/mK in the wide temperature range of 100-300 K.The small value ofκL(T) and its weak temperature dependence atT >100 K indicate that the phonon mean free path is probably reduced to about its lower limit in this temperature

    Fig. 1. The thermal conductivity κ(T) measured within the as-grown(112)plane of Cd3As2. Error bars denote standard deviations estimated from the average of measurements under multiple temperature gradients. The electronic contribution κe(T) (red solid line) is estimated fromtheWiedemann–Franzlaw,κeρ/T=L0,withthe Sommerfeld valueoftheLorenznumberL0≡=2.44×10-8 W·Ω·K-2.

    Considering a reasonable value ofκL≈0.7 W/mK forT >100 K(Ref.[8]),the phonon mean free pathlis estimated to be 6.96 ?A,which is even shorter than the lattice parameters of Cd3As2,i.e.,a=b=12.67 ?A andc=25.35 ?A.Note that,this is only a naive and rough estimate because on one hand the kinetic description of thermal conductivity is likely on the brink of failure for Cd3As2with a large primitive cell,[22]and on the other hand the real phonon mean free path is actually mode dependent. Nevertheless, such estimate is meaningful because it confirms that the lattice thermal conductivity is already at or not far from its lower limit. The pronounced increase ofκ(T)below 50 K is a typical feature originated from phonon–phonon Umklapp processes,and the drastic decrease below about 10 K can be attributed to boundary scatterings of heat-carrying phonons in semimetals and semiconductors.[23]Here, the temperature-dependent specific heat determines the temperature profile ofκ(T) because the phonon mean free path is a constant. Though how the Dirac electrons impact onκLcannot be straightforwardly observed, it can be reliably inferred fromκLas a function of the field: whileκLis vanishingly small in zero and small fields (B <2 T) where Dirac electrons are highly mobile, it increases gradually and becomes dominant in higher fields where Dirac electrons are spatially constrained by the magnetic fields; seeκ(B) shown in Fig.2(e)of Ref.[5].

    Before proceeding with other experimental results, we stress that a simple inspection into the crystal structure of Cd3As2can already yield important insight into the unusually lowκLvalues. Cd3As2crystallizes in a large primitive cell with the number of formula unitZ= 16, i.e., totallyN=80 atoms in one primitive cell. A large primitive cell means that the reciprocal space is predominantly occupied by a large number(3N-3)of optical modes. As a result,the thermodynamically-weighted heat capacity and the Debye temperature for heat-carrying acoustic phonons are greatly suppressed. This causes a reducedκLfrom purely crystallographic reasons, as can be inferred from the aforementioned kinetic description for thermal conductivity. Such a strong reduction trend ofκLwith increasing primitive cell volume has been already reported previously.[24]

    Fig. 2. (a) The low-temperature specific heat of Cd3As2 depicted as C/T3 vs T. The data is fitted by considering a Debye term and two Einstein modes (blue solid line). Dotted and dashed lines are individual contributions from the Debye term and the leading Einstein mode,respectively(see text). (b)The low-temperature C(T)deviates strongly from Debye’s T-cube law that is commonly described by a linear dependence of C/T versus T2. By contrast, the description based on the combined Debye and Einstein terms(blue solid line)can reasonably reproduce the curved C/T(T2)line. Inset: T-dependent specific heat of Cd3As2.

    With the unusual thermal conductivity in mind,below we examine the specific heat carefully. Figure 2(a) displays the low-temperature specific heat asC/T3versusT. While the specific heat within Debye’s description will obey aT-cube law and appear constant in this representation, an enhanced and broad peak is observed for Cd3As2atT ≈10 K. This is a thermodynamic signature of dominant low-energy optical modes, and has been intensively studied for cage compounds with“rattling”guest ion.[25]According to a rule of thumb obtained previously, the Einstein temperatureθEcharacterizing these modes is five times the temperature position of theC/T3vs.Tmaximum,which meansθE≈50 K in this case.

    The specific heat shown asC/TversusT2forT <8 K in Fig. 2(b) further demonstrates the importance of low-energy Einstein modes. Different to the expectation from Debye’s description,theC/T(T2)variation deviates significantly from a straight line. A linear dependence ofC/T(T2),if any,appears only atT2<5,namely,below about 2 K,where the contribution of low-energy optical models freezes out.Considering the significant contribution from soft optical phonons in the temperature window of interest,we combine Debye’s description and a couple of local Einstein modes to fitC(T),

    HereRis the gas constant,andAnis the number of Einstein oscillations andN0is the number of atoms per formula unit. The result of fitting is shown by the blue solid line in Figs.2(a)and 2(b), from which we obtainθD=111 K andθE1=42 K. A second Einstein mode withθE2=101 K,which is less important compared to the first one, was also included for a better fitting. Markedly, the fit can capture the prominent features in specific heat including the broad peak inC/T3versusT(Fig.2(a))and the curvedC/TversusT2at low temperatures(Fig.2(b)).

    Fig. 3. Longitudinal (CL) and transverse (CT) elastic moduli and the calculated bulk modulus K =CL-CT as a function of temperature for Cd3As2. The corresponding longitudinal (υL) and transverse (υT)sound velocities are also shown(right axis).

    From the longitudinal and transverse sound velocities of Cd3As2,the average sound velocity ˉυcan be calculated as follows:

    From Eq.(2),one readily obtains ˉυ=1943 m/s for 200 K and 2005 m/s for 10 K. The moderately small sound velocities,which measure the phonon dispersions at the Brillouin zone center,are not the leading reason of the extremely low thermal conductivity. For comparison, FeSb2, which has an average sound velocity of 3110 m/s (less than double ˉυof Cd3As2)reveals a lattice thermal conductivity of several tens of W/mK at 100 K(Ref.[26]). Furthermore,the Debye temperatureθDcan also be estimated from the average phonon velocity

    HereVis the primitive cell volume andhthe Planck’s constant. The estimated Debye temperature,θD=187 K,is considerably larger than that evaluated from the specific heat,θD=111 K.Unlike the specific heat which measures the thermodynamics of all low-energy phonons via the phonon density of states,sound velocities probe the group velocities of acoustic phonons at the low frequency limit and are less influenced by low-energy optical modes. The strong disagreement between the two values ofθDhints at a strong deviation of the low-energy phonons from Debye’s description,again pointing to the importance of low-energy optical modes in the description of the thermodynamic properties.

    Figure 4 shows the linear thermal expansion coefficient estimated from the measured length change dL,α=1/L(dL/dT), as a function of temperature. Here,αis measured alongcaxis of single-crystalline Cd3As2, which is the direction where Dirac cones are located.[10]In general,α(T)behaves similar toC(T)(Fig.2 inset);it reveals,however,negative values below about 10 K.Given the experimental resultsK(T),C(T)andα(T),one can easily estimate the Gr¨uneisen ratioγ=3VmKα/Cas an experimental indicator of lattice anharmonicity,whereVmis the molar volume.

    Fig. 4. Thermal expansion coefficient α measured along c axis (left)and the estimated thermodynamic Gr¨uneisen ratio γ (right). Drastic drop of γ is observed at T <100 K,ending up with negative values at T <10 K.

    As shown in Fig.4(right axis),γ(T)remains 1.1(±0.1)in a wide temperature range above 100 K.This is a Gr¨uneisen ratio within the range of common expectation for simple solids.AtT <100 K,γ(T)reveals a drastic drop and becomes negative atT <10 K, corresponding to the low-temperature negative thermal expansion. The temperature window whereγ(T) drops significantly matches well to that where Einstein modes are observed in specific heat(Fig.2). Phenomenologically, the unusual behavior ofγ(T) originates from the temperature dependence ofα(T)that shows stronger decrease below 100 K relative to that ofC(T)towards negative values at low temperatures. Likewise, atT~100 K, strong frequency reduction of several optical phonons has been observed by Raman scattering,[12]and this temperature has been regarded as a characteristic energy scale of interband scattering in the Dirac states coupling to low-energy optical phonons. In line with the negative values ofγ(T) that indicate lattice instability at low temperatures, the tetragonal metallic phase of Cd3As2is indeed rather unstable and changes to a semiconducting monoclinic phase at a critical pressurepc≈2.3 GPa,[14,16]as has been mentioned above. Different from the general expectation that pressure drives an insulator or a semiconductor to a metallic phase due to band broadening,the opposite trend observed in Cd3As2indicates that the Dirac bands might play an important role in the structural instability,as inferred from our thermal expansion measurements. Because apparent anomaly is not observed in the elastic moduli,we speculate the unusualγ(T)behavior at low temperatures to be related to thermodynamics of low-energy optical modes.

    4. Summary

    To summarize, we have studied the low-energy phonons of Cd3As2by a comprehensive set of thermodynamic probes.As far as the extremely low lattice thermal conductivity is concerned, Cd3As2appears to be unusual in the following aspects: 1) A large unit cell sets a strong constraint on the thermodynamics of low-energy phonons, leading to reduced specific heat and enhanced phonon scattering rate of acoustic phonons; 2) Soft optical phonons, which are partially related to the Kohn anomaly caused by Dirac bands, can be clearly captured by low-temperature specific heat revealing significant Einstein terms; 3) A drastic decrease of the thermodynamic Gr¨uneisen ratio is observed below 100 K, where enhanced coupling between lattice and electronic degrees of freedom has been previously confirmed. The decrease ends up with a negative thermal expansion at low temperatures that is indicative of lattice instability. At last, we note that while it is safe to conclude that the Dirac electrons are relevant to the phonon softening and the lattice instability in Cd3As2,to what extent the interplay between lattice dynamics and Dirac electrons plays its role therein remains an interesting issue. Because very low thermal conductivities have been observed in a number of topological semimetals such as ZrTe5(Ref.[27]),further investigation and comparison between different compounds along this line appear to be an interesting project.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974389, 12141002 and 52088101), the National Key R&D Program of China (Grant No. 2017YFA0303100), the Chinese Academy of Sciences through the Scientific Instrument Developing Project (Grant No.ZDKYYQ20210003),and the Strategic Priority Research Program(Grant No.XDB33000000).

    猜你喜歡
    王振張帥
    Efficient method to calculate the eigenvalues of the Zakharov–Shabat system
    Analytical three-periodic solutions of Korteweg–de Vries-type equations
    CrAlGe: An itinerant ferromagnet with strong tunability by heat treatment
    Special issue on selected papers from HVDP 2020
    Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge
    EXISTENCE AND UNIQUENESS OF THE GLOBAL L1 SOLUTION OF THE EULER EQUATIONS FOR CHAPLYGIN GAS?
    青年演員張帥
    歌海(2021年6期)2021-02-01 11:27:18
    THE EXISTENCE OF A BOUNDED INVARIANT REGION FOR COMPRESSIBLE EULER EQUATIONS IN DIFFERENT GAS STATES*
    博物館安防系統(tǒng)改造工程淺析
    Talking about the Design Concept of "People-oriented" in Visual Communication Desig
    青年生活(2019年3期)2019-09-10 16:57:14
    国产中年淑女户外野战色| 欧美高清成人免费视频www| 免费黄网站久久成人精品| 嘟嘟电影网在线观看| 久热久热在线精品观看| 伊人久久国产一区二区| 国产探花在线观看一区二区| 欧美人与善性xxx| 在线a可以看的网站| 欧美日本视频| 观看免费一级毛片| 一级毛片我不卡| 国产精品三级大全| freevideosex欧美| 内射极品少妇av片p| 亚洲三级黄色毛片| 秋霞伦理黄片| 国产精品人妻久久久久久| 国产色婷婷99| 久久精品国产亚洲网站| 69av精品久久久久久| 欧美日韩精品成人综合77777| 国产免费福利视频在线观看| 成年版毛片免费区| 日韩人妻高清精品专区| 亚洲精品日韩av片在线观看| 国产成人精品婷婷| 18禁在线播放成人免费| 国产亚洲精品久久久com| 午夜激情福利司机影院| tube8黄色片| 国产在线男女| 在线播放无遮挡| 色网站视频免费| 欧美精品一区二区大全| 国产黄频视频在线观看| 亚洲一级一片aⅴ在线观看| 国国产精品蜜臀av免费| 国产亚洲av嫩草精品影院| 国产美女午夜福利| 日本三级黄在线观看| 久久精品熟女亚洲av麻豆精品| 日本熟妇午夜| 岛国毛片在线播放| 成人毛片a级毛片在线播放| 午夜福利在线在线| 97超视频在线观看视频| 深爱激情五月婷婷| 一区二区三区四区激情视频| 国产黄色视频一区二区在线观看| 又爽又黄a免费视频| 成人亚洲精品一区在线观看 | 日韩av在线免费看完整版不卡| 一级片'在线观看视频| 日本欧美国产在线视频| 亚洲av成人精品一区久久| 你懂的网址亚洲精品在线观看| 精品久久久久久电影网| 99久久精品国产国产毛片| 99热这里只有是精品50| 日韩一本色道免费dvd| 高清av免费在线| 国产黄片视频在线免费观看| 99热全是精品| 国产日韩欧美在线精品| 人妻制服诱惑在线中文字幕| 男女边摸边吃奶| 日本wwww免费看| 丰满乱子伦码专区| 亚洲精品国产av成人精品| 免费在线观看成人毛片| 久久精品熟女亚洲av麻豆精品| 黄色日韩在线| 亚洲欧美日韩无卡精品| 国产男人的电影天堂91| 精品少妇久久久久久888优播| 高清欧美精品videossex| 色视频www国产| 又爽又黄a免费视频| 久久亚洲国产成人精品v| 亚洲色图av天堂| 中文字幕av成人在线电影| 热re99久久精品国产66热6| 极品少妇高潮喷水抽搐| 欧美日本视频| 国产爱豆传媒在线观看| 丰满人妻一区二区三区视频av| 青青草视频在线视频观看| 毛片女人毛片| 日本三级黄在线观看| 18+在线观看网站| 精品国产一区二区三区久久久樱花 | 成人漫画全彩无遮挡| 亚洲最大成人手机在线| 欧美3d第一页| 国产精品久久久久久久久免| 成人综合一区亚洲| 日本免费在线观看一区| 成人黄色视频免费在线看| 国产一区亚洲一区在线观看| 美女xxoo啪啪120秒动态图| 国产在视频线精品| 久久精品国产a三级三级三级| 亚洲图色成人| 欧美激情久久久久久爽电影| 久久99精品国语久久久| 国产免费福利视频在线观看| 三级男女做爰猛烈吃奶摸视频| 赤兔流量卡办理| 精品久久久久久久人妻蜜臀av| 国产 一区 欧美 日韩| 高清在线视频一区二区三区| 国产日韩欧美亚洲二区| 熟女人妻精品中文字幕| 午夜老司机福利剧场| 六月丁香七月| 春色校园在线视频观看| 日韩av免费高清视频| 亚洲av福利一区| 国产精品久久久久久精品电影| av播播在线观看一区| 国产精品久久久久久精品电影| 日本av手机在线免费观看| 日韩亚洲欧美综合| videos熟女内射| 人妻一区二区av| 波多野结衣巨乳人妻| 国产伦在线观看视频一区| 天天一区二区日本电影三级| 国产有黄有色有爽视频| 久久99热这里只有精品18| 国产精品女同一区二区软件| 少妇熟女欧美另类| 国产精品人妻久久久久久| 国产免费一级a男人的天堂| 在线观看一区二区三区| 国产精品女同一区二区软件| 国产精品国产三级国产专区5o| 日本一本二区三区精品| 色网站视频免费| 男女下面进入的视频免费午夜| 欧美日韩视频精品一区| 少妇丰满av| 亚洲欧美成人综合另类久久久| 亚洲国产精品专区欧美| 国产欧美另类精品又又久久亚洲欧美| 视频中文字幕在线观看| 下体分泌物呈黄色| 涩涩av久久男人的天堂| www.av在线官网国产| 国产精品成人在线| 欧美国产精品一级二级三级 | h日本视频在线播放| 2021天堂中文幕一二区在线观| 又粗又硬又长又爽又黄的视频| 久久久色成人| 国产精品不卡视频一区二区| 亚洲av.av天堂| 国产片特级美女逼逼视频| 18+在线观看网站| 久久精品久久久久久噜噜老黄| 国语对白做爰xxxⅹ性视频网站| 青春草视频在线免费观看| 神马国产精品三级电影在线观看| 欧美成人a在线观看| 黄色欧美视频在线观看| 亚洲精品,欧美精品| 亚洲婷婷狠狠爱综合网| 国产成人一区二区在线| 黑人高潮一二区| 在线免费观看不下载黄p国产| 免费看光身美女| 亚洲综合色惰| 国产亚洲一区二区精品| 亚洲电影在线观看av| 国国产精品蜜臀av免费| av线在线观看网站| 亚洲精品aⅴ在线观看| 少妇裸体淫交视频免费看高清| 亚洲精品乱码久久久v下载方式| 精品熟女少妇av免费看| 69人妻影院| 久久久a久久爽久久v久久| 2022亚洲国产成人精品| 性插视频无遮挡在线免费观看| 精品一区二区三卡| 国产一区二区在线观看日韩| 高清欧美精品videossex| 日韩在线高清观看一区二区三区| 成人国产av品久久久| 午夜日本视频在线| 性色avwww在线观看| 亚洲精华国产精华液的使用体验| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品成人久久小说| 久久女婷五月综合色啪小说 | 男女那种视频在线观看| 亚洲欧美日韩无卡精品| 国精品久久久久久国模美| 久久精品国产亚洲av天美| 欧美精品一区二区大全| 性色avwww在线观看| 中国美白少妇内射xxxbb| 亚洲av男天堂| 人妻系列 视频| 99精国产麻豆久久婷婷| 亚洲,一卡二卡三卡| av在线app专区| 男人舔奶头视频| 国产精品久久久久久av不卡| 日日摸夜夜添夜夜添av毛片| 高清日韩中文字幕在线| 一本一本综合久久| 亚洲最大成人中文| 亚洲国产欧美人成| 最近最新中文字幕大全电影3| 婷婷色麻豆天堂久久| 六月丁香七月| 赤兔流量卡办理| 亚洲伊人久久精品综合| 国产中年淑女户外野战色| 99精国产麻豆久久婷婷| 久久人人爽av亚洲精品天堂 | 国产午夜福利久久久久久| 青青草视频在线视频观看| 在线观看一区二区三区激情| 一区二区av电影网| 91精品国产九色| 欧美精品一区二区大全| 婷婷色综合www| 91狼人影院| 777米奇影视久久| 香蕉精品网在线| 日韩欧美 国产精品| 亚洲国产精品成人综合色| 国产淫语在线视频| 七月丁香在线播放| 欧美高清性xxxxhd video| 精品人妻偷拍中文字幕| 色播亚洲综合网| 亚洲av中文字字幕乱码综合| 免费av毛片视频| 国产视频内射| 欧美精品人与动牲交sv欧美| 最近手机中文字幕大全| 免费av不卡在线播放| 激情 狠狠 欧美| 国产大屁股一区二区在线视频| 国产一区二区三区av在线| 99久久精品国产国产毛片| 久久久久国产网址| 超碰av人人做人人爽久久| 亚洲人成网站在线播| 美女被艹到高潮喷水动态| 国产有黄有色有爽视频| 搡女人真爽免费视频火全软件| 观看美女的网站| 最近的中文字幕免费完整| 久久久精品免费免费高清| 国产极品天堂在线| av在线天堂中文字幕| 国产一级毛片在线| 亚洲国产日韩一区二区| 久久国产乱子免费精品| 校园人妻丝袜中文字幕| 国内精品宾馆在线| 热re99久久精品国产66热6| 亚洲丝袜综合中文字幕| 亚洲在久久综合| 亚洲国产精品专区欧美| 免费观看的影片在线观看| 午夜精品一区二区三区免费看| 伊人久久精品亚洲午夜| 99热这里只有是精品50| 日本-黄色视频高清免费观看| 亚洲色图综合在线观看| 亚洲无线观看免费| 久久ye,这里只有精品| 亚洲在线观看片| 久久久久精品久久久久真实原创| 免费看av在线观看网站| 国产精品国产三级专区第一集| 免费观看的影片在线观看| 国产白丝娇喘喷水9色精品| 一级毛片久久久久久久久女| 国产毛片在线视频| av一本久久久久| 国产色婷婷99| 99热网站在线观看| 成人鲁丝片一二三区免费| 日韩欧美 国产精品| 国模一区二区三区四区视频| 国产男女超爽视频在线观看| 午夜福利视频精品| 亚洲性久久影院| 麻豆国产97在线/欧美| 日本三级黄在线观看| 亚洲天堂av无毛| 狂野欧美激情性bbbbbb| 国产av码专区亚洲av| 久久ye,这里只有精品| 极品教师在线视频| av线在线观看网站| 性色av一级| 秋霞伦理黄片| 亚洲真实伦在线观看| 青春草亚洲视频在线观看| 在现免费观看毛片| 美女被艹到高潮喷水动态| 日韩一本色道免费dvd| xxx大片免费视频| 婷婷色综合www| 可以在线观看毛片的网站| 黄色日韩在线| 亚洲伊人久久精品综合| 国产精品久久久久久av不卡| 国产亚洲一区二区精品| 伊人久久精品亚洲午夜| 免费看a级黄色片| 18禁在线播放成人免费| 少妇 在线观看| 美女被艹到高潮喷水动态| 亚洲精品自拍成人| 一二三四中文在线观看免费高清| 国产一区有黄有色的免费视频| 汤姆久久久久久久影院中文字幕| 国产成人a∨麻豆精品| 日韩一区二区视频免费看| 神马国产精品三级电影在线观看| 国产精品精品国产色婷婷| 建设人人有责人人尽责人人享有的 | 国产永久视频网站| 看非洲黑人一级黄片| 下体分泌物呈黄色| 成人亚洲欧美一区二区av| 久久ye,这里只有精品| 亚洲久久久久久中文字幕| 亚洲精品自拍成人| 国内精品宾馆在线| 成人免费观看视频高清| 国产亚洲最大av| 亚洲精品乱码久久久v下载方式| 国内少妇人妻偷人精品xxx网站| 少妇猛男粗大的猛烈进出视频 | 国产av不卡久久| 99热6这里只有精品| 3wmmmm亚洲av在线观看| 久久久精品94久久精品| 99热这里只有精品一区| 久久久亚洲精品成人影院| 欧美另类一区| 极品少妇高潮喷水抽搐| 国产午夜精品久久久久久一区二区三区| 亚洲av免费高清在线观看| 亚洲性久久影院| 九色成人免费人妻av| 直男gayav资源| 欧美亚洲 丝袜 人妻 在线| 午夜老司机福利剧场| 欧美激情国产日韩精品一区| 亚洲av.av天堂| 久久99热6这里只有精品| 成年女人看的毛片在线观看| 欧美性猛交╳xxx乱大交人| 国产高清三级在线| 免费观看a级毛片全部| 99久国产av精品国产电影| 伦精品一区二区三区| 国产男人的电影天堂91| 丝瓜视频免费看黄片| 男人舔奶头视频| 男插女下体视频免费在线播放| 国产毛片在线视频| 国产一区二区亚洲精品在线观看| 最近最新中文字幕大全电影3| 日本wwww免费看| 91精品国产九色| 汤姆久久久久久久影院中文字幕| 国产在视频线精品| h日本视频在线播放| 亚洲av电影在线观看一区二区三区 | 久久精品国产亚洲av涩爱| 亚洲av福利一区| 国产久久久一区二区三区| 午夜福利在线在线| 久久久色成人| 国产一区二区三区综合在线观看 | 亚洲国产日韩一区二区| 99热国产这里只有精品6| 热99国产精品久久久久久7| 久热这里只有精品99| 精品人妻视频免费看| 18禁在线无遮挡免费观看视频| 日韩电影二区| 日韩中字成人| 日韩亚洲欧美综合| 熟女av电影| 一级毛片 在线播放| 热re99久久精品国产66热6| 99视频精品全部免费 在线| 国产高清国产精品国产三级 | 韩国高清视频一区二区三区| 三级男女做爰猛烈吃奶摸视频| 嫩草影院精品99| 一级毛片aaaaaa免费看小| av免费在线看不卡| 久久精品国产亚洲av天美| 婷婷色麻豆天堂久久| 精品一区二区三区视频在线| 五月开心婷婷网| 在线观看一区二区三区| 最近2019中文字幕mv第一页| 免费黄频网站在线观看国产| 日日啪夜夜撸| 日韩免费高清中文字幕av| 亚洲经典国产精华液单| 有码 亚洲区| 精品人妻一区二区三区麻豆| 国产精品无大码| 亚洲欧美日韩另类电影网站 | 老女人水多毛片| 在线观看一区二区三区| 免费看日本二区| 国产极品天堂在线| av女优亚洲男人天堂| 精品国产一区二区三区久久久樱花 | 成人综合一区亚洲| 街头女战士在线观看网站| 亚洲高清免费不卡视频| 欧美日本视频| 成人特级av手机在线观看| 色5月婷婷丁香| 亚洲精品久久午夜乱码| 大香蕉久久网| 国产在视频线精品| 交换朋友夫妻互换小说| 青春草国产在线视频| 3wmmmm亚洲av在线观看| 中文字幕人妻熟人妻熟丝袜美| 国内揄拍国产精品人妻在线| 又爽又黄a免费视频| 啦啦啦在线观看免费高清www| 美女被艹到高潮喷水动态| 青春草亚洲视频在线观看| 看免费成人av毛片| 禁无遮挡网站| 久久精品人妻少妇| 免费看日本二区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av成人精品一区久久| 久久久久久久午夜电影| 亚洲国产日韩一区二区| 午夜福利视频1000在线观看| freevideosex欧美| 亚洲久久久久久中文字幕| 一本色道久久久久久精品综合| 狠狠精品人妻久久久久久综合| 免费高清在线观看视频在线观看| 黄色怎么调成土黄色| 亚洲国产高清在线一区二区三| 国产成人freesex在线| 亚州av有码| 婷婷色av中文字幕| 亚洲精品aⅴ在线观看| av国产久精品久网站免费入址| 成人欧美大片| 精品久久久久久久久亚洲| 国产 精品1| av天堂中文字幕网| 天美传媒精品一区二区| 成年女人在线观看亚洲视频 | videossex国产| 国产探花极品一区二区| 97在线视频观看| 狠狠精品人妻久久久久久综合| 国产亚洲5aaaaa淫片| 欧美xxxx性猛交bbbb| 国产女主播在线喷水免费视频网站| 午夜亚洲福利在线播放| 成年女人在线观看亚洲视频 | 三级国产精品片| 大话2 男鬼变身卡| 亚洲国产最新在线播放| 亚洲成色77777| 六月丁香七月| av福利片在线观看| 91久久精品国产一区二区成人| 国产精品99久久久久久久久| av在线天堂中文字幕| 午夜免费观看性视频| 天堂中文最新版在线下载 | 久久久久久久亚洲中文字幕| 亚洲av福利一区| 男人添女人高潮全过程视频| www.色视频.com| 晚上一个人看的免费电影| 国产真实伦视频高清在线观看| 在线免费观看不下载黄p国产| 日韩中字成人| 大又大粗又爽又黄少妇毛片口| 青青草视频在线视频观看| 亚洲成人av在线免费| 久久精品夜色国产| 草草在线视频免费看| 可以在线观看毛片的网站| 久久久久久久精品精品| 亚洲欧美一区二区三区黑人 | 一区二区三区乱码不卡18| 中文天堂在线官网| 香蕉精品网在线| 大码成人一级视频| 国产探花极品一区二区| 热99国产精品久久久久久7| 国产精品成人在线| tube8黄色片| 欧美一区二区亚洲| 亚洲电影在线观看av| 国产精品一二三区在线看| 国产成人91sexporn| 国产精品国产av在线观看| av卡一久久| 日韩一本色道免费dvd| 熟妇人妻不卡中文字幕| 久久精品综合一区二区三区| 网址你懂的国产日韩在线| 亚洲av免费高清在线观看| 国产一区二区三区av在线| 又黄又爽又刺激的免费视频.| 美女xxoo啪啪120秒动态图| 精品国产露脸久久av麻豆| 麻豆精品久久久久久蜜桃| 久久久成人免费电影| 成人午夜精彩视频在线观看| 舔av片在线| 国产av码专区亚洲av| 韩国高清视频一区二区三区| 免费不卡的大黄色大毛片视频在线观看| av在线亚洲专区| 99久久精品国产国产毛片| 亚洲欧美日韩无卡精品| 天堂网av新在线| 视频中文字幕在线观看| 国产精品一区二区性色av| 久久久久久久大尺度免费视频| 一边亲一边摸免费视频| 看十八女毛片水多多多| 精品人妻熟女av久视频| 亚洲精品成人久久久久久| 尤物成人国产欧美一区二区三区| 久久影院123| 欧美日韩一区二区视频在线观看视频在线 | 99久久精品一区二区三区| 久久韩国三级中文字幕| 在线观看av片永久免费下载| 亚洲精品一区蜜桃| 国产精品精品国产色婷婷| 免费观看av网站的网址| 极品教师在线视频| 夫妻午夜视频| 国产精品99久久久久久久久| 国产老妇伦熟女老妇高清| 美女主播在线视频| 成年女人在线观看亚洲视频 | 国产永久视频网站| 久久精品国产鲁丝片午夜精品| 男女国产视频网站| 高清午夜精品一区二区三区| 国产精品伦人一区二区| 国产亚洲91精品色在线| 免费大片黄手机在线观看| 亚洲国产精品成人久久小说| 亚洲美女视频黄频| 中国美白少妇内射xxxbb| 国产亚洲精品久久久com| 黄片wwwwww| 另类亚洲欧美激情| 欧美日韩国产mv在线观看视频 | 免费观看性生交大片5| 人妻夜夜爽99麻豆av| 欧美成人午夜免费资源| 综合色av麻豆| 人体艺术视频欧美日本| 91精品国产九色| 国国产精品蜜臀av免费| 插逼视频在线观看| 欧美 日韩 精品 国产| 欧美另类一区| 夜夜看夜夜爽夜夜摸| 国产精品蜜桃在线观看| 麻豆国产97在线/欧美| 亚洲成人av在线免费| 一级av片app| 久久久久久国产a免费观看| 亚洲最大成人中文| 亚洲欧美清纯卡通| 久久久久久九九精品二区国产| 一级黄片播放器| 纵有疾风起免费观看全集完整版| 国产亚洲精品久久久com| 欧美xxⅹ黑人| 欧美xxxx性猛交bbbb| 精品人妻视频免费看| 亚洲不卡免费看| 久久精品久久久久久噜噜老黄| 欧美极品一区二区三区四区| 亚洲av成人精品一二三区| 亚洲美女搞黄在线观看| 视频区图区小说| 国产v大片淫在线免费观看| 国产真实伦视频高清在线观看| 国产91av在线免费观看| 97超视频在线观看视频| 日韩欧美一区视频在线观看 | 国产成人一区二区在线| 免费观看性生交大片5|